Methyl Orange as a Probe of the Semiconductor–Electrolyte Interfaces in CdS Suspensions

Andrew Mills* and Geraint Williams

Department of Chemistry, University College of Swansea, Singleton Park, Swansea SA2 8PP

Cadmium sulphide (CdS) powder dispersions have been used to sensitise the photoreduction of methyl orange (D⁻) at pH < 7 in aqueous solution. A number of electron donors were added (PVA, TEOA, nitrate, tartrate, cysteine, citrate, acetate and EDTA), but at pH 4.4 only EDTA enhanced appreciably the rate of methyl orange photoreduction. A steady-state equation was developed which successfully described the observed variation in initial rate of methyl orange photoreduction as a function of the concentrations of methyl orange, photons, EDTA and O₂ (when present). From this work it was shown that the rate constant for hole (h^+) scavenging by EDTA was ca. 19000 times greater than that for the recombination reaction between h^+ and a conductance band electron (e⁻). In addition, the rate constant for the reduction of O_2 by a conductance band electron was ca. 40-50 times smaller than that for the reduction of methyl orange by e^{-} . Corrosion studies indicated that photoreduction of methyl orange to a hydrazine derivative (D³⁻) sensitised by CdS, was accompanied by anodic corrosion of the semiconductor even in the presence of EDTA. In this work the role of EDTA (at pH 4.4) appeared to be as a mediator of the reaction

$$2H^+ + D^- + CdS \xrightarrow{EDTA} DH_2^- + Cd_{aq}^{2+} + S_{\downarrow}$$

and not as an 'ideal' sacrificial electron donor. Reasons for this are discussed.

Few semiconductors have been employed as extensively over the past decade to photosensitise catalytic and synthetic reactions¹ as n-type CdS. Part of the interest in CdS arises from the size of its band gap (2.4 eV) since this enables CdS to absorb an appreciable fraction of the solar spectrum (*i.e.* $\lambda \leq 516$ nm). This is in sharp contrast to many of the oxide semiconductors (such as TiO₂ and SrTiO₃) which possess large band gaps $(e.g. \ge 3.0 \text{ eV})$ and do not, therefore, absorb much of the solar spectrum (ca. < 6%).² In addition, part of the interest in CdS arises from the positions of the conduction band (E_c) and valence bands (E_{vb}) with respect to a reference point, such as the SCE, since these band positions are considered in general to be sufficiently negative (-0.9 V vs. SCE) and positive (1.5 V vs. SCE), respectively, so as to allow, in theory, the photocleavage of water into H_2 and O_2 to be sensitised by CdS. Indeed, several groups³⁻⁵ have reported the successful photodissociation of water using CdS powder dispersions and colloids in the presence of Pt and RuO₂ as hydrogen and oxygen catalysts; however, other groups^{6, 7} have not been so successful. The lack of success by these latter workers^{6, 7} has invariably been attributed to the inability of the water oxidation reaction

$$4h^{+} + 2H_{2}O \longrightarrow 4H^{+} + O_{2} \tag{1}$$

to compete with the oxidation of the lattice by the photogenerated holes (h^+)

$$2h^+ + CdS \longrightarrow Cd_{aq}^{2+} + S.$$
⁽²⁾

Semiconductor–Electrolyte Interfaces

Several groups⁸⁻¹¹ have shown, however, that CdS can be protected to varying degrees from photoanodic decomposition by adding redox couples such as S^{2-}/S , SO_3^{2-}/SO_4^{2-} , Fe(CN)₆^{4-/3-} and I⁻/I₂ to the aqueous solution. The S^{2-}/S redox couple has proved exceptionally good at stabilising CdS and has enabled the development of durable and efficient CdS-based liquid-junction photovoltaic cells.^{10, 11} Stabilisation of CdS can also be achieved using sacrificial electron donors (*e.g.* donors which, in theory, prevent back-reaction by decomposing rapidly and irreversibly upon oxidation) such as EDTA,^{12, 13} TEOA¹⁴ (triethanolamine), cysteine,¹⁵ dextrose,¹⁴ starch,¹⁴ sulphite^{16, 17} and disulphide,^{17, 18} and this has led to a number of reports¹¹⁻¹⁸ on the photoreduction of water to H₂ sensitised by powder dispersions of CdS, CdS/Pt or CdS/RuO₂.

Unlike single-crystal CdS electrodes, powder dispersions cannot be readily probed using many of the standard electrochemical techniques such as cyclic voltammetry, rotating ring-disc and capacitance measurements. In addition, unlike colloidal suspensions of CdS (which are optically transparent and show no tendency to settle out), powder dispersions cannot be easily studied using microsecond and nanosecond flash photolysis, luminescence and conductivity measurements. However, techniques such as electron spin resonance^{19, 20} and photocoulometry¹ have been used successfully to study CdS powder dispersions. The latter technique, employed by White and Bard¹ to examine the photoreduction of methyl viologen (MV^{2+}), appears particularly useful in providing estimates of net turnover number, suspension stabilities and the effectiveness of different surface treatments (metal deposits) and sacrificial donors in stabilising the CdS particles. In a recent paper²¹ Darwent and Brown showed that methyl orange could be used to probe photo-oxidation reactions occurring at the semiconductor-electrolyte interfaces in colloidal suspensions of TiO_2 . In this work we show how the same dye can be used to examine photoreduction reactions of powder suspensions of CdS and the effectiveness of EDTA as a sacrificial electron donor.

Experimental

Materials

The methyl orange and EDTA were supplied by BDH (AnalaR grade) and the CdS (99.999%) was purchased from Koch-Light Laboratories. From electron microscopy the average CdS particle diameter was estimated to be *ca*. 1.2 μ m. The water used was always deionised before being doubly distilled from quartz vessels.

