Squarilium Dyes, their Infrared and Resonance Raman Spectra and Possible Use in Redox Reactions for Solar-energy Conversion[†]

BY MARTIN FORSTER[‡] AND RONALD E. HESTER*

Department of Chemistry, University of York, Heslington, York YO1 5DD

Received 20th July, 1981

Infrared and resonance Raman spectra of squarilium dyes I-VI of the type

are presented and some vibrational modes of the central 4-membered ring are assigned. Methyl viologen dication (MV^{2+}) is reduced photocatalytically by IV in $DMSO + H_2O$ (95/5, v/v) with a quantum yield ϕ of (1.8 ± 0.4) × 10⁻³ at 406.7 nm, if EDTA is present. Oxidation products of MV²⁺ behave similarly with $\phi = (4.7 \pm 0.6) \times 10^{-2}$ at 457.9 nm in DMF + H₂O (2/1, v/v). IV + seems to oxidize H₂O nearly reversibly.

The search for photochemical systems for the conversion and storage of solar energy has become intense in the past few years. One is the photolytic splitting of water into H₂ and O₂, a problem which has been tackled in various ways. Restricting ourselves to redox reactions in solution, two general reaction schemes have been proposed,¹ where the electronically excited state S* of a sensitizer S acts either as a reducing agent (scheme 1) or as an oxidizing agent (scheme 2):

scheme 1:

$$S \xrightarrow{h\nu} S^*$$

$$S^* + A \rightarrow S^{+} + A^{-}$$

$$A^{-} + H_2O \xrightarrow[\text{cat 1}]{} A + \frac{1}{2}H_2 + OH^{-}$$

$$S^{+} + \frac{1}{2}H_2O \xrightarrow[\text{cat 2}]{} S + \frac{1}{4}O_2 + H^{+}$$

† A preliminary account of this work has been presented previously, cf. M. Forster and R. E. Hester, Proc. 3rd Int. Conf. Photochem. Conversion Storage Solar Energy, Boulder 1980 (SERI, Golden, Colorado, 1980).

‡ Present address: Schweizerisches Institut für Nuklearforschung, CH-5234 Villigen, Switzerland. 1847

scheme 2:

$$S \xrightarrow{h\nu} S^*$$

$$S^* + D \rightarrow S^{-} + D^{+}$$

$$S^{-} + H_2O \xrightarrow[\text{cat 1}]{} S + \frac{1}{2}H_2 + OH^{-}$$

$$D^{+} + \frac{1}{2}H_2O \xrightarrow[\text{cat 2}]{} D + \frac{1}{4}O_2 + H^{+}$$

A and D are electron acceptors and donors, respectively, and cat 1 and cat 2 are catalysts for the promotion of water reduction or oxidation, respectively. In order to make the reactions in schemes 1 and 2 efficient, S, A, D, cat 1 and cat 2 have to fulfil a large number of conditions,¹⁻⁴ the most important of which are: (i) λ_{max} of S is in the visible region, (ii) the lifetime of S* is as long as possible, (iii) the redox potentials of S, S*, A and D match those of water at pH 7, *viz.* $E_0(O_2/H_2O) \neq e + 0.482$ eValue $E_0(H_2O/H_2) = -0.41$ V, (iv) there is efficient separation of the ion pairs S⁺⁺ + A⁺⁻ or S⁻⁺ + D⁺⁺ and (v) the specific activity of cat 1 (*e.g.* colloidal noble metals^{1, 3}) and cat 2 (*e.g.* RuO₂⁴) must be right for the desired reactions.

In the search for new organic sensitizers S we have investigated squarilium dyes of the type shown in fig. 1. Squarilium dyes have the following properties: (a) they can easily be prepared by the condensation of squaric acid with the appropriate RH,⁵ (b) they are stable even at temperatures T > 200 °C and in concentrated H₂SO₄,⁵ (c) they have extinction coefficients up to 4×10^5 dm³ mol⁻¹ cm⁻¹⁶⁻¹¹ and (d) their λ_{max} can be shifted over the whole range of 400–800 nm by varying R.

For dye IV in fig. 1 [R = $-N(C_6H_5)_2$] the redox potentials of the excited state S* can be calculated using $E_0(S^{+}/S) = +1.37$ V, $E_0(S/S^{-}) = -1.23$ V¹² and $\lambda_{max} = 571$ nm for emission (instead of the 0–0 transition) by adopting a formalism originally proposed for metal complexes.²

Fig. 2 shows the redox levels for S = IV, which lie very close to those of $Ru(bpy)_3^{2+}$ (bpy = 2,2'-bipyridine)¹³⁻¹⁵ and which fulfil criterion (iii). $Ru(bpy)_3^{2+}$ has already been established as an efficient sensitizer for the photolytic decomposition of water.^{1, 4, 16-18}

Some vibrational modes belonging mainly to the central part of dyes I-VI have been derived for infrared (i.r.) and resonance Raman (r.R.) spectra. The behaviour of dyes IV and VI in photoredox reactions according to scheme 1 and fig. 2(a) will be reported. Oxidation products of MV^{2+} dichloride (MV^{2+} = methyl viologen or 1,1'-dimethyl-4,4'-bipyridinium dication) are shown to be even better photosensitizers than IV. The chemical oxidation of dye IV in aqueous solution was also investigated.

EXPERIMENTAL

EDTA (ethylenediamine tetra-acetic acid disodium salt), $Ce(SO_4)_2 \cdot 4H_2O$ and PtO_2 (all from B.D.H.) were analytical grade and used as received. NaLS (sodium laurylsulphate) (Aldrich) was twice recrystallized from ethanol. MV^{2+} dichloride from I.C.I. Ltd was recrystallized from methanol + acetone five times.¹⁹ All solvents were analytical grade; DMSO (dimethylsulphoxide) was twice vacuum distilled and H_2O was doubly distilled. Prepurified N_2 gas was further O_2 -scrubbed by bubbling through a solution consisting of 8 g pyrogallol and 24 g KOH in 200 cm³ H₂O before being dried at 77 K. Dye I (Aldrich) was used as received. Dyes II-V were prepared according to ref. (20) by refluxing one equivalent of squaric acid and two equivalents of the appropriate compound RH in benzene n-butyl alcohol (1:2.5, v/v) with concomittant azeotropic removal of the H₂O formed. For dye VI a mixture of benzene+n-butyl

1848

FIG. 1.—Investigated squarilium dyes I-VI; (a) and (b) are possible mesomeric structures.

FIG. 2.—Redox levels of dye IV as sensitizer S in reactions according to scheme 1 or 2. (a) S* as reducing agent; (b) S* as oxidizing agent. MV²⁺ = methyl viologen = 1,1'-dimethyl-4,4'-bipyridinium dication; EDTA = ethylenediaminetetra-acetic acid disodium salt; A = electron acceptor; D,D' = electron donors. Normal potentials of S calculated from ref. (12).

alcohol+dimethylformamide (DMF) was used as solvent, yielding the salt VI, due to the decomposition of DMF into $(CH_3)_2NH$ and CO at elevated temperatures.²¹ Dye IV was recrystallized once from DMF+DMSO to remove an impurity with $\lambda_{max} = 375$ nm in DMSO (probably the 1,2-isomer of dye IV). Analytically pure dyes II-VI were obtained following these procedures. Table 1 gives the analytical and spectroscopic data for dyes I-VI. Elemental analysis data of dye VI were: C/H/N = 46.68/5.09/10.89 (theor.), 45.96/5.02/10.79 (found). A colloidal dispersion of dye IV was produced by adding an aqueous solution of 5×10^{-2} mol dm⁻³ Na LS, buffered at pH 6.2, to dye IV dissolved in concentrated H₂SO₄.

