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Abstract: An enantiomerically pure, conformationally constrained
b-proline derivative, 3,4-methano-b-proline, was synthesized start-
ing with a readily available bicyclic lactone by using a straightfor-
ward synthetic route.
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Conformationally constrained cyclic b-amino acids are
useful building blocks for the preparation of b-peptide fold-
amers.1 Secondary structures of b-peptide oligomers are
governed by conformational preferences of the compo-
nent monomers. For example, b-peptides that are com-
posed of five-membered-ring b-amino acids (ACPC2 or
APC,3 Figure 1) adopt 12-helical b-peptide structures,
whereas analogous oligomers arising from six-mem-
bered-ring b-amino acids (ACHC) display stable 14-heli-
cal structures.4

Figure 1 Structures of cyclic b-amino acids

b-Proline (pyrrolidine-3-carboxylic acid, PCA) and nipe-
cotic acid (NIP) are examples of types of cyclic b-amino
acids that are known to form oligomers with unique sec-
ondary structures.5 Due to the lack of hydrogen-bonding
donor sites in their backbones, oligomers arising from
these monomers possess nonhydrogen-bonded helical
structures that resemble natural polyproline helices. The
results of a theoretical study by Carson and coworkers
suggest that the nature of the substitution patterns of the
side chains of b-prolines should influence the conforma-
tional properties of the resulting oligomers.6 Indeed, Gell-
man and his coworkers have proven that the oligomers

composed of d,d-disubstituted b-proline monomers can
preferentially form cis-amide conformations that display
different CD signals than those of poly-b-prolines.7

These findings suggest that b-proline analogues with dif-
ferent substitution patterns could give rise to new fold-
amer scaffolds with unique conformational properties.
Systematic conformational studies exploring this issue re-
quire the availability of b-proline monomers with diverse
substitution patterns. However, only a few reports exist
describing the synthesis of substituted b-prolines.8 In ad-
dition, b-proline has received a great deal of attention re-
cently owing to its role as an organocatalyst in
enantioselective C–C bond-forming reactions. For exam-
ple, b-proline and its derivatives have been used as ef-
fecient catalysts for anti-selective Mannich-type reactions
of aldehydes and ketones with imines.9 Consequently,
properly designed b-proline derivatives containing an ar-
ray of different substitution patterns could have unique
applications in the area of organocatalysis. 

Stimulated by the recent dual interest in b-proline deriva-
tives, we have designed a new, conformationally con-
strained, cyclic b-amino acid skeleton found in 3,4-
methano-b-proline, where the methano bridge is located
at Cb- and Cg-positions of the amino acid. The structure of
3,4-methano-b-proline resembles that of both b-proline
and NIP, but it is unique in that the pyrrrolidine-ring puck-
ering is highly restricted. Owing to this structural feature,
3,4-methano-b-proline should serve as useful substance to
explore the conformational space void that exists current-
ly in peptidomimetic studies. In addition, it is anticipated
that this substance will have unique organocatalytic prop-
erties that derive from the nucleophilicity and/or basicity
of the nitrogen and orientation of the carboxylic acid
group that differ from those of b-proline.10

Although a considerable effort has been given to the syn-
thesis of natural and unnatural methano-a-prolines,11 only
a few reports exist describing the preparation of methano-
b-prolines.12 Below we present the results of an investiga-
tion that has led to the development of a straightforward
route for the synthesis of the Boc-protected (3R,4R)-meth-
ano-b-proline (1, Figure 2) in enatiomerically pure form.
Importantly, we have found that the approach can be ap-
plied to the preparation of the Boc-b-proline (2).13

The retrosynthetic plan outlined in Scheme 1 suggests that
both Boc-(3R,4R)-methano-b-proline (1) and Boc-b-pro-
line (2) can be generated from the respective bicyclic lac-
tones (–)-3 and (+)-3. The starting, enantiomerically pure
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bicyclic lactones should be readily accessed on multigram
scales by using the known14 one-step synthetic protocol.
Importantly, the carbon skeleton and all of the sterogenic
centers of the target compound 1 already exist in the start-
ing bicyclic lactone (–)-3 (Scheme 1, A).

