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ABSTRACT: Functionalizing the redox-active tetrathiafulvalene (TTF) core with groups capable of coordination to metals
provides new perspectives on the modulation of architectures and electronic properties of organic−inorganic hybrid materials. With
a view to extending this concept, we have now synthesized nickel bis(dithiolene-dibenzoic acid), [Ni(C2S2(C6H4COOH)2)2], which
can be considered as the inorganic analogue of the organic tetrathiafulvalene-tetrabenzoic acid (H4TTFTB). Likewise,
[Ni(C2S2(C6H4COOH)2)2] is a redox-active linker for new functional metal−organic frameworks, as demonstrated here with the
synthesis of [Mn2{Ni(C2S2(C6H4COO)2)2}(H2O)2]·2DMF, (1, DMF = N,N-dimethylformamide). 1 is isomorphic to the reported
[Mn2(TTFTB)(H2O)2] (2) but is a better electrochemical glucose sensor due to the multiple oxidation−reduction states of the
[NiS4] core, which allow glucose to be oxidized to glucolactone by the high oxidation state [NiS4] center. As a non-enzymatic
glucose sensor, 1 on Cu foam (CF), 1-CF, was synthesized by a one-step hydrothermal method and exhibited an excellent
electrochemical performance. The fabricated 1-CF electrode offers a high sensitivity of 27.9 A M−1 cm−2, with a wide linear
detection range from 2.0 × 10−6 to 2.0 × 10−3 M, a low detection limit of 1.0 × 10−7 M (signal/noise = 3), and satisfactory stability
and reproducibility.

Metal−organic frameworks (MOFs) are a class of materials
composed of organic linkers and metal or cluster nodes.1

In recent years, MOFs have been extensively explored in the
fields of magnetism,2 gas storage3 and separation,3 drug
delivery,4 catalysis,5 clinical diagnosis,6 chemical sensors,7 and
analysis,8 because of their advantageous physical and chemical
properties, such as their three-dimensional (3D) high-
crystallinity structure, high specific surface area, and multiple
porosities. Among known MOFs, those with redox activity are
alluring, because they can add a new functional dimension in
fields such as electrochemistry and optics.9 Tetrathiafulvalene
(TTF, C6H4S4) is a redox-active, sulfur-rich conjugated core
that can undergo two reversible and easily accessible redox
processes and can act as an effective linker to construct novel
functional materials.10 Recently, several redox-active com-
pounds based on tetrathiafulvalene-tetrabenzoate (TTFTB)
have been studied11−13 and widely used in the fields of
catalysis,14 electronics,15 proton/electron conductors,16,17 and
redox-controlled adsorption.18,19

Nickel bis(dithiolene) complexes can be seen as inorganic
analogues of the corresponding TTF-type donors where the
metal replaces the central CC bond.20 Like TTF and its
derivatives, they also have rich redox behavior and favorable
solid-state interactions.21 Metal-bis(dithiolene) complexes are
attracting increasing interest; for example, Mo-bis(dithiolene)
complexes have been well studied as analogues of the active site
in dimethyl sulfoxide reductase (DMSOR).22 Nickel bis-
(dithiolene) complexes have been employed for their special
characteristics in magnetism,23 electron conductors,24−26 near-

infrared (NIR) dyes,27 and nonlinear-optical materials,28

because of the mixing of organic and metal orbitals and unique
redox properties.29,30 They exist in several clearly defined
oxidation states which are connected through reversible redox
steps and are often ideal for electronic and spectroscopic
applications.31 Introducing inorganic ligand analogs into MOFs,
in place of purely organic ligands, endows frameworks with a
range of additional multifunctional properties.
Recently, electrochemical sensors have attracted great

attention due to advantages including their simple operation,
rapid response, and sensitivity, especially for glucose detec-
tion.32 The blood glucose level in the human body is an
important index to measure metabolic ability and clinical
diagnosis of diabetes.33 Therefore, the accurate measurement of
blood glucose is of great significance.34 To date, commercial
glucose sensors are mainly based on glucose oxidase-assisted
electro-oxidation. Despite the high sensitivity and selectivity,
such sensors suffer from high cost, low reproducibility, complex
and tedious enzyme immobilization process, and degradation of
activity, limiting their large-scale applications. To avoid such
issues, much effort has been directed toward designing and
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exploiting non-enzymatic sensors based on direct electro-
catalysis of electrode materials.35 Nevertheless, there are still
some obstacles for the application of MOFs in the field of
electrochemical sensors for non-enzymatic glucose detection,
such as the small detection range, lower sensitivity, and poor
stability.36 Based on the above-mentioned obstacles of the
MOF-based electrode materials, it is extremely important to
develop highly active MOFs with good stability for glucose
detection.
Herein, nickel bis(dithiolene-dibenzoic acid), [Ni(C2S2-

(C6H4COOH)2)2], as the inorganic analogue of H4TTFTB, is
successfully synthesized as a new building block (Schemes 1 and