Mixtures of yellow oxidation products of MV^{2+} dichloride (named X for convenience) could be obtained reproducibly by stirring for 6 h at 80 °C a solution of 70 mg MV^{2+} dichloride and 1 g K₂CO₃ in 200 cm³ DMF + H₂O (1/1, v/v) with admission of air. Ca. $\frac{1}{3}$ of the solvent was then removed with a vacuum rotary evaporator. After neutralization with H₂SO₄ the solution was evaporated to dryness *in vacuo* and the residues extracted with methanol. The methanolic solution was concentrated to 10 cm³, 40 cm³ acetone were added and the filtered solution then contained X for further use. X absorbs at 408 and 422 nm in DMF + H₂O (2/1, v/v) and emits intense yellow light upon irradiation with $\lambda_{exc} < 500$ nm. Thin layer chromatography of X on cellulose with n-butyl alcohol + acetic acid + H₂O (4/1/2, v/v/v)²² showed that X contained at least 14 components. The main component with intense yellow emission when irradiated with $\lambda = 366$ nm had an r_f value of 0.63, which agrees well with $r_f = 0.64$ for the monopyridinone VII:²²

Resonance Raman spectra were taken using the spinning cell technique^{23, 24} on a Jobin Yvon Ramanor spectrometer, linked to a PDP 11/10 computer and a Nicolet 1074 data handling system.²⁵ A Cassegrain light collecting optic was used²⁶ and for solid samples plasma lines were rejected by a focusing-lens-pinhole system.²⁷ Excitation at 406.7, 457.9, 472.8, 488.0, 514.5, 632.8 and 647.1 nm was provided by Spectra Physics models 170 Kr⁺ and 125 HeNe and

dye yield (%)		m.p./°C	$\lambda_{\rm max}/{\rm nm}$, ($\epsilon/{\rm dm^3 \ mol^{-1} \ cm^{-1}}$), solvent	
I		$> 300 (> 320^c)$	670, 615, CHCl ₃ ; ~ 720, 655, 420, NaLS ^a	
Π	52 (60^a)	> 335 (276 ^{<i>a</i>})	626, CHCl ₃	
III	93 `	263	647, CHCl ₃ ; 647, NaLS ^d	
IV	71 (66 ^b)	> 320 (360 ^b)	408, (4.0×10^4) , CHCl ₃ ; 387, (3.5 × 10 ⁴), concentrated H ₂ SO ₄	
v	41 (87 ^b)	$> 330 (> 360^{b})$	401, (4.7×10^4) , DMF	
VI	72 ` ´	> 330	$385, (3.8 \times 10^4), H_{2}O$	

TABLE 1.—ANALYTICAL AND SPECTROSCOPIC DATA FOR DYES I-VI

^{*a*} Ref. (20); ^{*b*} ref. (5); ^{*c*} ref. (7); ^{*d*} [NaLS] = 5×10^{-2} mol dm⁻³.

Coherent Radiation model CR4 Ar⁺ lasers. Emission spectra, corrected for spectrometer sensitivity, were recorded using the same instrumentation.

Emission lifetimes were measured using a homebuilt fluoroscope²⁸ with a mechanically chopped excitation beam. The decay times were calculated from the phase shift between exciting and emitted light.²⁹

I.r. spectra of samples in KBr pellets were taken with a Perkin-Elmer PE-580 i.r. spectrometer. The backgrounds of the digitized spectra were artificially flattened and the peaks were determined numerically after the spectra had been smoothed by a seven point parabolic function.³⁰ U.v.-visible spectra were taken on a Unicam SP8000 u.v.-visible spectrometer.

For continuous irradiations and quantum-yield determinations solutions in 1 cm u.v. cells had N₂ bubbled through them for 15 min followed by irradiation with a laser beam expanded to *ca*. 0.5 cm diameter. The solutions were stirred and held under slight N₂ overpressure during irradiation. Aqueous solutions of MV^{2+} dichloride containing DMF or DMSO were prepared by mixing aqueous MV^{2+} dichloride with DMF + H₂O or DMSO + H₂O solutions, which had been cooled to 0 °C. The solutions were then used immediately for the irradiation experiments. This procedure prevented the formation of the oxidation products X of MV^{2+} dichloride.

By placing a silica lens in the laser beam before the u.v. cell, the photon flux density could be locally enhanced by a factor of 160, calculated according to ref. (31) for a laser beam with a Gaussian intensity distribution. Laser powers were measured with a calibrated Spectra Physics power meter, model 401 C.

RESULTS

INFRARED, RESONANCE RAMAN AND VISIBLE ABSORPTION AND EMISSION SPECTRA

Table 2 lists the vibrational frequencies of all the dyes I-VI. R.R. spectra of dyes IV-VI could be made in solution. Since dyes I-III fluoresce strongly in solution, r.R. spectra from dyes I-III could be obtained only as 1% (w/w) mixtures in KBr. For dye III the excitation had to be to the blue side of the absorption band in order to escape its high emission. Representative of the other dyes, fig. 3 shows the r.R. spectrum of dye IV in CHCl₃, taken with $\lambda_{exc} = 406.7$ nm. Intense r.R. bands, which are common to dyes I-VI, are collected in table 3. The assignments were made by comparing table 2 with i.r. data from other squarilium dyes^{6, 8, 32, 33} and using the fact that the r.R. bands of dye IV shift when going from CHCl₃ to concentrated H₂SO₄ as solvent. The measured depolarization ratios ρ of the r.R. bands of dye IV all were $ca. \frac{1}{3}$. Dyes I-III absorb in the range 615-670 nm in CHCl₃ and dyes IV-VI in the range 385-408 nm. Only dyes I and III were weakly soluble in micellar NaLS solution. Dye

i.r.	r.R. ^{<i>a</i>}	i.r.	r. R . <i>a</i>
$\tilde{v}/\mathrm{cm}^{-1}$	\tilde{v}/cm^{-1}	$\tilde{v}/\mathrm{cm}^{-1}$	$\tilde{v}/\mathrm{cm}^{-1}$
3077 vvw		1172 s	
3060 vw		1153 w, sh	
2982 vw		1140 w	
2965 vw		1112 w, sh	
2930 w		1090 vs	
2860 vw		1082 s	
1869 vvw		993 w	
1825 vvw		978 vw	_
1790 vvw		882 vw	
1758 vw			872 w
	1722 m	845 w	View Article Online
1620 m	1623 8	820 m	view Article Online
1578 m		805 vvw	
	1569 m	780 m	
1564 s		753 m	
1512 w	1515 m	740 vvw	
1481 vs		702 vw	_
1457 m. sh		702 11	680 w
1448 s	1441 w	659 w	
1436 vs	1441 W	055 W	651 m
	1415 m	500 1/11/	651 III
1400 11	1415 11	557 w	
1388 w		546 ym	541 m
1367 w	1267 a	526 yw	J4 1 III
1507 W	1307 S	520 VW	<u> </u>
1338 101	1330 VS	<u> </u>	492 W
1330 VW		465 VVW	
1323 VS	1271	470 VW	457
12// W	12/1 W	420	437 W
1200 VS	1245	439 VW	
1247 VW, Sn	1245 m	410 VVW	
1230 W	1231 \$	380 VVW	1.57
1189 m			157 W
			105 m
		ua II	