As shown in Scheme 1 (B), the route to b-proline 2 begins
with the opposite enantiomer of the same bicyclic lactone
(+)-3 and employs selective manipulation of cyclopro-
pane ring. For conformational analysis of the oligomer
that is composed of the (3R,4R)-methano-b-proline
monomer, the b-proline with R-configuration is needed as
a reference, which will give the b-proline oligomer with
the same helical sense as that of (3R,4R)-methano-b-pro-
line. To synthesize b-proline with R-configuration, the bi-
cyclic lactone (+)-3, the opposite enantiomer of (–)-3, is
needed.

The sequence used to prepare enantiomerically pure Boc-
(3R,4R)-methano-b-proline (1) is given in Scheme 2. The
bicyclic g-lactone ring in (–)-3 was opened by treatment
with TMSBr and ethanol to yield the bromide 4 (60%),
which was then reacted with NaN3 in DMF at 70 °C for 5
hours to generate the corresponding azide 5 (83%). Al-
though reduction of the azide 5 can be accomplished using
standard hydrogenation conditions (H2, 10% Pd/C), the
reaction is not reproducible on a large scale. As a result,
the azide reduction was carried out using Ph3P in THF–
H2O at reflux to furnish the desired g-lactam 6 in 80%
yield. The amide nitrogen was Boc-protected (forming 7)
prior to further manipulations. Initial attempts to
chemoselectively reduce the amide carbonyl group in 7
were not successful. For example, no reaction was ob-
served when 7 was treated 9-BBN, which is typically used
for selective reduction of an amide group in the presence
of an ester moiety.15 Moreover, reaction of 7 with

BH3·SMe2 was sluggish at room temperature and when
performed under refluxing THF conditions, the yield for
the desired bicyclic pyrrolidine was only 15% (alcohol 8
was obtained as a major product in 57% yield). Although
TLC analysis showed that amide reduction preceded ester
reduction under these conditions, ester reduction could
not be avoided. Therefore, complete reduction of both the
lactam and ester groups in 7 was accomplished by using
an excess of BH3·SMe2 in refluxing THF. This process
provided 8 in an 85% yield. Several methods were
screened to transform 8 to the target carboxylic acid 1.
Reactions of 8 with Jones reagent or PDC were not clean.
Although oxidation of 8 with RuCl3 and NaIO4 provided
the desired acid 1 when carried out on a milligram scale,16

the process was not efficient when performed on a gram
scale. A two-step oxidation process was more reliable.

Figure 3 ORTEP plot of Boc-(3R,4R)-methano-b-proline (1) with
30% thermal ellipsoid probability.

Scheme 2 Reagents and conditions: (a) TMSBr (1.3 equiv), EtOH–
CH2Cl2 (1:10), 0 °C to r.t., 24 h, 60%; (b) NaN3 (8 equiv), 15-crown-
5, DMF, 70 °C, 5 h, 83%; (c) Ph3P (1.3 equiv), THF–H2O (8:1), r.t.,
3 h, and then 60 °C, 36 h, 80%; (d) (Boc)2O (2 equiv), Et3N, DMAP,
CH2Cl2, r.t., 2 h, 87%; (e) BH3·SMe2 (7.5 equiv), THF, 55 °C, 2 h,
85%; (f) IBX (2.5 equiv),  DMSO, r.t., 6 h, 83%; (g) NaClO2,
KH2PO4, t-BuOH, 2-methylbut-2-ene, H2O, r.t., overnight, 70%.

Specifically, treatment of 8 with IBX proceeded smoothly
to form aldehyde 9 (83%),17 which was then converted
into Boc-(3R,4R)-methano-b-proline (1, 70%, white crys-
talline solid) by treatment with NaClO2. The methyl ester
of Boc-(3R,4R)-methano-b-proline was prepared in order
to determine the enantiomeric purity (>99%) by using
chiral HPLC analysis.18 Since the enantiomeric purity of

Figure 2 Structure of (3R,4R)-methano-b-proline (1) and b-proline (2)
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starting (–)-3 is 99%, the configurations at all of the chiral
centers are completely retained in this sequence. The crys-
tal structure of 1 is shown in Figure 3,19 and the absolute
configuration of 1 was confirmed by using the Flack
method.20

Scheme 3 Reagents and conditions: (a) NaN3 (4 equiv), AcOH (0.1
equiv), Et3N (0.1 equiv), DMSO, 75 °C, 4 h; (b) 6 N HCl, 120 °C, 18
h, 58% (in 2 steps); (c) H2, 10% Pd/C, MeOH, r.t., overnight, 85%;
(d) (Boc)2O (2.5 equiv), Et3N, DMAP, CH2Cl2, r.t., 6 h, 74%; (e)
BH3·SMe2 (2.5 equiv), THF, 55 °C, 2 h, 98%; (f) KOH (4.5 equiv),
MeOH, r.t., 18 h, 98%; (g) RuCl3 (10 mol%), NaIO4 (4 equiv),
MeCN–CCl4–H2O (2:2:3), 0 °C to r.t., 2 h, 79%.

