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Abstract: Four donor-m-acceptor-type copolymers were synthe-
sized via palladium-catalyzed Sonogashira coupling reaction. The
resulting donor-n-acceptor-conjugated copolymers can show fluo-
rescence emission in the range of A = 473-568 nm, and the band
gaps of the alternating polymers can be tuned in the range 3.09-3.74
eV by using four different donors.
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Conjugated polymers (CP) incorporating different elec-
tron-donating (D) units and electron-accepting (A) het-
erocycle groups have attracted much more attention on
many optoelectronic applications of prospective materi-
als.! In recent years, many ground-breaking contributions
have been devoted to the construction of novel multifunc-
tional polymer materials due to their advantages on low
cost, mechanical flexibility, low weight, large-scale pro-
duction, and so on.? One of the plausible strategies has
been confirmed by designing D-A-type polymers at well-
defined molecular level, which can tune the highest occu-
pied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO) energy levels to absorb visible
wavelength photons as well as enhance the intramolecular
charge transfer (ICT) efficiency.’ Recently, many novel
D-A polymers have been widely explored by introducing
various strong electron-rich groups and electron-accept-
ing counterparts in the main chain backbone.* Compared
with D-A-type polymers, the D-n-A counterparts can also
exhibit excellent photovoltaic properties due to the effec-
tive charge transport along the delocalized n-conjugation
polymer backbone.’ To the best of our knowledge, the
work on the design and synthesis of D-n-A-type polymers
still remains elusive.

2-Alkylbenzotriazole (BTA) has been wildly employed as
an electron-accepting moiety in the past years.® However,
incorporation of BTA into D-mn-A-conjugated polymer
main chain received less attention.” Chen reported three
BTA-based conjugated polymers with good solubility in
common organic solvents and good thermal stability.® The
You group also designed D-n-A-type copolymers based
on the BTA group which show high hole mobility and
high power conversion efficiency (PCE) up to 7%.’ In this
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paper we synthesized four novel D-n-A-conjugated copo-
lymers by using alkyl-substituted phenothiazine and thio-
phene as donors, 2-alkylbenzotriazole as acceptor, and
alkyne linker as n-bridge linker.

The monomers and four polymers were synthesized as
shown in Scheme 1. Compound 2,'° 3,7-dibromo-10-octa-
decyl-10H-phenothiazine (M2),!" 3,7-dibromo-10-octa-
decyl-10H-phenothiazine-5,5-dioxide (M3),'? and 3,7-
bis(5-bromothiophen-2-yl)-10-octadecyl-10H-phenothi-

azine (M4),"® and 3,7-bis(5-bromothiophen-2-yl)-10-
octadecyl-10H-phenothiazine-5,5-dioxide (M5)!? were
prepared according to the literature. 4,7-Diethynyl-2-
octyl-2H-benzo[d][1,2,3]triazole (M1) could be obtained
by Sonogashira coupling reaction of 4,7-dibromo-2-octyl-
2H-benzo[d][1,2,3]triazole (2) with trimethylsilylacety-
lene (TMSA), and then the hydrolytic reaction was carried
out by a KOH solution. D-n-A-type copolymers of P1, P2,
P3, and P4 were synthesized via Sonogashira cross-cou-
pling reaction of M1 with M2, M3, M4, and MS5 by using
Pd(PPh;), as a catalyst in DMF—-Et;N at 80 °C for 48 hours
under N, atmosphere, respectively.'* These resulting D-n-
A-conjugated copolymers show fluorescence emission in
the range of A =473-568 nm, and the band gaps of the co-
polymers can be tuned in the range of 3.09-3.74 eV,
which is attributed to the minimization of steric effects be-
tween donator and acceptor. The newly synthesized poly-
mers are readily soluble in common organic solvents,
such as THF, CHCl;, and CH,Cl,, which is crucial for its
purification and the deposition of high-quality film for ef-
ficient optoelectronic devices.®® The number-average mo-
lecular weights (M,), the weight-average molecular
weight (M), and the polydispersity index (PDI) values of
copolymers are listed in Table 1. M,, and PDI of the copo-
lymers measured by GPC are M, = 17240 and PDI = 1.60
for P1, M, = 15790 and PDI = 1.44 for P2, ,,, = 15780
and PDI=1.23 for P3, and M, = 17910 and PDI=1.78
for P4. As shown in Figure 1, the TGA curves indicate
that the polymers have relatively high thermal stability
without 5% weight loss before 320 °C, which can provide
desirable thermal properties for practical applications.®®