TABLE 2.—INFRARED AND RESONANCE RAMAN DATA FOR DYES I-VI dye I

i.r. $\tilde{\nu}/cm^{-1}$	$r.R.^b$ \tilde{v}/cm^{-1}	i.r. ĩ∕cm ^{−1}	$r.R.^b$ \tilde{v}/cm^{-1}
2075	,	1500 m	
2975 VVW 2930 VW		1460 w. br	
2950 vw 2860 vvw			1440 m
	1736 s	1395 m	1392 m
1700 vvw		1384 vw	
1608 s		1350 vs	1356 w
_	1602 m	1318 vw	
1588 vs		1250 m	
_	1570 vs	_	1202 m

1852

i.r. v∕cm⁻¹	$r.R.^b$ \tilde{v}/cm^{-1}	i.r. $\tilde{\nu}/cm^{-1}$	$r.R.^b$ \tilde{v}/cm^{-1}
1182 m		782 s	-
1160 vs	_	762 3	752 vs
	1154 m	619 vw	
1128 s			572 vs
	1062 m	501 w	_
	1036 m		486 s
	992 s	402 w	
948 m			176 vs
832 m			90 vs
799 vvw			

TABLE 2.—(cont.)

dve	ш
uye	111

			View Article Online	
i.r. $\tilde{\nu}/\mathrm{cm}^{-1}$	$r.R.^{c}$ \tilde{v}/cm^{-1}	i.r. \tilde{v}/cm^{-1}	$r.R.^{c}$ \tilde{v}/cm^{-1}	
3078 vw			1115 vs	
2980 w		1077 s		
2940 w			1069 w	
2900 w		—	1038 vs	
2703 w		1011 m	1009 w	
2640 vw		960 s	962 m	
2587 vw		928 vw	_	
2240 vw		862 m	862 w	
2178 w	_	816 m	814 w	
2090 vw	_		793 m	
	1730 m	786 w	_	
	1628 s	746 s	747 w	
1609 vs	1609 m	723 vw		
1561 vw	1559 m		699 vs	
1533 w	1528 vs	674 m	673 w	
1493 w	1497 w	652 vw	654 vw	
1446 vw			584 vs	
1421 vw	1421 vs	555 w	559 w	
1390 vs	_	522 vvw	521 w	
_	1355 s	511 vw		
1336 vs		500 vw	502 vw	
1298 w	1300 w	484 vw	482 vw	
	1285 m	464 vw	462 w	
1276 m		452 vw		
1246 vs	1252 m	410 m		
	1229 m	_	341 m	
1213 vs	1218 m	334 vw		
1187 s. sh	1188 m		281 m	
1174 vs			261 m	
1153 s	1153 w		178 vs	
1140 w, sh	_		158 w, sh	
1121 m	—			
1140 w, sh 1121 m		—	158 w, sh	

i.r. <i>ṽ/c</i> m ⁻¹	$\mathbf{r.R.}^{d}$		r P ^e
	$\tilde{v}/\mathrm{cm}^{-1}$	ρ	$\tilde{v}/\mathrm{cm}^{-1}$
3092 vvw			_
3062 vw			—
3038 vvw			—
3017 vvw			—
2927 vvw			_
2858 vvw			
1952 vvw	1954 w		1008
—	—		1908 W
1790 vvw	1790 w	0.28	1812 W
	1704 w	0.40	1692 W View Article Or
1631 vs			VIEW ALLICIE OI
	1614 w		
	1598 m	0.39	1596 s
	1570 s	0.36	1522 s
1497 w, sh			1402
1490 s	1494 m	0.33	1492 m
1462 s		—	1.420
			1432 VW
1418 s, sh	1420 w		
1406 vs		—	_
1398 s, sh	_		
1362 w, sh	1360 w		_
1337 w	1334 w		
1326 vw			_
1318 m			_
1290 vw			
1270 w			
	1262 w	0.36	_
1214 w	National Sectors		
	1198 vs	0.34	1196 s
1182 vw	1178 m	0.33	1184 s
1174 vw			
1162 vw			
1154 vw	_	_	—
1140 w		—	
1110 vw			
1082 w			
1073 w			
1044 w	_		
1032 w			
1023 w			
1002 vw	1006 m	0.40	996 m
990 vvw	_	—	
968 vw		—	
923 vw	928 w	0.38	
902 vw		—	
886 w	888 m	0.39	
0.52			

TABLE 2.—(cont.)

dye IV

	r. R . ^{<i>d</i>}		
i.r. \tilde{v}/cm^{-1}	$\tilde{v}/\mathrm{cm}^{-1}$	ρ	$r.R.^{e}$ \tilde{v}/cm^{-1}
326 vvw	826 w		832 m
780 w	_		
778 w			
766 m			
759 m		—	762 w
718 w			
_			714 s
701 w, sh			
697 m	696 w	0.33	694 w
690 m			
_	650 w		624 vw
509 vw			View Article Onlin
574 m-s			
_			554 m
533 w			
	504 s	. 0.36	494 m
459 w			—
447 w			
413 vw	414 w		408 m
_			374 w
315 vw		—	
			244 w
<u></u>	218 w	0.40	
_			88 w

TABLE 2.—(cont.)

i.r.	$r.R.^{f}$ $\tilde{\nu}/cm^{-1}$	i.r. $\tilde{\nu}/cm^{-1}$	$r.R.^{f}$ $\tilde{\nu}/cm^{-1}$
$\tilde{v}/\mathrm{cm}^{-1}$			
3245 w		1868 vw	
3180 m		1795 vw	1792 w
3130 m		1740 vw	
3090 w	_	1680 vw	_
3060 w	_		1660 m
2998 vw		1615 vs	_
2970 s		1604 s	1602 vs
2937 vs		1587 vs	1584 s
2890 vw	_	1550 vs	_
2780 vw	_		1506 m
2750 vw		1499 s	
2680 vw		1448 vs	
2650 vw		1421 vs	
2590 vw		1409 vs	
2545 vw		1337 w	
2470 vw	—	1293 vw	
2390 vw		1245 m	
1937 vw			1232 vs

i.r.	r.R. ^{<i>f</i>}	i.r.	r.R. ^f
\tilde{v}/cm^{-1}	v/cm ⁻¹	$\tilde{v}/\mathrm{cm}^{-1}$	\bar{v}/cm^{-1}
1183 m	1188 m		720 w
1164 w	1164 w	688 s	694 w
1145 w		—	656 s
	1094 w	621 m	
1079 w			614 w
1037 w		601 m	
1023 w			584 w
998 vw	1000 m	570 w	
974 vvw	_		556 w
968 w	_	510 m	
899 m	—	463 s	
853 m		412 vw	408 w
	842 s	—	358 w
824 s		322 w	Viswarticle Online
794 m		305 vw	
763 m	768 w		264 w
750 s	_		

TABLE 2.—(cont.)