Methods and Apparatus

All steady-state irradiations were carried out with an I-REM 250 W Xe arc lamp (Applied Photophysics) with a 320 nm cut-off filter (unless stated otherwise). Solutions (30 cm³) were irradiated in a thermostatted $(25\pm0.1 \text{ °C})$ cylindrical quartz reaction cell with taps which enabled N₂, O₂ or N₂–O₂ mixtures to be passed continuously through the suspension. The cell is identical in almost all respects of design to one used previously in conjunction with a hydrogen and oxygen membrane polarographic detector.²² During the course of an irradiation the light beam was interrupted at periodic intervals so as to allow samples (*ca.* 3 cm³) of the CdS/methyl orange suspension to be analysed spectrophotometrically. A gas-tight syringe with a 0.2 μ m membrane filter (supplied by Schleicher and Schüell), fitted between the needle and syringe barrel, was used to take the samples. Incorporation of this filter allowed the u.v.–visible absorption spectrum of the methyl orange solution alone (*i.e.* free from CdS particles) to be recorded (in a 1 cm quartz cell, using a Perkin-Elmer Lambda 3 spectrophotometer) before being returned to the reaction vessel for subsequent irradiation. The extinction coefficient for unprotonated methyl orange was taken as 2.68 × 10⁴ dm³ mol⁻¹ cm⁻¹ at $\lambda_{max} = 463$ nm.²³

The CdS-methyl orange solutions contained in the reaction vessel were purged for at least 15 min before and during any irradiation. The purging gases used were usually N_2 , O_2 or (as in one set of experiments) mixtures of N_2 - O_2 . These N_2 - O_2 mixtures were generated using the tangential gas mixer described in a previous paper²² and their percentage O_2 compositions were determined by gas chromatography using a Perkin-Elmer F33 thermistor gas chromatograph, incorporating a 2 m stainless-steel column (0.3 cm i.d.) packed with activated 5A molecular sieve and using Ar as the carrier gas.

In the study of the corrosion of the CdS powder dispersions, the filtered (CdS-free) samples (see above) were analysed by atomic absorption spectroscopy (AAS) using a Perkin-Elmer Alpha 2 instrument which had been previously calibrated using Cd^{2+} solution standards prepared from Spectrosol $Cd(NO_3)_2$ (BDH).

Results and Discussion

Initial Studies

In a typical experiment an N₂-purged solution (30 cm³) containing only methyl orange (3.9×10^{-5} mol dm⁻³), CdS (2 mg cm⁻³) at pH 4.4 was irradiated and the u.v.-visible absorption spectrum of the methyl orange was monitored as a function of irradiation time (see fig. 1). The disappearance of the absorption band at 463 nm (*i.e.* λ_{max} of the unprotonated form of methyl orange) and the concomitant appearance of an absorption maximum at 247 nm as the irradiation progressed indicated that the CdS powder dispersion was able to sensitise the photoreduction of unprotonated methyl orange (I) (p $K_a = 3.5$)²⁴ to a hydrazine derivative (II), *i.e.*

$$(CH_3)_2NC_6H_4N = NC_6H_4SO_3^- + 2H^+ + 2e^- \xrightarrow{Cus} (CH_3)_2NC_6H_4NHNHC_6H_4SO_3^-.$$
(3)
(I) (II)

0.40

The source of the electrons appeared to be the CdS itself since the alternative, water oxidation, is in general considered extremely unlikely, especially when no platinum-group O_2 -catalysts (such as RuO_2 and Rh_2O_3) are employed, as is the case here.^{7, 10, 11} The overall reaction may be better expressed as

$$2h^{+} + (\mathbf{I}) + CdS \xrightarrow{h_{\nu \geq 2.4 \text{ eV}}} (\mathbf{II}) + Cd_{aq}^{2+} + S\downarrow.$$
(4)

In a previous paper²⁵ Darwent and Brown showed that PVA-supported colloids of TiO₂ were also able to bring about the photoreduction of methyl orange to its hydrazine derivative (II) and the spectral changes and λ_{max} at 247 nm for (II) recorded by these workers agree very well with our observations. In the absence of CdS, no bleaching of the methyl orange is observed upon illumination and this is attributed to its well documented short excited-state lifetime owing to a rapid *trans-cis* photoisomerisation process.²⁶ In addition, only ultra-band-gap radiation ($\lambda \leq 516$ nm) appeared to be able to bring about the photobleaching of methyl orange was observed, even though the absorption spectrum of methyl orange extended up to *ca*. 580 nm (see fig. 1). In addition, the rate of photobleaching of methyl orange in the presence of CdS powder was only fractionally reduced (by *ca*. $\frac{1}{2}$) when a methyl orange filter solution (absorbance > 2 at $\lambda_{max} = 463$ nm) was introduced between the irradiation source/390 nm filter and the photolysis cell. These observations support the argument that the CdS particles were responsible for photosensitising reaction (3).

The rate of reduction of methyl orange in anaerobic solution was noticeably altered upon addition of different electron donors (ED). Fig. 2 illustrates the absorbance $(\lambda_{\max} = 463 \text{ nm}) vs.$ time profiles observed for a selection of the electron donors tried and table 1 lists the relative initial rates (R_i) of reduction of (I) determined for these and Semiconductor-Electrolyte Interfaces

Fig. 1. U.v.-visible absorption spectra (recorded using a 1 cm cell) showing the photobleaching of methyl orange $(3.9 \times 10^{-5} \text{ mol dm}^{-3})$ when irradiated in the presence of CdS (2 mg cm⁻³, pH 4.4, $\lambda > 320$ nm, N₂-purged solution). The irradiation times after which the spectra were recorded were: (a) 0, (b) 5 min, (c) 11 min, (d) 18 min, (e) 30 min, (f) 50 min.

Fig. 2. Absorbance vs. time plots (recorded using a 1 cm cell, $\lambda_{max} = 463$ nm) showing the photobleaching of methyl orange $(3.9 \times 10^{-5} \text{ mol dm}^{-3})$ by CdS (2 mg cm⁻³, pH 4.4, $\lambda > 320$ nm, N₂-purged solution) in the presence of various electron donors: (a) PVA solution (0.1% w/v), (b) KNO₃ (0.1 mol dm⁻³), (c) none (water), (d) acetate buffer (10⁻² mol dm⁻³), (e) EDTA (10⁻² mol dm⁻³).

