

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 16 (2006) 2905-2908

2,5-Disubstituted pyrrolidine carboxylates as potent, orally active sphingosine-1-phosphate (S1P) receptor agonists

Vincent J. Colandrea,^{a,*} Irene E. Legiec,^a Pei Huo,^a Lin Yan,^a Jeffrey J. Hale,^a Sander G. Mills,^a James Bergstrom,^b Deborah Card,^b Gary Chebret,^b Richard Hajdu,^b Carol Ann Keohane,^b James A. Milligan,^b Mark J. Rosenbach,^b Gan-Ju Shei^b and Suzanne M. Mandala^b

^aDepartment of Medical Chemistry, Merck Research Laboratories, Rahway, NJ 07065, USA ^bDepartment of Immunology and Rheumatology Research, Merck Research Laboratories, Rahway, NJ 07065, USA

> Received 3 February 2006; revised 28 February 2006; accepted 1 March 2006 Available online 31 March 2006

Abstract—A series of 2,5-*cis*-disubstituted pyrrolidines were synthesized and evaluated as S1P receptor agonists. Compounds **15–21** were identified with good selectivity over S1P₃ which lowered circulating lymphocytes after oral administration in mice. © 2006 Published by Elsevier Ltd.

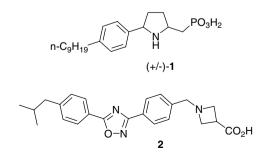
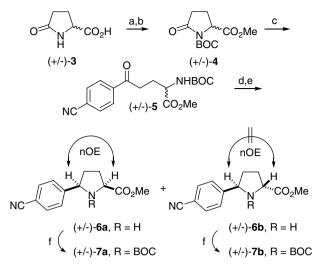
The sphingosine-1-phosphate-1 $(S1P_1)$ receptor has recently emerged as a novel molecular target for immunosuppression.¹ Systemic administration of S1P agonists results in the sequestration of peripheral blood lymphocytes (PBLs) in secondary lymphoid organs, which prevents their access to transplanted or non-lymphoid tissues.² This pharmacodynamic phenomenon is putatively responsible for the immunosuppressive efficacy of this class of compounds.³

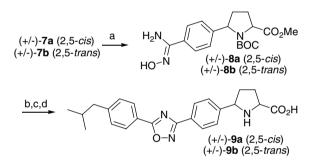
Work from these laboratories has shown that the 2,5-disubstituted pyrrolidine (\pm)-1 and diaryl-1,2,4-oxadiazole 2 are potent agonists of S1P receptors.^{4,5} In addition, compound 2 and its analogs were found to have exceptional selectivity against S1P₃, a receptor subtype that mediates acute cardiovascular toxicity in rodents.⁶ Based on these results, we sought to combine the salient features of the oxadiazole-based lipophilic domain of compounds like 2 and the pyrrolidine scaffold in (\pm)-1 with the aim of affording potent, selective, and orally active S1P₁ agonists (Fig. 1).

In order to modify both the 2- and 5-positions of the pyrrolidine scaffold, a flexible synthesis of these disubsti-

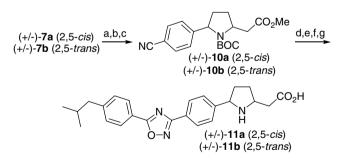
0960-894X/\$ - see front matter @ 2006 Published by Elsevier Ltd. doi:10.1016/j.bmcl.2006.03.038

tuted pyrrolidines was designed, starting with (\pm) -pyrrolglutamic acid **3**. Schemes 1–3 illustrate our synthetic approach. Sequential protection of (\pm) -**3** under standard conditions gave the *N*-tert-butoxycarbamoyl methyl ester (\pm) -**4**.⁷ Regioselective addition to the amide carbonyl with 4-cyanophenylmagnesium chloride gave ketone (\pm) -**5**.⁸ Treatment of (\pm) -**5** with trifluoroacetic acid effected ring closure to the corresponding pyrroline, which was subsequently reduced with sodium cyanoborohydride to provide the diastereomeric (\pm) -cis- and (\pm) -trans-pyrrolidines (\pm) -**6a**,**b**. These diastereomers were separated by flash chromatography and assignment of their relative stereochemistries was secured by ID nOe experiments.⁹ Protection of the pyrrolidine nitrogen afforded nitriles (\pm) -**7a**,**b**.