1	
	1

i.r. \tilde{v}/cm^{-1}	$r.R.^{g}$ $\tilde{\nu}/cm^{-1}$	i.r. \tilde{v}/cm^{-1}	$r.R.^{g}$ \tilde{v}/cm^{-1}
2240	,	1215	1216
3240 vw		1313 W	1310 W
3195 w		1298 VW	1246 0
3122 w		1245 W, Sn	1240 \$
3062 w		1215 s, sh	1102
3025 vw		1192 vs	1192 W
2983 s	—		1154 w
2900 w, sh		1125 vs	1128 m
2844 w		1039 vs	
2800 w, sh		1012 vs	
2780 s		972 vw	
2510 vw		950 vw	
2422 m		890 vw	
1912 w		866 w	_
	1806 w	865 vw, sh	
1790 w			852 m
1790 W	1654 w	837 s	
1615 10		810 w. sh	_
1015 VS	1602 s	764 w	
1500 10	1002 3	744 vw	740 m
1390 VS	1578 m	722 m	
1547 -	1578 m	696 vs	
154/ 8	1502	637 \$	
1503 m	1302 w-III		622 m
14/0 m		612 6	022 III
1460 w		596	
1425 vs		560 vw	570
1410 vs	—	502 S	570 W
1340 vw		523 W	

_

i.r. $\tilde{\nu}/cm^{-1}$	$r.R.^{g}$ \tilde{v}/cm^{-1}	i.r. $\tilde{\nu}/\mathrm{cm}^{-1}$	$r.R.^{g}$ \tilde{v}/cm^{-1}
497 m		333 m	
448 vw		298 vw	
407 vw		_	260 w
378 w			

TABLE 2.—(cont.)

^{*a*} 1% (w/w) in KBr, $\lambda_{exc} = 632.8$ nm; ^{*b*} 1% (w/w) in KBr, $\lambda_{exc} = 647.1$ nm; ^{*c*} 1% (w/w) in KBr, $\lambda_{exc} = 514.5$ nm; ^{*d*} 4×10⁻⁴ mol dm⁻³ in CHCl₃, $\lambda_{exc} = 406.7$ nm; ^{*e*} 1.1×10⁻³ mol dm⁻³ in concentrated H₂SO₄, $\lambda_{exc} = 406.7$ nm; ^{*f*} 2.2×10⁻⁴ mol dm⁻³ in DMF, $\lambda_{exc} = 406.7$ nm; ^{*g*} 1×10⁻³ mol dm⁻³ in H₂O, $\lambda_{exc} = 406.7$ nm; s = strong, m = medium, w = weak, v = very, sh = shoulder, ρ = depolarization ratio.

FIG. 3.—Resonance Raman spectrum of 4×10^{-4} mol dm⁻³ dye IY in CHCl₃, $\lambda_{exc} = 406.7$ nm. Bands marked with an asterisk are due to CHCl₃.

IV could be obtained in colloidal form in aqueous NaLS solution at pH *ca*. 6.0. Solutions of dyes I-III in CHCl₃ fluoresce so strongly that they appear red in room light due to their red emission. Interestingly, the emission from dyes I-III in CHCl₃ could be efficiently quenched by adding solvents with OH groups, *e.g.* H₂O or EtOH (direct observation by eye). Dye IV emits only very weakly in the vicinity of its absorption band, as shown in fig. 3 and 4. Dyes V and VI must behave similarly, since r.R. spectra of these compounds could also be obtained in solution. A high Stokes shift of *ca*. 6700 cm⁻¹ occurs for the emission of dye IV (band maxima taken instead of 0–0 transitions³⁴). The decay time of the emission at 571 nm was $\tau < 3.6 \ \mu$ s (lower time resolution limit of our fluoroscope).

FIG. 4.—Absorption and emission spectrum ($\lambda_{exc} = 406.7 \text{ nm}$) of dye IV in CHCl₃: (a) absorption, $1.6 \times 10^{-4} \text{ mol dm}^{-3}$; (b) emission, $1.0 \times 10^{-5} \text{ mol dm}^{-3}$, corrected for spectrometer sensitivity.

CONTINUOUS IRRADIATION EXPERIMENTS

In order to test the ability of dye IV to act in photoreactions as shown in schemes 1 and 2 and fig. 2, N₂-purged solutions containing 4.4×10^{-5} mol dm⁻³ dye IV+5×10⁻⁴ mol dm⁻³ MV²⁺ dichloride+1.3×10⁻³ mol dm⁻³ EDTA + phosphate buffer (pH 6.5) in DMF+H₂O (2/1, v/v) were irradiated with light of $\lambda = 457.9$ nm. Similar solutions in DMSO+H₂O (95/5, v/v)* were irradiated with $\lambda = 406.7$ nm. Using laser powers of 30-140 mW the solutions were turned dark blue within minutes of starting the irradiation. U.v.-visible spectra revealed the formation of MV⁺⁺ (methyl viologen radical cation).¹⁹

In an extensive first series of experiments with systematic omission of one or more of the constituents of the solutions, and varying the way in which the solutions were prepared, it was discovered that prolonged heating of the solutions prior to irradiation was mainly responsible for efficient MV^{++} formation upon irradiation. In a second series, the formation of oxidation products X of MV^{2+} dichloride in $DMF + H_2O$ or $DMSO + H_2O$ upon heating could then be established. A third series of experiments, carried out with ice-cooled solutions, yielded reproducible results which are collected in table 4 (average of 3 or 4 experiments, 15 min irradiation time, laser power 30-140 mW). Direct excitation of MV^{2+} dichloride with subsequent MV^{++} formation is obviously possible, as can be seen from table 4. For experiments with dye IV, the amount of MV^{++} formed by this direct excitation process has been subtracted according to the method described in the Appendix.

* We thank Dr T. Tanno, Riken Co. Ltd, Tokyo, Japan, for suggesting this solvent mixture.