The absorption spectra of the copolymers P1-P4 were
measured in CH,Cl, as shown in Figure 2 and Table 2. In
the absorption spectra the following SO—S1 (n—n*) tran-
sitions appear at A =438 nm for P1, A =399 nm for P2, A=
394 nm for P3, A = and 475 nm for P4, and shorter wave-
lengths in the range of A = 250-360 nm can be ascribed to
the S0—S2 (m—n*) transition. Compared with P1, the
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Figure 1 TGA curve of the four conjugated copolymers

Table 1 Molecular Weights and Thermal Properties of Copolymers

Polymer Tempg, (°C)* M, (g/mol)® M, (g/mol)® PDI
P1 350 10740 17240 1.60
P2 370 10920 15790 1.44
P3 320 12850 15780 1.23
P4 410 10080 17910 1.78

* Temperature of 5% weight loss measured by TGA in nitrogen.

b Molar mass (M,,, M,,) and polydispersity index (PDI) were deter-
mined by GPC in THF against polystyrene standards with UV detec-
tion set at absorption maxima.

maximum absorption peak of the copolymer P3 shows an
obvious red-shift (63 nm), which can be attributed to the
introduction of two thiophenyl groups to the phenothi-
azine moiety. The similar results are obtained for P4 and

1) =—TMS _ </ E T
Pd(PPhg),Cly, Cul N/

Table 2 Optoelectronic Properties and Fluorescent Quantum Yields
(?) of Four Polymers (1.0-10-mol/L, CH,Cl,)

Polymer Absorption Emission Quantum yield HOMO  HUMO

(nm) (m) (%) (eV) (eV)
P1 438 505 45 523 -1.75
P2 399 473 38 -5.82  -2.09
P3 494 568 31 496  -1.87
P4 475 528 40 -522  -2.00

The emissive wavelengths of four polymers are observed
at A =505, 473, 568, and 528 nm for P1, P2, P3, and P4,
respectively (Figure 3). When thiophene units are intro-
duced into the main chain backbone, the emission peak of
P3 (A =568 nm), and P4 (A = 528 nm) are red-shifted by
63 nm and 55 nm, referred to P1 and P2, respectively. It
is also worth mentioning that introduction of the electron-
deficient sulfone group into the conjugated polymer P2
main chain backbone leads to obvious blue-shift (32 nm)
for the emission wavelength. Four polymers have high
quantum yields, such as 45% for P1, 38% for P2, 31% for
P3, and 40% for P4, due to the effective intramolecular
charge transfer between D and A units via the n-bridge
linker.>

To further shed light on the electronic properties of four
D-n-A-conjugated copolymers, computational studies of
the molecular orbitals of their model compounds were
carried out by using density functional theory (DFT) ap-
proaches at the B3LYP/6-31G (d, p) level. All the alkyl
groups were replaced with an ethyl group to simplify the
calculation. As is evident from Figure 4, the HOMO iso-
surfaces of all compounds show delocalization of the
HOMO across the whole conjugated backbone structure,

P2.
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Scheme 1 Synthesis procedures for the BTA-based conjugated polymers
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Figure 2 UV-vis absorption spectra of P1, P2, P3, and P4 (1.0-107
mol L' in CH,Cl,)

whereas the LUMOs are mainly localized on the acceptor
core. Compared with model-1, model-2 shows its lower
HOMO level, which can be attributed to the introduction
of'the strong electron-deficient sulfone group into the con-
jugated polymer P2 backbone. A smaller HOMO-LUMO
band gap of model-1 than that of model-2 could be ob-
served. The similar result can be found that model-3 has
a lower band-gap energy (13.09 eV) than model-4 (3.22
eV). In addition, when thienyl units were introduced into
the main-chain backbone of the conjugated poymers,
model-3 and model-4 showed lower band-gap energies
than model-1 or model-2. Further, the calculation results
of the model compounds show model-3 < model-4 <
model-1 < model-2 in the HOMO-LUMO gap, which are
excellently identical to the order of the absorption maxima
of the UV-vis absorption in the order of P3 > P4 > P1 > P2.
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Figure 3 Fluorescence spectra of P1, P2, P3, and P4