 Table 1. Relative initial rates of photoreduction

 of methyl orange in the presence of various

 electron donors

electron donor ^a	R _i	
EDTA	100 ^b	
acetate	50	
none (water)	37	
citrate	37	
cysteine	31	
tartrate	29	
nitrate ^c	29	
TEOA	16	
PVA^d	2	

^{*a*} All electron donors at 10^{-2} mol dm⁻³ and pH 4.4, unless stated otherwise. ^{*b*} An initial relative rate of 100 corresponds to an actual rate of 7.28×10^{-8} mol dm⁻³ s⁻¹. ^{*c*} 0.1 mol dm⁻³ KNO₃ solution was used. ^{*d*} 0.1% (w/v) solution was used.

other electron donors. A 'good' electron donor is one which reacts with the strongly oxidising photogenerated hole (h^+) before it is able to oxidise the lattice, *i.e.*

$$h^+ + ED \longrightarrow ED^+.$$
 (5)

The oxidised donor, ED^+ , must then rapidly desorb from the surface of the CdS before the photogenerated electron can 'neutralise' it. If the donor is 'sacrificial', then ED^+ will, before and/or after desorption, undergo a facile, irreversible decomposition reaction, *i.e.*

$$ED^+ \longrightarrow products.$$
 (6)

Of the well established sacrificial electron donors [such as EDTA, cysteine and triethanolamine (TEOA)], only EDTA appeared to be effective (see table 1) at this [H⁺] (pH 4.4) in promoting the photoreduction of methyl orange by the hole-scavenging reaction (5). However, it should be noted that these sacrificial donors are more commonly used at higher pH, *i.e.* pH \ge pK_a of the electron donors for amine deprotonation [pK_a: 6.26 (EDTA), 8.36 (cysteine) and 7.9 TEOA)],²⁷ since it is their deprotonated amine forms which appear to be most easily and irreversibly oxidised. In the cases of citrate, cysteine, tartrate and TEOA, the initial rates of photoreduction of methyl orange (table 1) were lower than when no electron donor (just water) was present. This most likely reflects their inability to act as irreversible sacrificial electron donors at this pH (pH 4.4) and, in addition, indicates their involvement as mediators in an indirect e^{-h+} recombination reaction *via* their initial oxidation by a valence-band hole (h⁺), reaction(s), followed by reduction reaction

$$e^- + ED^+ \longrightarrow ED.$$
 (7)

The overall process [reactions (5) and (7)], represents the catalysis by the electron donor of an indirect e^{-h^+} recombination reaction which does not produce luminescence. Evidence for this process is provided by the results of Henglein,²⁸ which demonstrate that the fluorescence (owing to a direct e^{-h^+} recombination process) exhibited by colloidal CdS is quenched by a variety of anions including SO₄²⁻, SCN⁻, Cl⁻ and NO₃⁻, which are unable to act as 'good' sacrificial electron donors.

When PVA was used as an electron donor, the rate of photobleaching was extremely slow (see fig. 2). This is somewhat surprising since Darwent and Brown²⁵ were able to

Semiconductor–Electrolyte Interfaces

use PVA at the same concentrations reported here as a sacrificial electron donor in the photoreduction of methyl orange using colloidal TiO₂. However, the CdS particles are much bigger [particle diameter (CdS) = $1.1 \mu m$, whereas $d(TiO_2) = 66 nm$] and the valence-band holes less oxidising $[E_{VB} (CdS) = 1.5 V \text{ and } E_{VB} (TiO_2) \approx 2.6 V vs. SCE]$ than those of the TiO₂ colloid. Thus, the surface of the CdS particles may have a greater covering of PVA (lessening access/adsorption by the methyl orange to the semiconductor surface) and also may be unable to oxidise the PVA [encouraging photocorrosion of the CdS particles *via* reaction (4)]. Evidence for this last effect has been provided by Bard and White¹ in an electrochemical investigation of CdS suspensions in the presence of methyl viologen and a variety of electron donors, including PVA.

The high initial rate of methyl orange photoreduction obtained with acetate ions is an interesting result since, although capable of scavenging holes from the surface of TiO_2 , Bard and his group¹ have found it to be poor at stabilising CdS against anodic corrosion [reaction (2)]. Its role in the photoreduction of methyl orange appears likely therefore to be one of mediating the photocorrosion reaction (4) and, as we shall see later, surprisingly, this also appears to be the role of EDTA.

Using an initial 10⁻² mol dm⁻³ solution of sodium acetate and adjusting the acid concentration with concentrated (0.1 mol dm^{-3}) solutions of NaOH and H₂SO₄ a study was carried out of the initial rate of photoreduction of methyl orange (R_i) vs. pH (fig. 3). Above pH 7 no photobleaching of methyl orange was observed and this was attributed to the inability of the photogenerated electrons to reduce the deprotonated form of the semi-reduced dye (D^{2-}) to the hydrazine derivative (II), since the pK_a for this species is expected to be ca. 7.1.²⁵ As the pH was decreased from 7 the value of R_i was found to increase. It appeared that the conductance-band electrons of CdS were readily capable of reducing the unprotonated form of methyl orange (D⁻; $pK_a = 3.5$) via the protonated form of the semi-reduced radical (DH⁻). This is hardly surprising since the conduction band potential of CdS (-0.88 V vs. SCE) is far more negative than that of methyl orange $[E^{\circ}(D^{-}/DH_{2}^{-})] = -(0.058 \text{ pH}) vs. \text{ SCE}]^{29}$ Although there are conflicting reports in the literature³⁰⁻³² concerning the dependence of the conductance-band potential (E_{CB}) of CdS upon pH, for all the reported values of E_{CB} (CdS), for pH < 7, $E_{\rm CB}$ (CdS) < E (D⁻/DH⁻) and thus reduction of D⁻ by a CdS conduction-band electron should be a spontaneous process. At acid concentrations below pH 3.5, the dye is in its protonated form (DH) which is more readily reduced than D⁻;²⁵ however, at and below pH 3.5 the protonated form of methyl orange starts to be adsorbed in a dark reaction onto the CdS particles. In addition, around this $pH H_2S$, from the acid corrosion reaction (8), is evolved²⁷

$$\operatorname{CdS} + 2\mathrm{H}^{+} \underbrace{\Longrightarrow}_{\mathrm{p}K - -5.96} \operatorname{Cd}_{\mathrm{aq}}^{2+} + \mathrm{H}_{2}\mathrm{S}_{\mathrm{aq}}.$$
(8)

The CdS/EDTA System

Several groups have used EDTA as a sacrificial electron donor in the photoreduction of water sensitised (poorly) by aqueous dispersions of CdS^{12, 33} and [much more efficiently (ca. 20–50 times)] by plantinised CdS dispersions.^{12–15, 33} From the work of Darwent *et al.*^{12, 15} it would appear that even at pH 6.2 [at which a large fraction (> ca. 50%) of the EDTA molecules will have a deprotonated amine group] the EDTA is noticeably less than 100% efficient at preventing the photocorrosion of the CdS particles, *i.e.* reaction (2).