S1). It is a redox-active, versatile, and important linker for new
functional MOFs. As an example, a new 3D MOF, [Mn2{Ni-
(C2S2(C6H4COO)2)2}(H2O)2]·2DMF (1, DMF = N,N-dime-
thylformamide), has been constructed, which shows a better
electrochemical activity for glucose sensing than
[Mn2(TTFTB)(H2O)2] (2). Because the nickel bis(dithiolene)
compounds have several reversible and stable oxidation states,
glucose can be oxidized to glucolactone by the highly oxidizing
nickel. The high sensitivity, wide detection range, and low
detection limit underlie the performance of 1 as a good
electrochemical sensor for glucose.
Single-crystal X-ray diffraction showed that 1 is isostructural

to 2,15 crystallizing in space group P61 (Table S1 and Figure S3).
The asymmetric unit consists of two Mn(II), a ligand
[Ni(C2S2(C6H4COO)2)2]

4−, and two coordinated water
molecules. In 1, two crystallographically independent frame-
work Mn(II) centers (Mn1, Mn2) exhibit distorted polyhedral
coordination geometries coordinated by linker carboxylates and
oxygen atoms of coordinated water. The five-coordinated Mn1
was coordinated with a chelating carboxyl group of [Ni(C2S2-
(C6H4COO)2)2]

4− and three oxygen atoms from another three
carboxylate ligands. The six-coordinatedMn2 was completed by
four oxygen atoms from four nickel dithiolene ligands and two
oxygen atoms from coordinated water (Figure S4). In 1, a
rhombic 1D channel of 12.2 × 12.4 Å2 extends along the c
direction (Figure 1a). The linkers form helical stacks along the b-
axis, and the Ni···Ni distance is 3.797 Å (Figure 1b). The
pronounced stacking of nickel bis(dithiolene) often leads to
anisotropic optical and electronic properties.37,38 The solid-state
diffuse reflectance of [Ni(C2S2(C6H4COOH)2)2] and 1 shown
in Figure S5 reveals bands in the NIR region which are
consistent with π−π* transitions associated with the bis-
(dithiolene) connector.39 Hence, we sought to further quantify
the stacking geometries in theMOF (Figure S6), and each nickel
dithiolene core is nearly planar.
Materials coated on copper foam (CF), 1-CF and 2-CF, were

obtained by a one-step hydrothermal method. The X-ray
powder diffraction patterns show that the structures of the
materials match well with those simulated from the crystal data
of 1, 2, and bare CF (Figures S7 and S8), indicating that the
loaded 1 and 2 on the CF have the same structures as the crystal
samples. Scanning electron microscope (SEM) images of bare

CF (Figure S9a) and 1-CF indicate that the entire surface ofCF
is completely covered by nanorods, as shown in Figures 2 and
S9b. The corresponding elemental mapping analysis further
demonstrates their uniform distribution throughout 1-CF.
Figures S10b and S11 show that the bare CF is uniformly
covered with nanorods of 2.
The electrochemical sensor activity of a 1-CF electrode for

glucose oxidation was investigated using a standard three-
electrode system in a 0.1 MNaOH aqueous solution with a scan
rate of 50 mV s−1. Figure 3a shows the cyclic voltammograms
(CVs) of 1-CF and bareCF in the absence and presence of 1.0×
10−3 M glucose with an applied potential range of 0−1.0 V. Bare
CF is active for glucose electro-oxidation, but the responses
toward glucose are quite weak (Figure S12). However, 1-CF
exhibited cathodic and anodic peaks at around 0.42 and 0.67 V,

Scheme 1. Structures of [Ni(C2S2(C6H4COOH)2)2] and
H4TTFTB

Figure 1. Crystal structure of 1 viewed along the c-axis, showing
rhombic pores (a), and along the b-axis, showing helical stacking of
nickel dithiolene cores (b). H atoms are omitted for clarity.
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respectively. The addition of 1 mM glucose resulted in a rise in
anodic peak current density, which showed the electro-oxidation

activity for glucose oxidation. The reaction mechanism for the
oxidation of glucose at 1-CF can be described as follows:

[ ] + → [ ] +−NiS glucose NiS glucolactone4
0

4

Figure 3b shows the CVs for 1-CF at different scan rates with
1.0 × 10−3 M glucose. With an increase in the scan rate, the
currents also rise and the potentials of the redox peaks shift to a
more negative or positive position. This phenomenon is mainly
due to the fact that the increasing scan rate also causes the
internal diffusion resistance within 1-CF to increase.40 However,
the observation of a good linear relationship between the peak
current densities and the square root of the scan rate implies a
reversible and diffusion-controlled electrochemical process for
glucose oxidation on the 1-CF electrode (Figure 3c).41