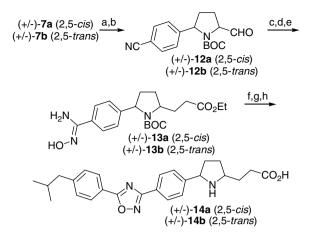




Figure 1.

Keywords: Pyrrolidines; Oxadiazole; S1P receptor; Immunosuppressants.


^{*} Corresponding author. Tel.: +1 732 594 1669; fax: +1 732 594 5966; e-mail: vince_colandrea@merck.com

Scheme 1. Reagents and conditions: (a) Amberlyst-15, CH₃OH, 50 °C; (b) Boc₂O, Et₃N, DMAP (78%, two steps); (c) 4-cyanophenylmagnesium chloride, -40 °C; (d) TFA, CH₂Cl₂; (e) NaBH₃CN, HCl, CH₃OH (**6a**: 38%, **6b**: 24%, three steps); (f) Boc₂O, CH₂Cl₂ (**7a**: 96%, **7b**: 80%).

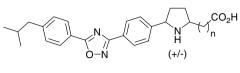


Scheme 2. Reagents and conditions: (a) NH₂OH, Et₃N, CH₃OH ((\pm)-7a: 93%, (\pm)-7b 73%); (b) EDC, 4-(2-methylpropyl)phenylbenzoic acid, CH₃CN, rt then 120 °C, 15 h; (c) TFA, CH₂Cl₂; (d) NaOH, CH₃OH ((\pm)-9a: 51%, (\pm)-9b: 34%, three steps).

Scheme 3. Reagents and conditions: (a) LiOH, THF/CH₃OH/H₂O; (b) *i*-BuOCOCl, Et₃N, then CH₂N₂; (c) AgOBz, Et₃N, CH₃OH ((\pm)-10a: 52%, (\pm)-10b: 14%, three steps); (d) NH₂OH, Et₃N, CH₃OH; (e) EDC, 4-(2-methylpropyl)-phenylbenzoic acid, CH₃CN, rt then 120 °C, 15 h; (f) TFA, CH₂Cl₂; (g) NaOH, CH₃OH ((\pm)-11a: 45%, (\pm)-11b: 36%, four steps).

Nitriles (\pm)-7a,b were valuable intermediates for the synthesis of the pyrrolidine carboxylate homologs (\pm)-9a, 9b, 11a, 11b, 14a, and 14b (Schemes 2–4). Preparation of the α -amino acids (\pm)-9a and (\pm)-9b is outlined in Scheme 2. Independent treatment of nitriles (\pm)-7a and

Scheme 4. Reagents and conditions: (a) LiBH₄, THF; (b) (COC1)₂, DMSO, then Et₃N, -78 °C to rt; (c) ethyl(triphenylphosphoranylidine) acetate, PhCH₃; (d) H₂, 10% Pd–C, CH₃OH; (e) NH₂OH, Et₃N, CH₃OH ((±)-7a: 11%, (±)-7b 16%, four steps); (f) EDC, 4-(2-methylpropyl)-phenylbenzoic acid, CH₃CN, rt then 120 °C, 15 h; (g) TFA, CH₂Cl₂; (h) NaOH, CH₃OH ((±)-14a: 68%, (±)-14: 22%, three steps).


(\pm)-7b with hydroxylamine gave the amidoximes (\pm)-8a and (\pm)-8b. These intermediates were *O*-acylated and thermally cyclized and dehydrated to afford the corresponding 1,2,4-oxadiazoles. Deprotection of the *N*-tert-butoxycarbamate and methyl ester moieties afforded compounds (\pm)-9a and (\pm)-9b.