	I		II	III	I		IV		>		ΙΛ		
1	i.r. ^a r.R.	a i.r.a	r.R.ª	i.r.a	r.R.ª	i.r.ª	r.R. ^b	r.R. ^c	i.r.a	r.R. ^d	i.r.a r	.R.	ıssignment
1	172 1620 156 156 54 15	2 1630 9 1630 1 1) 1736 1736 1570 572 176	1609	1730 584 178	1631	1790 1570 650 218	1812 	1615 	1792 	1 1615 1	806 v _s 578 v _s 622 b 260 ri	(C=C) (C=C) (C-O) (C-O) enzene? ng modes?
- abi	^a In KBr; ^b e 4.—Quantur	in CHCl₃; 4 yields, ¢	^c in concenti , AND NORMALI	rated H ₂ S	SO ₄ ; ^d in I s of MV ⁺¹	DMF; "	^e in H ₂ O.	v = stretu OPTICAL	ching mode ABSORBANCE	; s = s. 35, <i>A</i> OF	ymmetric; a NON-IRRADIA	ls = asy TED SOL	mmetric. UTIONS AT $\lambda_{\rm c}$
		γ	_{exe} = 457.9 nm						$\lambda_{exc} =$	406.7 nm			
	H ₂ O		DMF+H ₂	O (2/1 v/v)					DMSO+H	1 ₂ O (95/5, 1	(//)		
	with or without EDT	٨	with	EDTA			withou	It EDTA			with	EDTA	
	without S		without S	3	ith S ^a	wi	thout S	2	vith Sa	2	vithout S		with Sa
~ ~ ~	$\begin{array}{c} 0 \\ 0 \\ 2.0 \times 10^{-3} \pm 1.4 \times \end{array}$	3.8× 5.7× 10-3 1.8×		7.9×10^{-10} 5.5 × 10 ⁻¹ 9.2 × 10 ⁻¹	$^{-4} \pm 5.4 \times 10^{-4}$ $^{10} \pm 1.3 \times 10^{-10}$ $^{2} \pm 5.0 \times 10^{-3}$	1.1×10^{-1}	$^{-3} \pm 0.5 \times 10^{-3}$ $^{10} \pm 0.4 \times 10^{-10}$ $^{-2} \pm 3.6 \times 10^{-3}$	1.0×10 3.4 × 10 ⁻ 2.0	$^{-4} \pm 0.7 \times 10^{-4}$ $^{40} \pm 0.6 \times 10^{-10}$ $68 \pm 1 \times 10^{-2}$	4.6×1 5.8×1 1.8×1	$\begin{array}{c} 0^{-2} \pm 4.0 \times 10^{-2} \\ 0^{-9} \pm 0.1 \times 10^{-9} \\ 0^{-2} \pm 4.2 \times 10^{-3} \end{array}$	1.8×1 5.9×1	$0^{-3} \pm 0.4 \times 10^{-3}$ $0^{-9} \pm 0.3 \times 10^{-9}$ $2.70 \pm 1 \times 10^{-2}$

M. FORSTER AND R. E. HESTER

View Article Online

solvent	v/v	viscosity/cP	ϕ
$CH_3CN + H_2O$	2/1	< 1.0	3.0×10^{-4}
H,Ŏ		1.0	3.2×10^{-3}
glycerol + H ₂ O	1/1	5.0	3.7×10^{-3}
ethanediol + H ₂ O	2/1	6.3	$1.8 imes 10^{-2}$
DMF+H _s O	2/1	2.3	$4.7 + 0.6 \times 10^{-2b}$
DMF+H,O	2/1	2.3	4.7×10^{-2c}
DMF+H,O	2/1	2.3	$8.0 + 1.2 \times 10^{-3d}$
DMF+H,O	2/1	2.3	$3.5 \times 10^{-3 e}$

Table 5.—Quantum yields ϕ for MV⁺ formation using oxidation products of MV²⁺ Dichloride as photosensitizers, irradiated with $\lambda_{exc} = 457.9 \text{ nm}^{\alpha}$

^{*a*} 0.18 g dm⁻³ X + 1 × 10⁻³ mol dm⁻³ MV²⁺ dichloride + 1 × 10⁻² mol dm⁻³ EDTA at pH 6.5; laser beam diameter ≈ 5 mm; ^{*b*} as (*a*); ^{*c*} focused laser beam, local photon flux density enhanced by a factor of 160 compared with (*b*); ^{*d*} using compound with $r_f = 0.63$ only as sensitizer, see text; ^{*e*} as (*b*) but without EDTA.

TABLE 6.—OXIDATION OF DYE IV WITH Ce4+a

equivalents IV: oxidant ^b	solvent	oxidant reduced (%)	IV decomposed (%)	oxidant
1:1.1	1 mol dm ⁻³ H ₂ SO ₄ in H ₂ O	100	3.6+1.7	с
1:20	1 mol dm ⁻³ H ₂ SO ₄ in H ₂ O	55	100 -	с
1:1.1	CH ₃ CN ^e	100	4.1	đ

^{*a*} E_0 (Ce⁴⁺/Ce³⁺) = +1.44 V in 1 mol dm⁻³ H₂SO₄; ^{*b*} 2×10⁻⁴ mol dm⁻³ dye IV, max. solubility is 5×10⁻⁴ mol dm⁻³ in 1 mol dm⁻³ H₂SO₄; ^{*c*} Ce(SO₄)₂; ^{*d*} Ce(NO₃)₆ (NH₄)₂; ^{*e*} contains traces of H₂O.

For solutions containing MV^{2+} dichloride + EDTA and colloidal dye IV in 5×10^{-2} mol dm⁻³ NaLS or dye VI in H₂O, no MV^{++} was formed even after prolonged irradiation with $\lambda_{exc} = 406.7$ nm. Table 5 contains the quantum yields ϕ for MV^{++} formation when the yellow oxidation products of MV^{2+} dichloride are used instead of dye IV in different solvents. Results for different photon flux densities and for reactions using only the compound with $r_f = 0.63$ instead of the whole mixture X are also presented in table 5. When PtO₂ was added to similar solutions containing X, MV^{2+} dichloride and an excess of EDTA at pH 6.5, irradiation with $\lambda_{exc} = 457.9$ nm produced only a low steady-state concentration of MV^{++} (due to reduction of H₂O by $MV^{++}via$ PtO₂¹⁶). No depletion ($\pm 2\%$) of X could be observed after 5 h irradiation time, corresponding to *ca*. 20 h AM2 solar irradiation for the given experimental conditions.³⁶

OXIDATION OF DYE IV BY Ce4+

In the reactions of fig. 2(a) the intermediate $S^{++} = IV^{++}$ should occur. In order to detect IV^{++} in such photoreactions, we tried to generate this species by oxidizing dye IV in different ways, as shown in table 6. When solutions of dye IV were mixed with Ce^{4+} solutions, the colour changed instantaneously to pale orange and then to blue.

1860

By rapidly scanning the u.v.-visible spectra during the oxidation an intermediate absorption at 475 nm could be established. To our surprise the *ca.* 1:1 oxidised solutions were still found to contain dye IV ($\lambda_{max} = 408$ nm), apparently decomposed only by 3.6% (table 6), although all the Ce⁴⁺ was reduced. Furthermore, the oxidized solution showed a broad absorption with $\lambda_{max} = 570$ nm, $\varepsilon = 1.1 \times 10^5$ dm³ mol⁻¹ cm⁻¹ (calculated with the assumption that all decomposed dye IV has been transformed into the substance with λ_{max} at 570 nm). In 1 mol dm⁻³ H₂SO₄ in CH₃CN+H₂O (8/**2**, v/v), the half-life of $\lambda_{max} = 570$ nm was 2 h.

DISCUSSION

SOLUBILITY, ABSORPTION AND EMISSION

Squarilium dyes I-V are insoluble in water. For the purpose of solar-energy conversion, water solubility would be a great advantage. We tried, therefore, to dissolve dyes I-V in 0.1 mol dm⁻³ aqueous micellar NaLS solution, which is known to dissolve aromatic substances. But only dyes I and III, which contain C_2H_5 groups, could be dissolved in this medium. Obviously, squarilium dyes with there units admine charged central part do not behave like normal aromatic systems with respect to solubility. Only those dyes containing aliphatic chains, which can immerse in the aliphatic core of a micelle, could be solubilized. The red shift of the absorption of dye I upon micellization indicates strong interactions of dye I with either water itself or with the charged surface of the micelle.