In our work we used methyl orange to probe the semiconductor-electrolyte interfacial reactions which occur upon illumination with ultra-band-gap irradiation of CdS powders dispersed in an aqueous solution containing EDTA at pH 4.4 and, in some cases, O_2 . The role of the O_2 was envisaged as that of a competitive inhibitor of the photoreduction

Fig. 3. Initial rate $(R_1/10^{-8} \text{ mol dm}^{-3} \text{ s}^{-1})$ for the photoreduction of methyl orange $(3.5 \times 10^{-5} \text{ mol dm}^{-3})$ by CdS (2 mg cm⁻³, $\lambda > 320 \text{ nm}$) as a function of pH. The photoreduction was carried out (under continuous nitrogen purging) in 10^{-2} mol dm⁻³ acetate buffer.

of methyl orange sensitised by the CdS particles. The overall reaction mechanism may be summarised as: $h > F_{1}$ (a.t. $h > F_{2}$

excitation: CdS
$$\xrightarrow{h_{V \ge L_g}(2.4 \text{ eV})} h^+ + e^-; I_a$$
 (9)

recombination:
$$h^+ + e^- \longrightarrow heat; k_R[h^+]$$
 (10)

oxygen reduction:
$$e^- + O_2 \xrightarrow{} O_2^-; k_0[O_2][e^-]$$
 (11)

dye reduction:
$$H^+ + e^- + D^- \longrightarrow DH^-$$
; $k_d[D^-][e^-]$ (12)

hole scavenging:
$$h^+ + EDTA \longrightarrow EDTA^+$$
; $k_s[EDTA][h^+]$ (13)

lattice oxidation:
$$2h^+ + CdS \longrightarrow Cd_{aq}^{2+} + S\downarrow; k_L[h^+].$$
 (14)

In the above scheme I_a (mol dm⁻³ s⁻¹) is the rate of photoabsorption by the CdS particles (2 mg cm⁻³) dispersed in 30 cm³ solution contained in the thermostatted cylindrical quartz reaction cell (see the Experimental section). Although the CdS used was not intentionally doped and the concentration of carriers was probably low, it is still likely that in this n-type semiconducting material the number of majority carriers (e⁻) (the thermal electrons) would far outnumber the minority carriers (h⁺) and so electron-hole pair recombination would be expected to exhibit pseudo-first-order kinetics.

From time-resolved luminescence studies of colloidal CdS the lifetime of the photogenerated electron-hole pairs in the absence of any scavengers has been determined as 0.3 ± 0.2 ns.³⁴ In order for the interfacial electron-transfer reactions [reactions (11)–(13)] to occur before recombination reaction (10), the reactants (X = O₂, D⁻ and EDTA) must be adsorbed onto the surface of the CdS. Despite continuing effort, the determination of the adsorption isotherms of these reactants on the surface of CdS has proved very difficult. As a result we have, like many others^{1, 21, 25} using semiconductor powder or colloidal dispersions, made the assumption that for the reactants (X), referred to in reactions (11)–(13), the bulk and surface concentrations are related directly, *i.e.*

$$[X]_{bulk} = K_{x}[X_{surface}]$$
(15)

as is the case for any Langmuir-type adsorption where the fraction of surface coverage

Semiconductor–Electrolyte Interfaces

(θ) is small (*i.e.* $\theta < 0.1$). Thus in each of the rate equations for reactions (11)–(13) the reactant concentration term [X], (where $X = O_2$, D^- and EDTA, respectively) refers to the bulk rather than to the surface concentrations. This assumption proves extremely useful when the steady-state equations are derived later on in this paper and the assumption appears to be borne out by the excellent fit of the experimental results with those predicted from the steady-state equations.

The results of Darwent and Brown²⁵ on the photoreduction of methyl orange by colloidal TiO₂ particles suggest that at pH 4.4, the rate-determining step for reduction of the unprotonated form of methyl orange (D^-) is the formation of the semi-reduced radical (DH^-) [*i.e.* reaction (12)] and, therefore, that the subsequent reactions which lead to hydrazine formation such as

$$DH^{-} + e^{-} + H^{+} \longrightarrow DH_{2}^{-}$$
(16)

$$2DH^{-} \longrightarrow DH_{2}^{-} + D^{-}$$
(17)

Continuous illumination of a suspension of CdS powder particles in an aqueous solution containing methyl orange, O_2 and EDTA will lead to steady-state concentrations of holes (h⁺) and electrons (e⁻) where

$$[h^+]_{ss} = I_a / (k_R + k_s [EDTA] + k_L)$$
(18)

and

$$[e^{-}]_{ss} = (I_{a} - k_{R}[h^{+}])/(k_{0}[O_{2}] + k_{d}[D^{-}]).$$
(19)

The initial rate of photobleaching of methyl orange (R_i) will be given by

$$R_{\rm i} = k_{\rm d} [\rm D^-] [\rm e^-]_{\rm ss} \tag{20}$$

which, using eqn (18) and (19), can be reformulated as:

$$R_{\rm i} = \frac{k_{\rm d}[{\rm D}^-] I_{\rm a} k_{\rm s}[{\rm EDTA}]}{(k_{\rm 0}[{\rm O}_2] + k_{\rm d}[{\rm D}^-])(k_{\rm R} + k_{\rm s}[{\rm EDTA}] + k_{\rm L})}.$$
(21)

The above equation can be simplified further if the not too unreasonable assumption is made that h = h = 0 (22)

$$k_{\rm s}[{\rm EDTA}] \gg k_{\rm L}$$
 (22)

i.e. direct lattice oxidation by the photogenerated holes [reaction (14)] is suppressed by EDTA in the range of concentrations $(5 \times 10^{-5} - 10^{-2} \text{ mol dm}^{-3})$ employed in this study. If the above condition holds then the reciprocal of the initial rate can be expressed as

$$\frac{1}{R_{\rm i}} = \frac{k_{\rm R} k_0 [O_2]}{I_{\rm a} k_{\rm d} [D^-] k_{\rm s} [{\rm EDTA}]} + \frac{k_{\rm R}}{I_{\rm a} k_{\rm s} [{\rm EDTA}]} + \frac{k_0 [O_2]}{I_{\rm a} k_{\rm d} [D^-]} + \frac{1}{I_{\rm a}}.$$
(23)

The above equation was tested extensively in a series of steady-state irradiations under conditions of different I_a , $[O_2]$, $[D^-]$ and [EDTA]. The results of this work are as follows.