The enantiomerically pure b-proline 2 was synthesized
starting with the bicyclic lactone (+)-3 (Scheme 3). Open-
ing of the cyclopropane ring in this substance was per-
formed by using sodium azide to obtain the lactone
intermediate which was then treated with 6 N HCl at 120
°C for 18 hours to produce the b-azidomethyl g-butyrolac-
tone (10) in 58% overall yield. After hydrogenolysis of
the azide group in 10 by using H2 and 10% Pd/C in
MeOH, and stirring the resulting mixture overnight, the
known g-lactam 11 was generated as a white solid in 85%
yield. Both the amide nitrogen and the primary alcohol of
11 were protected with Boc groups by treatment with
(Boc)2O and DMAP to give 12 as a white solid in 74%
yield. Reduction of lactam 12 with BH3·SMe2 in refluxing
THF efficiently provided 13 as an oil in 98% yield. Selec-
tive O-Boc deprotection 13 was performed by using meth-
anolic KOH to furnish alcohol 14 in a quantitative yield.
The RuCl3/NaIO4 oxidation of the alcohol moiety in 14
was successfully carried out to generate the desired Boc-
protected amino acid 2 as a white solid in 79% yield. The
enantiomeric purity of 2 was determined to be >99% by
using chiral-HPLC.21

In summary, a new conformationally restricted b-proline
derivative, Boc-(3R,4R)-methano-b-proline (1), has been
synthesized in enantiomerically pure form in seven steps
and a 17% overall yield starting with the readily available
bicyclic lactone (–)-3. Boc-(R)-b-proline (2) was also pre-
pared from the enantiomerically pure bicyclic lactone (+)-3
in 28% overall yield. The organocatalytic properties of

3,4-methano-b-proline 1 and the effects of conformation-
al constraints on the secondary structure of the b-proline
oligomer derived from 1 are currently being investigated.

All compounds were characterized by analysis of their 1H NMR,
13C NMR, and HRMS properties.

Compound 1
White solid; mp 114–117 °C; [a]D

25 –87.3 (c 1.03, CHCl3). 
1H NMR

(400 MHz, CDCl3): d = 0.91 (t, J = 5.0 Hz, 3 H), 1.42 (s, 9 H), 1.64
(dd, J = 4.7, 8.2 Hz, 1 H), 2.10 (br, s, 1 H), 3.40–3.72 (m, 4 H). 13C
NMR and DEPT (100 MHz, CDCl3): d = 19.01/19.2 (1 CH2), 27.7
(1 CH), 28.4 (3 CH3), 28.9/29.7 (C), 47.0/47.2 (1 CH2), 47.3/47.5 (1
CH2), 79.9/80.0 (C), 154.9 (C), 178.2 (C). ESI-HRMS: m/z calcd
for [M + K]+ C11H17NO4K: 266.0789; found: 266.0711.

Compound 2
White solid; mp 141–142 °C, [a]D

23 –13.8 (c 1.00, CHCl3) { ref 13g:
mp 139–141 °C; [a]D

22 –14.6 (c 1.00, CHCl3)}. 1H NMR (400 MHz,
CDCl3): d = 1.43 (s, 9 H), 2.13 (m, 2 H), 3.05 (m, 1 H), 3.34–3.57
(m, 4 H), 10.12 (br s, 1 H). 13C NMR and DEPT (100 MHz, CDCl3):
d = 28.1/28.7 (1 CH2), 28.4 (3 CH3), 42.2/43.0 (1 CH), 45.0/45.3 (1
CH2), 47.8 (1 CH2), 79.8 (C), 154.5 (C), 178.0 (C). HRMS (EI, pos.
mode): m/z calcd for [M]+ C10H17NO4: 215.1158; found: 215.1159.
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