The homologation of nitriles (\pm) -7**a** and (\pm) -7**b** was accomplished through an Arndt-Eistert sequence¹⁰ to give esters (\pm) -10**a** and (\pm) -10**b** (Scheme 3). Installation of the oxadiazole and deprotection vide infra furnished the desired β -amino acids (\pm) -11**a** and (\pm) -11**b**.

Preparation of the γ -amino acids (±)-14a and (±)-14b is outlined in Scheme 4. Selective reduction of the esters of (±)-7a and (±)-7b with lithium borohydride¹¹ gave the corresponding alcohols, which were oxidized using the Swern protocol¹² to furnish aldehydes (±)-12a and (±)-12b. Reaction with ethyl(triphenylphosphoranylidine) acetate, followed by hydrogenation and reaction with hydroxylamine, gave amidoximes (±)-13a and (±)-13b. Once again, oxadiazole formation followed by sequential deprotection afforded compounds (±)-14a and (±)-14b.

Binding affinities for new compounds were evaluated for each of the five known sphingosine-1-phosphate receptors (S1P₁₋₅) in radioligand competitive binding assays using [³³P]S1P expressed in Chinese hamster ovary (CHO) cell membranes.¹ S1P receptor agonism was determined by measurement of ligand-induced [³⁵S]-5'-*O*-3-thiotriphosphate (GTP γ S) binding. All new compounds were found to be agonists of the SIP_{1,3,5} receptors and to have minimal affinity for the S1P₂ receptor subtype. Values for binding (IC₅₀) and functional (EC₅₀) assays were in agreement to a factor of 4, thus only IC₅₀ values for S1P_{1,3-5} receptors will be displayed for new compounds (see Tables 1 and 2). The ability of selected compounds to lower circulating PBLs

Table 1. S1P receptor affinities of carboxylate homologs

IC50 (nM)

,CO₂H

Compound	п	Stereo	IC ₅₀ (nM)			
			S1P ₁	S1P ₃	S1P ₄	S1P5
9a	0	cis	75	>10,000	1000	1280
9b	0	trans	17	10,000	300	180
11a	1	cis	3.3	>10,000	1000	200
11b	1	trans	8.0	>10,000	700	100
14a	2	cis	4.5	>10,000	540	30
14b	2	trans	5.7	6700	630	80

Ar

Compounds (\pm)-9–14 were >10 μ M for the S1P₂ receptor.

Table 2. Binding affinities of compounds 15-21

Compound	Ar	IC ₅₀ (nM)			
		S1P ₁	S1P ₃	S1P ₄	S1P ₅
15		0.7	1700	350	20
16	F	2.7	>10,000	1400	60
17	F	2.0	7600	2100	30
18	F F (S)	0.8	2200	720	16
19	F (R)	1.2	2500	570	13
20 21	19 diastereomer 1 19 diastereomer 2	2.9 0.64	7800 3800	1500 720	19 15

Compounds (±)-15–19, 20 and 21 were >10 μM for the S1P2 receptor.

(a marker for immunosuppressive efficacy) was determined in mice, at 3 h post oral administration. Quantification of circulating PBLs in this manner also provides a gauge on the overall pharmacokinetic properties of new compounds.¹³ The α -amino acids (±)-**9a** and (±)-**9b** were found to be moderately potent S1P₁ agonists. Homologation to the β -amino acids (±)-**11a** and (±)-**11b** led to an improvement in SIP₁ potency, with the *cis*-isomer (±)-**11a** being roughly 2-fold more potent than the *trans*-isomer

Table 3. Rat pharmacokinetics^a for selected compounds

Compound	Rat pharmacokinetic parameters
11a	$Cl_p = 6.6 \text{ mL/min/kg}, V_d = 2.9 \text{ L/kg},$
	$t_{1/2} = 4.1$ h; % $F = 48$
11b	$Cl_p = 8.4 \text{ mL/min/kg}, V_d = 3.0 \text{ L/kg},$
	$t_{1/2} = 3.5$ h; % $F = 40$
21	$Cl_p = 9.7 \text{ mL/min/kg}, V_d = 2.3 \text{ L/kg},$
	$t_{1/2} = 2.2 \text{ h}; \% F = 48$

^a Sprague–Dawley rats (n = 2); 1.0 mg/kg iv; 2.0 mpk po.