Dye VI represents the first known water-soluble squarilium dye. The yellow colour of the aqueous solution, however, faded within some weeks. Obviously dye VI decomposes in H₂O, probably *via* OH⁻ attack on the central 4-membered ring.⁵

Dyes I-III absorb in the red, whereas dyes IV-VI absorb in the blue. This blue shift indicates a much shorter chromophore in the latter cases, which can also be seen from fig. 1(a) and (b); in dyes IV-VI the conjugated system extends at most over one R group and the central part, whereas in dyes I-III both R groups are included for the different mesomeric structures.

The emission spectrum of dye IV given in fig. 4 shows a shoulder at 476 nm and a peak at 571 nm. No mirror image relation between absorption and emission exists. At first sight one might assign the 476 nm band to monomer and the 571 nm band However, for the low concentrations used here excimer emission. to $(1 \times 10^{-5} \text{ mol dm}^{-3})$ excimer formation is unlikely.³⁷ Another interpretation would be that dye IV behaves as a donor-aromatic-acceptor (DArA) molecule with the $N(C_6H_5)_2$ substituents as electron donors and the central ring, which is doubly positively charged, as the aromatic system and as electron acceptor. DArA molecules with an NR₂ group as electron donor are known to relax from the first excited singlet state S_1 into a twisted internal charge-transfer (t.i.c.t.) state,³⁸⁻⁴⁰ which then emits with a large red shift compared with S_1 . The formation of such t.i.c.t. states is strongly solvent dependent. Since dye IV is soluble only in a small number of similar solvents, no detailed study was possible and the explanation for the 571 nm emissions has to be taken as a mere hypothesis.

INFRARED AND RESONANCE RAMAN SPECTRA

The main purpose of the investigation of the vibrational spectra of dyes I-VI was to identify the vibrational modes of the central part

With the substituents R assumed to be point masses, the central part has local symmetry D_{2h} . Four totally symmetric r.R. and seven i.r. bands should be observable for dyes I-VI. However, since the chromophores extend also over the substituents R (fig. 1), r.R. bands of the R groups also are expected to show up.

For the r.R. band in the range 1720-1812 cm⁻¹ no combination or overtone could be assigned and this is believed to be the fundamental symmetric stretching mode $v_s(C=C)$. For rectangular cyclobutadiene (CB), the same mode has been calculated at 1785⁴¹ or 1744 cm^{-1 42} and at 1632 cm⁻¹ for perdeuterated CB.⁴¹ Although the masses of the oxygens and the substituents R in the dyes I-VI are much higher than H or D in CB, a very high v(C=C) can be expected in the former since the central part is doubly positively charged and is presumably highly strained. This assignment, however, supposes a central part with partially single and partially double bonds.

When dye IV is dissolved in concentrated H_2SO_4 the O⁻ are likely to be protonated and $\nu(C-O)$ is expected to decrease. A frequency shift of -48 cm^{-1} is observed for the band of dye II at 1570 cm⁻¹ when CHCl₃ is replaced by concentrated H_2SO_4 . This frequency is therefore assigned to the $\nu_s(C-O)$, and the corresponding asymmetric mode is observed in the i.r. at *ca.* 1609-1630 cm⁻¹. Likewise, the band at 650 cm⁻¹ moves to 624 cm⁻¹ and the band at 218 cm⁻¹ moves to 244 cm⁻¹. Both are r.R. bands which occur in the same frequency region in all dyes I-VI, but their assignment is not yet clear. Since a protonation of the phenyl rings in dye IV is unlikely, these bands also appear to belong to the central part. Common to most i.r. and r.R. spectra, bands around 1600 and 1200 cm⁻¹ are believed to originate from phenyl ring vibrations.

The depolarization ratios ρ of all the r.R. bands of dye IV indicate totally symmetric modes. The value $\rho \approx \frac{1}{3}$ indicates that the excited state of dye IV is non-degenerate.⁴³

CONTINUOUS IRRADIATION EXPERIMENTS

SQUARILIUM DYES IV AND VI

Table 4 shows that MV^{+} can be formed *via* direct excitation of MV^{2+} even if no EDTA is present (in DMSO + H₂O). According to the oxidation potential of DMSO $(E_0 \leq 1.0 V^{44})$ water would be the electron donor $[E_0(O_2/H_2O) = 0.82 V]$. However, the exact oxidation potential of DMSO does not seem to be known.⁴⁵ Furthermore, with H₂O as the reducing agent for electronically excited MV^{2+} , O₂ would also be formed. If no efficient catalyst for H₂O reduction is present,³ O₂ would oxidize MV^{+} back to MV^{2+} , thereby resulting in no net formation of MV^{++} . No reduction took place either with dye IV as a colloid or with dye VI, both in water. For the former case the excited-state lifetime is probably too short to allow efficient quenching by MV^{2+} . That the latter shows no photoactivity might be due either to unfavourable redox potentials or to the solvent water: for analogous photoredox reactions with the sensitizer X or with phthalocyanines⁴⁶ in mixtures of DMF + H₂O or DMSO + H₂O,

much higher quantum yields were obtained for MV^{+} formation than for reactions in H₂O alone.

According to table 4 dye IV can act in photoredox reactions as shown in fig. 2. Although the direct excitation of MV^{2+} exhibits a higher quantum yield ϕ for MV^{++} formation than by excitation *via* dye IV, the MV^{++} concentrations after irradiation were higher when dye IV was present. For solutions with EDTA the quantum yield for MV^{++} formation is 18 times higher than for solutions without EDTA. Obviously EDTA is the electron source in this case. Similar sacrificial systems have been proposed for practical use.⁴⁷ However, the quantum yield for the MV^{++} formation found here is too low for a practical application, although it demonstrates that the excited state of dye IV, with a lifetime τ probably much shorter than 3.6 μ s (τ_{S_1} of dye I is 0.28 ns⁴⁸), is able to reduce MV^{2+} . Since squarilium dyes can be prepared with almost any desired substituents R and any colour, the chances for finding squarilium dyes better suited for solar-energy conversion in solution are high.

MIXTURE X

Although no complete analysis of all the components of X is available, the presence line of mono- and bi-pyridinones in this mixture seems to be obvious: the reaction conditions for formation of X are very similar to those for pyridinone formation²² and the t.l.c. results agree with ref. (22) for the monopyridinone VII.

On the one hand, VII does not appear to be the substance with the highest photocatalytic activity for formation of MV^{+} upon irradiation, as table 5 shows. On the other hand, for practical purposes this is not important since the solutions designed for solar-energy conversion could be produced by a single vessel reaction: MV^{2+} dichloride is heated in basic DMF + H₂O, then neutralized and more MV^{2+} dichloride is added. This solution then could be used for reactions as described by Krasna.⁴⁷ The preliminary stability test of X looks promising and the experiments with variable photon flux densities show that a monophotonic reaction drives the reduction of MV^{2+} .

Table 5 indicates a drastic solvent effect on the quantum yield for formation of MV^+ . Viscosity alone can not explain the results and the highly dipolar character of $DMF + H_2O$ may also have an influence.