In summary, four 2-alkylbenzotriazole-based donor-n-
acceptor-type copolymers incorporating various donors in
the main chain backbone could be synthesized via palladi-
um-catalyzed Sonogashira coupling reaction and exhibit
high fluorescence quantum yields with tunable band gaps.
They are expected to be used as the potential optical ma-
terials.
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Figure 4 HOMO and LUMO surface plots for model-1, model-2,
model-3, and model-4
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Synthesis Procedures for the BTA-Based Conjugated
Polymers

Synthesis of P1

To a 100 mL Schlenk flask, M-1 (0.14 g, 0.05 mmol), M2
(0.31 g, 0.05 mmol), Pd(PPh;), (2.9 mg, 0.03 mmol), and
Cul (0. 5 mg, 0.003 mmol) were added in 10 mL THF and
Et;N (6 mL) under N, atmosphere. The mixture was stirred
at 90 °C for 2 d. The solvent was evaporated under vacuum
after the mixture was cooled tor.t. The residue was dissolved
and in CH,Cl, (100 mL) and filtered; the filtrate was then
concentrated and added to MeOH to precipitate the polymer.
The polymer was dried in vacuum to give 210 mg of product
in 58% yield. GPC results: M, = 17240, M, = 10740,

PDI = 1.54. 'TH NMR (300 MHz, CDCl,): § = 7.24-7.21 (m,
6 H), 6.69-6.66 (m, 2 H), 3.77-3.76 (m, 4 H), 1.75-0.85 (m,
50 H). Anal. Calcd for (C,sHgN,S),: C, 78.85; H, 9.10; N,
7.66; S, 4.39. Found: C, 78.23; H, 9.16; N, 7.84; S, 4.27.
Synthesis of P2

P2 was synthesized from monomers M-1 and M-3 in 70%
yield by following in the same procedure used for the
preparation of P1. GPC results: M, = 17240, M, = 10050,
PDI = 1.72. 'TH NMR (300 MHz, CDCl,): § = 8.45-7.23 (m,
1 H), 8.21-8.19 (m, 2 H), 7.78-7.16 (m, 5 H), 4.80-4.76 (m,
2 H), 4.20-4.06 (m, 2 H), 1.21-0.85 (m, 50 H). Anal. Calcd
for (C4sHgN,O,9),: C, 75.55; H, 8.72; N, 7.34; S, 4.20.
Found: C, 75.64; H, 8.63; N, 7.17; S, 4.28.

Synthesis of P3

P3 was synthesized from monomers M1 and M4 in
73%yield by following the same procedure used for the
preparation of P1. GPC results: M, = 15780, M, = 12850,
PDI = 1.23. '"H NMR (300 MHz, CDCl,): § = 7.80-8.53 (m,
2 H), 7.40-7.28 (m, 2 H), 7.12-6.81 (m, 6 H), 5.21-4.79 (br,
2 H), 3.83-3.81 (br, 2 H), 2.16-0.84 (m, 50 H). Anal. Calcd
for: (Cs¢HggN,S5),: C, 75.29; H, 7.67; N, 6.27; S, 10.77.
Found: C, 75.18; H, 7.76; N, 6.12; S, 10.95.

Synthesis of P4

P4 was synthesized from monomers M1 and M5 in 73%
yield by following the same procedure used for the
preparation of P1. GPC results: M,, = 17910, M, = 10080,
PDI = 1.78. '"H NMR (300 MHz, CDCl,): & = 8.34-8.32 (m,
2 H), 7.84-7.83 (m, 2 H), 7.60-6.31 (m, 8 H), 4.80—4.82 (br,
2 H),4.18-4.17 (br, 2 H), 2.26-0.59 (m, 50 H). Anal. Calcd
for (Cs¢HggN4O,S5),: C, 72.69; H, 7.41; N, 6.05; O, 3.46; S,
10.40. Found: C, 72.76; H, 7.36; N, 6.01; O, 3.49; S, 10.37.
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