(A) Anaerobic Conditions (i.e. O_2 -free)

(i) $1/R_i$ vs. 1/[EDTA]. In a series of experiments, aqueous powder dispersions of CdS (2 mg cm⁻³; 30 cm³ solution) containing: methyl orange $(3.9 \times 10^{-5} \text{ mol dm}^{-3})$ and different concentrations of EDTA (5×10^{-5} to 5×10^{-3} mol dm⁻³) at pH 4.4 were irradiated under anaerobic conditions and the initial rates of photobleaching of methyl orange (R_i) were determined. Since the concentration of oxygen in solution is negligibly small, eqn (23) becomes

$$\frac{1}{R_{\rm i}} = \frac{k_{\rm R}}{I_{\rm a}k_{\rm s}[{\rm EDTA}]} + \frac{1}{I_{\rm a}}.$$
(24)

Fig. 4 illustrates that, as predicted from eqn (24), a plot of $1/R_i vs. 1/[EDTA]$ yields a straight line of gradient m = 830 s and intercept $c = 1.6 \times 10^7 \text{ dm}^3 \text{ mol}^{-1}$ s (correlation coefficient = 0.9997). The ratio of gradient and intercept is, according to eqn (24),

$$\frac{m}{c} = \frac{k_{\rm R}}{k_{\rm s}} \tag{25}$$

and from our experimentally determined values of m and c, this ratio is 5.2×10^{-5} mol dm⁻³. Thus the rate constant for hole scavenging by EDTA (k_s) appears to be ca. 19000 times larger than that for the recombination reaction. In addition, since the actual quantum yield, ϕ , of photobleaching of methyl orange by the CdS particles is by definition

$$\phi = \frac{R_{\rm i}}{I_{\rm a}} \tag{26}$$

it would appear that when concentrations of EDTA $\geq ca$. 10^{-2} mol dm⁻³ are employed then $\phi \approx 1$. Using monochromatic light ($\lambda = 400 \pm 10$ nm), a formal quantum yield ($= R_i/I_0$; I_0 = incident, light intensity) of 0.003 was measured under the same experimental conditions. This formal quantum yield provided a lower limit of the actual quantum yield (ϕ), since in its calculation the assumption is made that all the photons reaching the sample are absorbed and no allowance is made for the considerable (>99% in this case) amount of light reflected and scattered by the particles as well as being absorbed by the methyl orange present. [In the measurement of the formal quantum yield, the methyl orange solution (3.9×10^{-5} mol dm⁻³) had an absorbance (per cm) of *ca*. 0.5 at 400 nm and thus it will have absorbed (see fig. 1) an appreciable fraction (up to *ca*. 70%) of the incident ultra-band-gap radiation.]

(*ii*) R_i vs. $[D^-]$. The steady-state expression (23) implies that R_i should be independent of the methyl orange concentration $[D^-]$ when no oxygen is present in the reaction mixture. This predicted invariance in R_i with respect to $[D^-]$ arises from the limited number of reaction routes [reactions (10), (11) and (12)] in the proposed reaction scheme, eqn (9)-(14). Although it is possible for CdS particles to reduce water in the absence of a Pt catalyst (but in the presence of EDTA),^{15, 32} *i.e.*

$$2e^{-} + 2H^{+} \longrightarrow H_{2}$$
⁽²⁷⁾

this reaction is extremely inefficient (formal quantum yield $< 10^{-3}$) and some¹³ have failed to observe it. As a result, we have omitted reaction (27) from the reaction scheme and the steady-state equations derived therefrom, thus making the assumption that any photogenerated electrons must react *via* pathways (10)–(12).

In order to test this assumption and eqn (23), a series of irradiations was carried out in N₂-purged solutions (30 cm³) containing: CdS (2 mg cm⁻³), EDTA (10⁻² mol dm⁻³) and different concentrations of methyl orange [(1-6) × 10⁻⁵ mol dm⁻³]. A filter solution of methyl orange [absorbance ($\lambda = 463$ nm) > 2.0] was used in these experiments to ensure that the light intensity absorbed by the CdS particles was the same for all concentrations of methyl orange. Fig. 5 illustrates the variation of R_i with [D⁻], which is slight over the concentration range studied and suggests that the prediction made from eqn (23), and described above is correct.

(*iii*) R_i vs. I_a . Using the same experimental conditions as described in section [A(i)] with an EDTA concentration of 10^{-2} mol dm⁻³, aqueous suspensions of CdS containing methyl orange were irradiated with light ($\lambda > 400$ nm) of different intensity. A u.v. cut-off filter was used to remove light < 400 nm and variation of the incident light intensity (I_0) was achieved using a series of neutral density filters (supplied by Balzers). It was assumed

Semiconductor-Electrolyte Interfaces

Fig. 4. Reciprocal of the initial rate $[(1/R_i)/10^7 \text{ dm}^3 \text{ mol}^{-1} \text{ s}]$ for the photoreduction of methyl orange $(3.9 \times 10^{-5} \text{ mol dm}^{-3})$ by CdS (2 mg cm⁻³), $\lambda > 320 \text{ nm pH 4.4}$, N₂-purged solution) as a function of the reciprocal of the EDTA concentration $[(1/[EDTA])/10^3 \text{ mol}^{-1} \text{ dm}^3]$.

Fig. 5. Initial rate $(R_1/10^{-8} \text{ mol dm}^{-3} \text{ s}^{-1})$ for the photoreduction of methyl orange by CdS $(2 \text{ mg cm}^{-3}, \lambda > 320 \text{ nm} \text{ as a function of dye concentration } ([D^-]/10^{-5} \text{ mol dm}^{-3})$ in EDTA $(10^{-2} \text{ mol dm}^{-3})$ solution under N₂ purge. In this case a methyl orange filter [absorbance $(\lambda = 463 \text{ nm}) > 2$] was incorporated into the steady-state irradiation system.

that the intensity of radiation absorbed by the CdS particles (I_a) and, therefore R_i , would be directly related to I_0 . Thus a plot of R_i vs. relative light intensity [where I_0 (*i.e.* no neutral density filter present) is arbitrarily set at 100%] should produce a straight line with a zero intercept. The experimental results did yield a very good straight line (8 points, correlation coefficient = 0.9996) with a gradient of 6.8×10^{-10} dm³ mol⁻¹, but with an extrapolated intercept of 1.5×10^{-8} mol dm⁻³ s⁻¹. Although stray light and/or a dark thermal reaction (*e.g.* dye adsorption onto the CdS particles) would provide a simple explanation for this non-zero intercept, blank experiments carried out in the dark did not fully confirm this interpretation.