The quantum yield $\phi = 4.7 \times 10^{-2}$ for the formation of MV⁺⁺ with X as photosensitizer in DMF+H₂O (2/1, v/v) compares favourably with Ru(bpy)₃²⁺ as sensitizer. The latter system, also with EDTA as electron source, had $\phi = 2 \times 10^{-2}$ in H₂O.⁴⁹ X promotes the photoreduction of MV²⁺ even in the absence of EDTA in DMF+H₂O (2/1, v/v). Probably (CH₃)₂NH, which is always present in small quantities in DMF,²¹ acts as the electron source { $E_{\rho}[(CH_3)_2NH^+/(CH_3)_2NH] = 1.03 V vs.$ SCE at pH 11.9⁵⁰}, or otherwise H₂O, with the same uncertainty as outlined in above.

Finally, the photoactivity of X indicates that photoredox reactions of MV^{2+} dichloride carried out in $DMF+H_2O$ or $DMSO+H_2O$ can lead to spurious results (*via* X formation) if no precautions such as cooling and rapid use of the solutions are taken.

OXIDATION OF DYE IV WITH Ce4+

The intermediate absorption at 475 nm indicates the occurrence of a short-lived transient in the oxidation of dye IV with Ce⁴⁺ We assume this transient to be IV⁺⁺. The structure of the compound with $\lambda_{max} = 570$ nm is not yet clear. R.R. spectra of the dark blue solutions, obtained by oxidation of dye IV by a 9-fold excess of Ce(SO₄)₂ in 1 mol dm⁻³ H₂SO₄ in CH₃CN + H₂O (8/2, v/v) yielded intense bands at 1585, 1573,

1451, 1422, 1233, 1208 and 1180 cm⁻¹ and weaker bands at 878, 816, 726, 707, 689, 538, 513, 431 and 411 cm⁻¹. No bands below 300 cm^{-1} , which would indicate radical dimers, ⁵¹⁻⁵⁶ where observed.

The decomposition of Ce⁴⁺ by dye IV seems to be partially catalytic: only 3.6% of dye IV was decomposed in reducing 100% of the Ce⁴⁺. With a 19-fold excess of Ce⁴⁺, 55% of the Ce⁴⁺ was reduced and 100% of dye IV decomposed. Although Ce⁴⁺ can oxidize water when catalysts such as RuO₂ are present,⁵⁷ we do not believe that a reaction with no chemical change of the catalyst can explain the results obtained here. With RuO₂ as the catalyst for O₂ evolution, the oxidation of H₂O by Ce⁴⁺ has a half-reaction time of 30 min.⁵⁷ By contrast, the reduction of Ce⁴⁺ in 1 mol dm⁻³ H₂SO₄ with dye IV present was complete within seconds. We interpret this as indicating that H₂O is oxidized by Ce⁴⁺ via the transient species IV⁺⁺ to O₂, although no O₂ has been detected so far due to the low/high solubility of dye IV/O₂ in 1 mol dm⁻³ H₂SO₄.

Provided that the photoreduction of MV^{2+} proceeds according to fig. 2(*a*) and that the back reaction between MV^{+} and IV^{+} can be inhibited, a complete photolytic water splitting cycle using dye IV, MV^{2+} and a noble-metal catalyst such as colloidabline Pt⁴ (for water reduction *via* MV^{+}) can be envisaged. To our knowledge this would be the first example of such a cycle based solely upon a purely organic dye.

As shown in scheme 3 below, dye IV could function as a reducing agent in its excited state IV^{*} and as an oxidant in its oxidized state IV⁺. The expensive RuO_2 catalyst for the oxidation of H_2O^4 could, therefore, be omitted:

scheme 3

$$IV \xrightarrow{\rightarrow} IV^{*}$$
$$IV^{*} + MV^{2+} \rightarrow IV^{+} + MV^{+}$$
$$IV^{+} + \frac{1}{2}H_{2}O \rightarrow IV + \frac{1}{4}O_{2} + H^{+}$$
$$MV^{+} + H_{2}O \rightarrow MV^{2+} + \frac{1}{2}H_{2} + OH^{-1}$$

h.v

However, the occurrence of IV^{+} in the reactions of scheme 3 has first to be proved. Further experiments are under way.

Financial support by the S.R.C. and the Swiss National Foundation (M.F.) are gratefully acknowledged. We also would like to thank Mr R. B. Girling for technical assistance.

APPENDIX

DETERMINATION OF QUANTUM YIELDS OF MV⁺⁺ FORMATION

When solutions of dye IV and MV^{2+} are irradiated with $\lambda_{exc} = 406.7$ or 457.9 nm, two processes lead to MV^{++} formation: (i) via direct excitation of MV^{2+} and (ii) via excitation of dye IV. In order to determine the quantum yield for process (ii), the numbers of photons absorbed by dye IV and MV^{2+} have to be known, as well as the amount of MV^{++} produced by each of the two processes. For the situation here

$$A_{\rm M} \ll A_{\rm S}, \quad A = \varepsilon c l \tag{A 1}$$

where A is the absorbance, ε is the molar decadic absorption coefficient, c is the concentration, l is the cell path length and subscripts M and S denote methyl viologen dichloride and sensitizer IV, respectively. One then obtains

$$\Delta I_{\rm M}({\rm M}) = + I_0 (1 - 10^{-A_{\rm M}}) \tag{A 2}$$

$$\Delta I_{\rm S}({\rm M}+{\rm S}) \approx -I_0(10^{-A}{\rm M}+{\rm s}-10^{-A}{\rm M}) \tag{A 3}$$

and

1864

where I_0 is the radiation (einstein cm⁻² s⁻¹) incident on the sample cell and $\Delta I_{M,S}(M, M+S)$ are the radiations absorbed by M or S in solutions containing only M or both M and S, respectively.

Since the average rate F(M) of MV^{+} formation for solutions containing only MV^{2+} is known (table 4), we obtain the amount of MV^{+} in solutions containing both MV^{2+} and dye IV but produced solely by direct MV^{2+} excitation

$$MV_{M}^{,+}(M+S) = Pt \frac{\Delta I_{M}(M+S)}{\Delta I_{M}(M)} F(M)$$
(A 4)

where P is the laser power in W and t is the irradiation time in s. This value $MV_{M}^{+}(M+S)$ is then subtracted from the observed amount of MV^{++} in solutions containing M+S. Example for the solutions used, with $\lambda_{exc} = 406.7$ nm: $A_{M} = 0.019$, $A_{S} = 2.666$

$$\frac{\Delta I_{\rm M}({\rm M}+{\rm S})}{\Delta I_{\rm M}({\rm M})} = 2.2 \times 10^{-3}.$$