(±)-11b. Additionally, the *cis*-isomer (±)-11a was more selective for the remaining S1P subtypes (>3000-fold over S1P₃, >300-fold over S1P₄, and >60-fold over S1P₅); such trends had been observed for analogs of 2^5 and with 2,4-(disubstituted)pyrrolidine S1P receptor agonists,¹⁴ but were somewhat less pronounced. The γ -amino acids (±)-14a and (±)-14b were approximately 2-fold less potent than β -amino acids (±)-11a and (±)-11b with excellent selectivity against S1P₃ and S1P₄, although both compounds had an increased affinity for the S1P₅ receptor.

Administration of either pyrrolidine (\pm) -11a or (\pm) -11b to mice at 10 mpk resulted in a near maximal lowering of circulating PBLs and both of these compounds exhibited favorable pharmacokinetics in the rat (Table 3). Based on the in vitro potency and selectivity of the *cis*isomer (\pm) -11a, additional analogs were prepared in this series. Chemistry was carried out as outlined in Scheme 3, starting with the amidoxime derived from nitrile (\pm) -10a and some select substituted benzoic acids.¹⁵ S1P receptor data for these compounds are listed in Table 2.

4-(Cycloalkyl)phenyl substituents appended to the 5-position of the 1,2,4-oxadiazole ring had been previously demonstrated to either maintain or enhance S1P receptor affinity as compared to the corresponding 4-(2-methylpropyl)phenyl analogs in other series of S1P receptor agonists. The same trend was observed for the compounds in this study (Table 2). Cyclohexyl analog (\pm) -15 and the diastereomeric mixtures 18 and 19 were all found to have S1P1 IC50 values of 1 nM or less. Since the (R)-(2,2-diffuoro)cyclopentyl analog 19 appeared to be more potent in the mouse peripheral lymphocyte lowering (PLL) screening assay; separation of this compound by chiral HPLC¹⁶ afforded the single diastereomers 20 and 21. Analog 21 was found to be a potent S1P₁ agonist (S1P₁ IC₅₀ = 0.6 nM) with greater than 5900-fold selectivity over S1P₃ and 1100-fold selectivity over the S1P₄ receptor. Compound 21 displayed good rat pharmacokinetic properties (Table 3) and its PLL pharmacodynamic ED_{50} value in the mouse was approximately 0.3 mg/kg after oral administration.

In short, we have demonstrated that a rational combination of compounds (\pm) -1 and 2 led to the identification of a series of *cis*-2,5-disubstituted pyrrolidine carboxylates as agonists of the S1P₁ receptor, with good to exceptional selectivity over S1P_{2,3,4} subtypes. Select compounds have also been shown to lower circulating PBLs after oral administration in mice and display encouraging pharmacokinetic profiles in rats.