(iv) R_i vs. [CdS]. Using the same conditions as described above (with the exception of a neutral density filter) aqueous suspensions of CdS of different concentration (0-6 mg cm⁻³) containing methyl orange and EDTA were irradiated with light $\lambda > 400$ nm and the results are shown in fig. 6. The shape of the profile is very typical of many other profiles to be found in the literature^{13, 35} illustrating the rate of a photochemical reaction vs. the semiconductor sensitiser concentration. From fig. 6 it is possible to estimate approximately the initial rate of photoreduction of methyl orange at infinite [CdS], *i.e.* $R_{i\infty} = 1.37 \times 10^{-7}$ mol dm⁻³ s⁻¹. Interestingly, a plot of $\log[R_{i\infty}/(R_{i\infty} - R_i)]$ vs. [CdS] (in mg cm⁻³) yields a gradient of 0.16±0.01 and an intercept of 0.04±0.04. This result suggests that the intensity of light absorbed by the CdS particles (I_a) (which we have shown above to be directly related to R_i) varies with [CdS] in a manner similar to that expressed by Beer's law, *i.e.*

$$\log[I_0/(I_0 - I_a)] = Kc$$
(28)

where c is the concentration of the absorbing substance, assumed to be uniformly and finely dispersed. Other experiments, using a calibrated thermopile placed behind the quartz reaction vessel containing the CdS suspension showed that $\log(I_0/I_T)$ was not directly proportional to [CdS], although using neutral density filters, I_T was found to be proportional to I_0 for fixed [CdS].

(B) Oxygen-saturated Conditions

(i) $1/R_i$ vs. $1/[D^-]$. In a series of experiments, identical to those described in section [A(ii)] with the exception that in this work the solutions were oxygen-saturated, the initial rate of photoreduction (R_i) of methyl orange (D^-) by the CdS particles was determined as a function of its concentration. A plot of $1/R_i$ vs. $1/[D^-]$ is illustrated in fig. 7 from which a gradient $m = 7.1 \times 10^2$ s, an intercept $c = 2.2 \times 10^7$ dm³ mol⁻¹ s, and a correlation coefficient of 0.9987 were determined. From (23), the ratio (m/c) should be

$$\frac{m}{c} = \frac{k_0[O_2]}{k_d}.$$
(29)

Thus from our experimental results

$$\frac{k_{\rm ol}O_2}{k_{\rm d}} = 3.2 \times 10^{-5} \,\mathrm{mol}\,\mathrm{dm}^{-3} \tag{30}$$

and since $[O_2] = 1.3 \times 10^{-3}$ mol dm⁻³, the ratio k_0/k_d would appear to be 2.5×10^{-2} , *i.e.* the rate constant for O_2 reduction is *ca*. 40 times smaller than that for methyl orange reduction. Eqn (23) also predicts that $c (2.2 \times 10^7 \text{ dm}^3 \text{ mol}^{-1} \text{ s})$ should be the same value as found at high $[D^-]$ in section [A(ii)]. From fig. 5 we can estimate c to be *ca*. $2.4 \times 10^7 \text{ dm}^3 \text{ mol}^{-1}$ s the inverse of the initial rate $(1/R_i)$ and this value is in close agreement with that reported above.

(*ii*) $1/R_i$ vs. percentage O_2 . Using the same experimental conditions as described above (with $[D^-] = 3.9 \times 10^{-5}$ mol dm⁻³), a series of dispersions of CdS in aqueous solution containing methyl orange, EDTA and different concentrations of oxygen (0-100%, where $100\% = 1.3 \times 10^{-3}$ mol dm⁻³), were irradiated. A plot of $1/R_i$ vs. percentage O_2 yielded a very good straight line (5 points, r = 0.9991) with a slope of 9.1×10^4 dm³ mol⁻¹ s (% O_2)⁻¹ and an intercept of 1.3×10^7 dm³ mol⁻¹ s. According to eqn (23) from the ratio of these values for the gradient and intercept a second estimate {see section [B(i)]} of the ratio k_0/k_d can be obtained. Calculations show this to be 2.1×10^{-2} , which compares favourably with the value of 2.5×10^{-2} calculated in the previous section. The implication that electron transfer to methyl orange is much greater than that to O_2 is not surprising, especially in the light of the recent work of Darwent and his group²⁵ involving a timeresolved study of the photoreduction of O_2 and methyl orange by TiO₂ colloids. These

Fig. 6. Initial rate $(R_i/10^{-8} \text{ mol dm}^{-3} \text{ s}^{-1})$ for the photoreduction of methyl orange $(3.9 \times 10^{-5} \text{ mol dm}^{-3})$ by CdS as a function of semiconductor concentration ([CdS]/mg cm⁻³). The reaction was carried out in 10^{-2} mol dm⁻³ EDTA, pH 4.4, N₂-purged solution and with visible light, $\lambda > 400$ nm.

Fig. 7. Reciprocal of the initial rate $[(1/R_i)/10^7 \text{ dm}^{-3} \text{ mol}^{-1} \text{ s}]$ for the photoreduction of methyl orange by CdS (2 mg cm⁻³, pH 4.4, $\lambda > 320 \text{ nm}$), as a function of the reciprocal of the dye concentration $[(1/[D^-])/10^4 \text{ dm}^3 \text{ mol}^{-1}]$ in O₂-saturated solution with [EDTA] = $10^{-2} \text{ mol} \text{ dm}^{-3}$. In this case a methyl orange filter [absorbance ($\lambda = 463 \text{ nm}$) > 2] was incorporated into the steady-state irradiation system.