- ¹ M. Kirch, J. M. Lehn and J. P. Sauvage, Helv. Chim. Acta, 1979, 62, 1345 and references therein.
- ² V. Balzani, F. Bolletta, M. T. Gandolfi and M. Maestri, *Topics in Current Chemistry*, 1978, **75**, 1 and references therein. View Article Online
- ³ J. Kiwi and M. Grätzel, J. Am. Chem. Soc., 1979, 101, 7214.
- ⁴ K. Kalyanasundaram and M. Grätzel, Angew. Chem., Int. Ed. Engl., 1979, 18, 701.
- ⁵ H. E. Sprenger and W. Ziegenbein, Angew. Chem., Int. Ed. Engl., 1968, 7, 530.
- ⁶ A. Treibs and K. Jacob, Liebigs Ann. Chem., 1966, 699, 153.
- ⁷ H. E. Sprenger and W. Ziegenbein, Angew. Chem., Int. Ed. Engl., 1967, 6, 553.
- 8 A. Treibs and K. Jacob, Liebigs Ann. Chem., 1968, 712, 123.
- ⁹ A. Treibs, K. Jacob and R. Tribollet, Liebigs Ann. Chem., 1970, 741, 101.
- ¹⁰ L. A. Wendling, S. K. Koster, J. E. Murray and R. West, J. Org. chem., 1977, 42, 1126.
- ¹¹ E. Ehrhardt, S. Hünig and H. Pütter, Chem. Ber., 1977, 110, 2506.
- ¹² S. Hünig and H. Pütter, Chem. Ber., 1977, 110, 2524.
- ¹³ C. R. Bock, T. J. Meyer and D. G. Whitten, J. Am. Chem. Soc., 1975, 97, 2909.
- ¹⁴ C. Creutz and N. Sutin, Inorg. Chem., 1976, 15, 496.
- ¹⁵ C. T. Lin and N. Sutin, J. Phys. Chem., 1976, 80, 97.
- ¹⁶ K. Kalyanasundaram, J. Kiwi and M. Grätzel, Helv. Chim. Acta, 1978, 61, 2720.
- ¹⁷ A. Moradpour, E. Amouyal, P. Keller and H. Kagan, Nouv. J. Chim., 1978, 2, 547.
- ¹⁸ P. J. DeLaive, B. P. Sullivan, T. J. Meyer and D. G. Whitten, J. Am. Chem. Soc., 1979, 101, 4007.
- ¹⁹ E. M. Kosower and J. L. Cotter, J. Am. Chem. Soc., 1964, 86, 5524.
- ²⁰ H. E. Sprenger and W. Ziegenbein, Angew. Chem., Int. Ed. Engl., 1966, 5, 894.
- ²¹ A. B. Thomas and E. G. Rochow, J. Am. Chem. Soc., 1957, 79, 1843.
- ²² A. Calderbank, D. F. Charlton, J. A. Farrington and R. James, J. Chem. Soc., Perkin Trans. 2, 1972, 138.
- ²³ W. Kiefer and H. J. Bernstein, Appl. Spectrosc., 1971, 25, 500.
- ²⁴ W. Kiefer and H. J. Bernstein, Appl. Spectrosc., 1971, 25, 609.
- ²⁵ E. Ernstbrunner, R. B. Girling, W. E. L. Grossman and R. E. Hester, J. Chem. Soc., Perkin Trans. 2, 1978, 177.
- ²⁶ R. E. Hester, J. Raman Spectrosc., 1978, 7, 74.
- ²⁷ M. Forster and R. E. Hester, J. Chem. Soc., Faraday Trans. 2, 1982, in press.
- ²⁸ D. S. Smith, unpublished results.
- ²⁹ W. R. Ware, in *Creation and Detection of the Excited State*, ed. A. A. Lamola (Marcel Dekker, New York, 1971), vol. 1, part A, p. 213.
- ³⁰ J. P. Porchet and Hs. H. Günthard, J. Phys. E., Sci. Instrum., 1970, 3, 261.
- ³¹ A. E. Siegman, An Introduction to Lasers and Masers (McGraw-Hill, New York, 1971), chap. 8.
- ³² J. Gauger and G. Manecke, Chem. Ber., 1970, 103, 2696.
- ³³ J. Gauger and G. Manecke, Chem. Ber., 1970, 103, 3553.
- ³⁴ R. B. Cundall and A. Gilbert, *Photochemistry* (Nelson, London, 1970), p. 84.
- ³⁵ P. H. Müller, P. Neumann and R. Storm, *Tafeln der mathematischen Statistik* (Fachbuchverlag, Leipzig, 1973), p. 135.
- ³⁶ Handbook of Geophysics, U.S. Air Force (McMillan, New York, 1960), chap. 16-19.
- ³⁷ J. B. Birks, *Photophysics of Aromatic Molecules* (Wiley, New York, 1970), p. 301.
- ³⁸ K. Rotkiewicz, K. H. Grellmann and Z. R. Grabowski, Chem. Phys. Lett., 1973, 19, 315.
- ³⁹ K. Rotkiewicz, K. H. Grellmann and Z. R. Grabowski, Chem. Phys. Lett., erratum, 1973, 21, 212.

1866 SQUARILIUM DYES FOR SOLAR-ENERGY CONVERSION

- ⁴⁰ K. Rotkiewicz, Z. R. Grabowski, A. Krówczyński and W. Kühnle, J. Lumin., 1976, 12/13, 877.
- ⁴¹ L. J. Schaad, B. A. Hess Jr and C. S. Ewig, J. Am. Chem. Soc., 1979, 101, 2281.
- 42 M. J. S. Dewar and A. Komornicki, J. Am. Chem. Soc., 1977, 99, 6174.
- ⁴³ O. S. Mortensen, Chem. Phys. Lett., 1969, 3, 4.
- 44 K. Stelmach, Chem. Anal. (Warsaw), 1966, 11, 628.
- ⁴⁵ B. Kratochvil, CRC Critical Reviews in Analytical Chemistry (Chemical Rubber Company, Cleveland, Ohio, 1971), p. 415.
- ⁴⁶ T. Tanno, D. Wöhrle, M. Kaneko and A. Yamada, Proc. 3rd Int. Conf. Photochem. Conversion Storage Solar Energy (SERI, Golden, Colorado, 1981), p. 161.
- ⁴⁷ A. I. Krasna, *Photochem. Photobiol.*, 1979, 29, 267.
- ⁴⁸ S. Dähne, F. Fink, E. Klose and K. Teuchner, *Laser 77 Opto Electronics Conf. Proc.*, ed. W. Waidelich, p. 151.
- ⁴⁹ K. Takuma, Y. Shuto and T. Matsuo, Chem. Lett., 1978, 983.
- 50 M. Masui, H. Sayo and Y. Tsuda, J. Chem. Soc. B, 1968, 973.
- ⁵¹ K. Yokoyama and S. Maeda, Chem. Phys. Lett., 1977, 48, 59.
- 52 S. Yamaguchi, K. Yokoyama and S. Maeda, Bull. Chem. Soc. Jpn, 1978, 51, 3193.
- 53 S. Matsuzaki, T. Mitsuishi, C. Etoh and K. Toyoda, Chem. Lett., 1979, 1417.
- ⁵⁴ K. Yokoyama, S. Maeda, C. Etoh, S. Matsuzaki and K. Toyoda, Bull. Chem. Soc. Jpn, 1980, 53, 36.
- 55 K. Yokoyama, Y. Tajima, M. Tahara and S. Maeda, Bull. Chem. Soc. Jpn, 1980, 53, 2489, mining of the second seco
- ⁵⁶ E. E. Ernstbrunner, R. B. Girling, W. E. L. Grossman, E. Mayer, K. P. J. Williams and R. E. Hester, J. Raman Spectrosc., 1981, 11, 161.
- 57 K. Kalyanasundaram, O. Mičič, E. Pramauro and M. Grätzel, Helv. Chim. Acta, 1979, 62, 2432.

(PAPER 1/1151)