References and notes

- Mandala, S.; Hajdu, R.; Bergstrom, J.; Quackenbush, E.; Xie, J.; Milligan, J.; Thornton, R.; Shei, G.-J.; Card, D.; Keohane, C. A.; Rosenbach, M.; Hale, J.; Lynch, C. L.; Rupprecht, K.; Parsons, W.; Rosen, H. Science 2002, 296, 346.
- Matloubian, M.; Lo, C. G.; Cinamon, G.; Lesneski, M. J.; Xu, Y.; Brinkmann, V.; Allende, M. L.; Proia, R. L.; Cyster, J. G. *Nature* 2004, 427, 355.
- Chiba, K.; Yanagawa, Y.; Masubuchi, Y.; Kataoka, H.; Kawaguchi, T.; Ohtsuki, M.; Hoshino, Y. J. Immunol. 1998, 160, 5037.
- Yan, L.; Hale, J. J.; Lynch, C. L.; Budhu, R.; Gentry, A.; Mills, S. G.; Hajdu, R.; Keohane, C. A.; Rosenbach, M. J.; Milligan, J. A.; Shei, G.-J.; Chrebet, G.; Bergstrom, J.; Card, D.; Rosen, H.; Mandala, S. M. *Bioorg. Med. Chem. Lett.* 2004, 14, 4861.
- Li, Z.; Chen, W.; Hale, J. J.; Lynch, C. L.; Mills, S. G.; Hajdu, R.; Keohane, C. A.; Rosenbach, M. J.; Milligan, J. A.; Shei, G.-J.; Chrebet, G.; Parent, S. A.; Bergstrom, J.; Card, D.; Forrest, M.; Quackenbush, E. J.; Wickham, A. L.; Vargas, H.; Evans, R. M.; Rosen, H.; Mandala, S. J. Med. Chem. 2005, 48, 6169.
- Hale, J. J.; Doherty, G.; Toth, L.; Mills, S. G.; Hajdu, R.; Keohane, C. A.; Rosenbach, M. J.; Milligan, J. A.; Shei, G.-J.; Chrebet, G.; Bergstrom, J.; Card, D.; Forrest, M.; Sun, S.-Y.; West, S.; Xie, H.; Nomura, N.; Rosen, H.; Mandala, S. M. *Bioorg. Med. Chem. Lett.* 2004, 74, 3501.
- 7. Coudert, E.; Acher, F.; Azerad, R. Synthesis 1997, 863.
- (a) Ezquerra, J.; Pedregal, C.; Rubio, A.; Valenciano, J.; Navio, J. L. C.; Builla, J. A.; Vaquero, J. J. *Tetrahedron Lett.* **1993**, *34*, 6317; (b) Ohta, T.; Hosoi, A.; Kimura, T.; Nozoe, S. *Chem. Lett.* **1987**, 2091.
- Van Betsbrugge, J.; Van Den Nest, W.; Verheyden, P.; Tourwé, D. *Tetrahedron* 1998, 54, 1753.
- 10. Podlech, J.; Seebach, D. Liebigs Ann. Chem. 1995, 7, 1217.
- Brown, H. C.; Narasimham, S.; Choi, Y. M. J. Org. Chem. 1982, 47, 4702.
- 12. Mancuso, A. J.; Swern, D. Synthesis 1981, 165.
- Hale, J. J.; Lynch, C. L.; Neway, W.; Mills, S. G.; Hajdu, R.; Keohane, C. A.; Rosenbach, M. J.; Milligan, J. A.; Shei, G.-J.; Parent, S. A.; Chrebet, G.; Bergstrom, J.; Card, D.; Ferrer, M.; Hodder, P.; Strulovici, B.; Rosen, H.; Mandala, S. M. *Bioorg. Med. Chem. Lett.* 2004, 14, 3351.
- 14. Yan, L.; Budhu, R.; Huo, P.; Lynch, C. L.; Hale, J. J.; Mills, S. G.; Hajdu, R.; Keohane, C. A.; Rosenbach, M. J.; Milligan, J. A.; Shei, G.-J.; Chrebet, G.; Bergstrom, J.; Card, D.; Mandala, S. M. *Bioorg. Med. Chem. Lett.*, accepted for publication.
- 15. (4-Cyclohexyl)phenylbenzoic acid was purchased from Lancaster synthesis. For the preparation of benzoic acids used in the synthesis of compounds 16–19, see Ref. 4.
- 16. Chiral HPLC was performed on the *N-tert*-butoxycarbonylmethyl ester of compound **19** (Chiralpak OD column, 2×25 cm, 10% EtOH/heptane, 8.0 mL/min, $\lambda = 254$ nm, peak 1 = 21.9 min; peak 2 = 26.1 min). Sequential deprotection afforded compounds **20** and **21**.