workers determined, via microsecond flash photolysis, the bimolecular rate constants for electron transfer from the TiO₂ particles to HD (*i.e.* the protonated form of methyl orange) and O₂ to be $8.3 \times 10^7 [\text{H}^+]^{-0.38}$ (dm³ mol⁻¹)^{-0.38} s⁻¹ and $5.5 \times 10^3 [\text{H}^+]^{-0.42}$ (dm³ mol⁻¹)^{-0.42} s⁻¹, respectively. At pH 4.4 the ratio k_d/k_0 (for TiO₂ colloids) is $ca. 9 \times 10^3$ (mol dm⁻³)^{0.05}, *i.e.* reduction of the protonated form of methyl orange is much faster than O₂ reduction. Interestingly, at this pH, $E_{CB}(TiO_2) \approx -0.380$ V vs. SCE, which is much less reducing than that for CdS [$E_{CB}(CdS) = -0.9$ V vs. SCE] and yet the ratio of k_d/k_0 is much smaller (ca. 40–50 times) for the latter. However, since $E_{CB}(CdS)$ is so much more reducing than $E_{CB}(TiO_2)$ it is quite likely that at the [H⁺] of our experiments,

i.e. pH 4.4, the rate-determining step for photobleaching of methyl orange is electron transfer to its deprotonated form [as indicated in reaction (12)] and not to its protonated form as found for TiO_2 .²¹ Under these circumstances it might be expected that the two ratios for k_d/k_0 might differ considerably.

(C) Corrosion Studies

Irradiation of an N₂-purged aqueous powder dispersion of CdS (2 mg cm⁻³) containing methyl orange $(3.9 \times 10^{-5} \text{ mol dm}^{-3})$ and without EDTA led to a release of Cd²⁺_{aq} ions into solutions at two markedly different rates (fig. 8). In the absence of ultra-band-gap irradiation, the Cd²⁺_{aq} levels in solution (as determined by atomic absorption spectroscopy) remained constant. The observation of low levels of Cd²⁺_{aq} ions (*ca.* 1.2 ppm, *i.e. ca.* 1.1×10^{-5} mol dm⁻³) in solution at this pH (4.4) cannot be attributed solely to acidic corrosion [reaction (8)] since this would produce Cd²⁺_{aq} levels of *ca.* 4.2×10^{-8} mol dm⁻³ (assuming [Cd²⁺_{aq}] \approx [H₂S_{aq}]). Instead it appears to be more likely that the Cd²⁺_{aq} levels detected are due to CdS particles < 0.2 μ m passing through the membrane filter employed to remove all the CdS particles when sampling the irradiated solution (see Experimental section).

When EDTA (10^{-2} mol dm⁻³) was present the background Cd²⁺_{aq} levels (as measured by AAS) appeared to increase almost twofold. Once again some of this (*ca.* 1.2 ppm) was probably due to < 0.2 μ m CdS particles passing through the membrane filter and the rest due to a combination of reaction (8) and the following complexation reaction

$$\operatorname{Cd}_{\operatorname{aq}}^{2+} + \operatorname{EDTA}^{4-} \xleftarrow{K} [\operatorname{Cd}(\operatorname{EDTA})^{2-}]$$
 (31)

where $K \approx 9.9 \times 10^8$ at pH 4.4.

In the absence of EDTA the initial rate of photocorrosion $[R_i(Cd_{aq}^{2+})]$ was found to be 3.1×10^{-8} mol dm⁻³ (Cd_{aq}^{2+}) s⁻¹ and the initial rate of photobleaching of methyl orange (R_i) was determined as 2.7×10^{-8} mol dm⁻³ s⁻¹ (see table 1), thus the ratio of these two $[R_i(Cd_{aq}^{2+})/R_i] = 1.2$. In the presence of EDTA $(10^{-2} \text{ mol dm}^{-3})$, $R_i(Cd_{aq}^{2+}) = 6.8 \times 10^{-8}$ mol dm⁻³ (Cd_{aq}^{2+}) s⁻¹ and $R_i = 7 \times 10^{-8}$ mol dm⁻³ s⁻¹, thus the ratio is 0.97. It would appear, therefore, that for every methyl orange molecule reduced (which requires 2e⁻) a CdS molecule is oxidised to Cd_{aq}^{2+} and an S species (which requires 2 h⁺). This would imply that EDTA, although a good hole-scavenger [reaction (13)], once oxidised reacts subsequently with the CdS, *i.e.*

$$2EDTA^{+} + CdS \longrightarrow 2EDTA + Cd_{ad}^{2+} + S\downarrow$$
(32)

rather than undergoing irreversible decomposition [reaction (6)] to glyoxylic acid and ethylenediamine-N,N'-diacetic acid.³⁶

The above result is not surprising in the light of work by Bard and Wrighton,³⁷ pointing out that the standard potential for anodic dissolution (E_D°) for CdS [reaction (14)] is 0.08 V vs. SCE and that an electron donor (ED) can quench the photoanodic dissolution of CdS by competitive hole capture if its redox potential [E(ED⁺/ED)] lies at a potential more negative than E_{VB} (CdS) (=1.5 V vs. SCE). However, for an ideal electron donor, the oxidation product (ED⁺) must be incapable of oxidising the semiconductor, *i.e.* $E(ED^+/ED)$ must be more negative than E_D° (CdS). When we look at the standard redox potential for EDTA [McLendon and Miller report³⁸ it to be pH dependent, varying from -0.12 V at pH 9 to 0.21 V at pH 2 (vs. SCE)], which we estimate, using the above data, to be ca. 0.16 V vs. SCE at pH 4.4, it would appear that EDTA is not a 'good' sacrificial electron donor at this pH since its oxidised form (ED⁺) would be capable of subsequently oxidising CdS; however, this may not be the case at higher pH. At pH 4.4, the oxidation of CdS by EDTA⁺[*i.e.* eqn (32)] is thermodynamically feasible and from our experimental

2659

Fig. 8. A plot of the concentration of Cd^{2+} ions liberated into solution {[Cd^{2+}](ppm)} as a function of irradiation time. [The time range is that for almost complete photoreduction of the dye when EDTA (10^{-2} mol dm⁻³) is present.] The reaction conditions were as follows: [CdS] = 2 mg cm⁻³, pH 4.4, [methyl orange] = 3.9×10^{-5} mol dm⁻³, N₂-purged solution, $\lambda > 400$ nm. (a) Shows the corrosion of CdS in EDTA (10^{-2} mol dm⁻³) solution, while (b) shows the subsequent corrosion of CdS in water.

results it would appear that this reaction is the preferred route for EDTA⁺ removal and not irreversible decomposition [reaction (6)]. Interestingly, earlier work by Harbour and Hair,¹³ using aqueous suspensions of platinised CdS powder particles in the presence of EDTA to photoreduce water, investigated the variation of the rate of hydrogen production as a function of pH. At pH 4–5 these workers found a definite minimum in the rate of H₂ production with respect to other pH. Darwent and Porter¹² have also carried out work on this system and they report (at pH 6.2) that a turnover number of 3 for CdS could be obtained. However, they also observed that the rate of hydrogen production had diminished appreciably, although only < 12% of the EDTA (mainly in its amine deprotonated form) had been consumed. Both these pieces of work help to support our findings which indicate that EDTA does not, as is usually envisaged, act as an 'ideal' sacrificial electron donor in the presence of CdS, but rather mediates the anodic corrosion of CdS, particularly at pH \ll 6.