Furthermore, even at the high scan rate of 200 mV s−1, the
shape of the CV curve does not significantly distort, implying fast
electron transport. To achieve the optimum applied potential,
the amperometric current response of 1-CF with continuous
addition of 1.0 × 10−3 M glucose around the peak potential
(from 0.50 to 0.65 V) was measured. The current response
increases with increased working potential and reaches a
maximal value at 0.65 V (Figure 3d). Thus, 0.65 V was chosen
as the optimum potential in the following experiments.
The CVs of 1-CF with different concentrations of glucose

suggest that the current density of the anode increases with
increasing concentration from 0 to 6mM (Figure 4a). Selectivity

is a major factor to assess the performance of the electrode for
non-enzymatic glucose detection. In an anti-interference test, it
is clear that there was a significant current response after the
addition of glucose, whereas no significant current response was
observed with the addition of a series of interferents, which
indicates that 1-CF possesses selectivity toward common
interfering species in human blood (Figure 4b). Figure 4c
represents a typical current−time plot of the 1-CF electrode
with consecutive step changes in the glucose concentration. The

Figure 2. Crystal picture of 1 (a), SEM image of 1-CF (b), and EDX
elemental mapping images of 1-CF (c).

Figure 3. CV curves of bare CF and 1-CF in 0.1 M NaOH with and
without 1.0× 10−3 M glucose (scan rate: 50 mV s −1) (a). CV curves for
1-CF in 1.0× 10−3M glucose at scan rates from 20 to 200mV s−1 (from
inner to outer) (b). The corresponding plots of anodic current density
vs the square root of scan rate. The error bars indicate the standard
deviations of three measurements (c). Amperometric responses of the
1-CF electrode at different potentials (from 0.50 to 0.65 V) with
continuous addition of 1.0 × 10−3 M glucose in 0.1 M NaOH (d).

Figure 4. 1-CF in 0.1 M NaOH with the presence of varied glucose
concentrations: 0, 1, 2, 3, 4, 5, and 6 mM at a scan rate of 50 mV s−1 (a).
Amperometric response of 1-CF electrode toward the addition of
glucose with various interfering species in 0.1 M NaOH (b).
Amperometric response of 1-CF with successive addition of glucose
in 0.1 M NaOH (inset: the current response of electrode toward the
addition of glucose from 2 to 40 μM) (c). The corresponding
calibration curve of 1-CF electrode to successive additions of glucose at
0.65 V in 0.1 M NaOH (d).
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inset in Figure 4c shows the low magnification of glucose
concentration from 2.0 × 10−6 to 4.0 × 10−5 M. The calibration
curve shows a linear range of 2.0 × 10−6−2.0 × 10−3 M, with a
high sensitivity of 27.9 A M−1 cm−2 and a low detection limit of
1.0× 10−7 M at the signal-to-noise ratio of 3 (Figure 4d). The 1-
CF sensor has an insignificant variation about the catalytic
current toward glucose after 400 cycles (Figure S13), and with
testing every 7 days over 1 month, the electrode maintained
96.4% of its initial current density (Figure S14), indicating its
stability. The reproducibility of this sensor was examined by
measuring the current response of glucose oxidation for 10 1-CF
electrodes. The relative standard deviation (RSD) of anode peak
current densities is only 2.7%, suggesting good reproducibility
(Figure S15). The recognition performance is rare in MOF
materials and is attributed to the redox-active core [NiS4] and
the good stability of the framework following the electro-
chemical measurements.
CV (red lines) and SQW (blue lines) voltammograms for the

solid samples of [Ni(C2S2(C6H4COOH)2)2] and 1 (Figure
S16) indicate the highly electroactive nature of the metallo-
ligand. To investigate the electrochemically active center of 1, a
comparative experiment with the isostructural 2 was conducted.
As shown in Figure S17, 1 is active but 2 is not, demonstrating
the advantages of introducing the redox-active [NiS4] core in the
ligand. A comparison of the analytical performance for 1-CF
with other non-enzymatic glucose sensors in alkaline media
(Table S4) shows that 1 serves as a superior sensor for non-
enzymatic glucose detection. It exhibits high catalytic activity,
stability, selectivity, and reproducibility for glucose electro-
oxidation.
In conclusion, we successfully synthesized a neutral nickel

bis(dithiolene) as a new type of connector, [Ni(C2S2-
(C6H4COOH)2)2], to form new redox-active 3D MOFs. As
the inorganic analogue of TTFTB, [Ni(C2S2(C6H4COO)2)2]

4−

stands out thus far in preparing functional MOFs with several
defined reversible redox states and a wide range of spectral
absorption, suggesting that [Mn2{Ni(C2S2(C6H4COO)2)2}-
(H2O)2]·2DMF is a highly effective material in the fields of
electrochemistry and optics. It behaves as a highly sensitive
sensor for glucose with a wide detection range and low detection
limit, exhibiting the importance of introducing the redox-active
[NiS4] core. This may offer a new opportunity to design and
develop non-noble-metal-based redox-active MOFs for electro-
chemical applications, and further research will be presented in
our following studies.
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