Conclusions

In this paper, we have shown that CdS suspensions can be used to sensitise the photoreduction of methyl orange (D⁻) at pH < 7 in the presence and absence of a variety of electron donors including EDTA. By making the assumption that steady-state concentrations of conductance-band electrons (e⁻) and valence-band holes (h⁺) would be set up within the CdS particles upon illumination it proved possible to develop a kinetic equation which described very successfully the observed behaviour of the initial rate of photoreduction of methyl orange as a function of the concentrations of methyl orange, photons, EDTA and O₂ (when present). Further work is now in progress to ascertain if the steady-state approach to a semiconductor powder and colloid sensitised photoreaction has a greater, more general application.

We thank Drs J. R. Darwent and P. Douglas for many helpful suggestions. The support of the S.E.R.C. and Royal Society is gratefully acknowledged.

References

- 1 J. R. White and A. J. Bard, J. Phys. Chem., 1985, 89, 1947, and references therein.
- 2 K. Rajeshwar, P. Singh and J. DuBow, Electrochim. Acta, 1978, 23, 1117.
- 3 K. Kalyanasundaram, E. Borgarello and M. Grätzel, Helv. Chim. Acta, 1981, 64, 362.
- 4 K. Kalyanasundaram, E. Borgarello, D. Duonghong and M. Grätzel, Angew. Chem., 1981, 93, 1012.
- 5 A. J. Frank and K. Honda, J. Phys. Chem., 1982, 86, 1933; J. Electroanal. Chem., 1983, 150, 673.
- 6 D. Meissner, R. Memming and B. Kastening, Chem. Phys. Lett., 1983, 96, 34.
- 7 D. E. Aspenes and A. J. Heller, J. Phys. Chem., 1983, 87, 4919.
- 8 T. Inoue, T. Watanabe, A. Fujishima, K. Honda and K. Kohayakawa, J. Electrochem. Soc., 1977, 124, 719.
- 9 J. R. Wilson and S-M. Park, J. Electrochem. Soc., 1982, 129, 149.
- 10 A. Heller, Acc. Chem. Res., 1981, 14, 154, and references therein.
- 11 M. S. Wrighton, Acc. Chem. Res., 1979, 12, 303.
- 12 J. R. Darwent and G. Porter, J. Chem. Soc., Chem. Commun., 1981, 145.
- 13 J. R. Harbour, R. Wolkow and M. L. Hair, J. Phys. Chem., 1981, 85, 4026.
- 14 B. Hubesch and B. Mahieu, Inorg. Chim. Acta, 1982, 65, L65.
- 15 J. R. Darwent, J. Chem. Soc., Faraday Trans. 2, 1981, 77, 1703.
- 16 M. Matsumura, Y. Saho and H. Tsubomura, J. Phys. Chem., 1983, 87, 3807.
- 17 D. H. M. W. Thewissen, K. Timmer, E. A. Zouwen-Assink, A. H. A. Tinnemans and A. Mackor, J. Chem. Soc., Chem. Commun., 1985, 1485.
- 18 D. H. M. W. Thewissen, A. H. A. Tinnemans, M. Eeuwhorst-Reinten, K. Timmer and A. Mackor, Nouv. J. Chim., 1983, 7, 191.
- 19 J. Harbour and M. Hair, J. Phys. Chem., 1977, 81, 1791.
- 20 C. D. Jaeger and A. J. Bard, J. Phys. Chem., 1979, 83, 3146.
- 21 J. R. Darwent and G. T. Brown, J. Phys. Chem., 1984, 88, 4955.
- 22 A. Mills, G. Porter and A. Harriman, Anal. Chem., 1981, 53, 1254.
- 23 I. M. Klotz, R. K. Burkland and J. M. Urquhart, J. Am. Chem. Soc., 1952, 74, 202.
- 24 D. D. Perrin, in Dissociation Constants of Organic Bases in Solution (Butterworths, London, 1965).
- 25 G. T. Brown and J. R. Darwent, J. Chem. Soc., Faraday Trans. 1, 1984, 80, 1631.
- 26 H. Gorner, H. Gruen and D. Schulte-Frohlinde, J. Phys. Chem., 1980, 84, 3031.
- 27 L. G. Sillen and A. E. Martell, in *Stability Constants of Metal-ion Complexes*, Special Publication No. 17 (The Royal Society of Chemistry, London, 1964).
- 28 A. Henglein, Ber. Bunsenges. Phys. Chem., 1982, 86, 301.
- 29 T. M. Florence, Aust. J. Chem., 1965, 18, 609.
- 30 D. S. Ginley and M. A. Butler, J. Electrochem. Soc., 1978, 125, 1968.
- 31 T. Watanabe, A. Fujishima and K. Honda, Chem. Lett., 1974, 897.
- 32 M. Matsumura, M. Hiramoto, T. Iehara and H. Tsubomura, J. Phys. Chem., 1984, 88, 248.
- 33 A. Mills and G. Porter, J. Chem. Soc., Faraday Trans. 1, 1982, 78, 3659.
- 34 D. Duonghong, J. Ramsden and M. Grätzel, J. Am. Chem. Soc., 1982, 104, 2977.
- 35 M. V. Rao, K. Rajeshwar, V. R. Pal Verneker and J. DuBow, J. Phys. Chem., 1980, 84, 1987.
- 36 P. Keller, A. Moradpour, E. Amouyal and H. B. Kagan, Nouv. J. Chim., 1980, 4, 377.
- 37 A. J. Bard and M. S. Wrighton, J. Electrochem. Soc., 1977, 124, 1706.
- 38 D. Miller and G. McLendon, Inorg. Chem., 1981, 20, 950.

Paper 6/2013; Received 14th October, 1986