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Aldol Reactions in Water Using a b-Cyclodextrin-Binding Proline Derivative
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Abstract: The aldol reaction of various aromatic aldehydes with
cyclohexanone is catalyzed by the inclusion complex of a proline
derivative and b-cyclodextrin in water, yielding hydroxyketones
with anti/syn ratio of up to 99:1 and ee values well above 90%.
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Enantioselective organocatalysis1 has experienced a re-
naissance in catalytic asymmetric reactions, especially for
the aldol reaction, one of the most efficient carbon–carbon
bond-forming reactions in organic synthesis.2 Several
asymmetrical methodologies for this reaction using orga-
nocatalysts have been developed,3 but most of the reac-
tions are pursued in organic solvents, such as DMSO,
DMF, or CHCl3. In contrast, enzymes and antibodies can
catalyze aldol reactions in water,4,5 but substrate scope
limits their practical application. Recently, some research
groups reported highly diastereo- and enantioselective
aldol reactions in water,6 using for example amphiphilic
dendritic catalysts and polystyrene-supported proline
derivatives 6d,e and hence it has been debated whether the
term ‘in water’ is justified.7 Herein, we describe the syn-
thesis and application of a simple proline derivative which
forms inclusion complexes with b-cyclodextrin and hence
is completely soluble in water catalyzing aldol reations
under neutral conditions with high diastereo- and enantio-
selectivity.

The concept involves the attachment of an adamantyl sub-
unit to proline, see 1. The target structure 1 was conve-
niently prepared in two steps from commercially available
4 and 58 and subsequent hydrogenolysis of 6.9,10 Accord-
ing to 1H NMR spectroscopy the adamantane amide 1
binds to b-cyclodextrin 2 yielding the 1:1 complex 3
(Scheme 1).11 A characteristic upfield shift of the triplet of
H at C3¢ (3.94 ppm) of the glucose unit indicates the in-
clusion of the adamantane into the cavity of 2. NMR-con-
trolled titration of b-cyclodextrin 2 with aliquots of the
organocatalyst 1 led to a continuous shift of this triplet
from which the binding constant Kass = 1.4·104 mol–1 was
determined.12

The orientation of the adamantane unit as shown in
Scheme 1 was deduced from the NOSY spectrum of 3
(Figure 1).The significant cross peaks indicate the

Scheme 1 Synthesis and structure of organocatalyst 1 and its b-cy-
clodextrin inclusion complex 3. Reagents and conditions: a) DIPEA,
CH2Cl2, r.t., 93%; b) H2, 10%Pd/C, MeOH, 100%.
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Figure 1 The orientation of 1 within the cavity of b-cyclodextrin 2;
1H shifts and NOE contacts between 1 and 2 are indicated in the car-
toon above. Region of the NOESY spectrum of an equimolar mixture
of 1 and 2 (D2O, 298 K, 600 MHz) is shown below.
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proximity of H at C-3¢ of glucose to H at C2 of adaman-
tane and the interaction of H at C5¢ and H at C4. The pro-
ton at C-3 of adamantane is close to both protons at C3¢
and at C5¢ of glucose. It follows that the adamantane
amide protrudes beyond the secondary face of b-cyclo-
dextrin.13

A representative set of aldehydes was examined in detail
using catalyst 3 and cyclohexanone. The reactions pro-
ceeded smoothly in excellent diastereoselectivities (up to
99:1) and enantioselectivities (up to >99% ee) to furnish
the aldol adducts 9a–n, see Table 1.14,15

The reactions of cyclohexanone 8 with benzaldehydes
bearing electron-withdrawing groups (entries 1–8) gave
moderate to excellent yields (48–97%). In contrast, the
yields of the reactions with p-tolylaldehyde 7j and 1-
naphthaldehyde 7k were somewhat lower (entries 10 and
11). Interestingly, the reactions of 8 with the pyridine al-
dehydes 7m and 7n (entries 13 and 14), were very fast and
high yields were observed, but the distereoselectivities
were disappointingly low. However, except for one case
(entry 14), the enantioselectivities are well above 90%ee.
A further advantage of the system is the facile recovery of
the catalyst. After completion of the reaction and sub-
sequent extraction of the product with dichloromethane
the catalyst remaining in the aqueous layer can be reused
in subsequent reactions, entries 15–17 show that 3 can be
recycled up to four times without changes in reactivity
and enantioselectivity.

In conlusion, the easy access and recycling of the catalyst
and the high enantio- and diastereoselectivity of the
reaction makes this procedure an attractive alternative to
existing methods 6 for the synthesis of b-hydroxy ketones
in water.
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Table 1 Asymmetric Aldol Reaction in Water Catalyzed by 3

Entry Ra Product Time 
(h)

Yield 
(%)b

anti/sync ee (%, 
anti)d

1 7a 4-NO2C6H4 9a 72 88 90:10 91

2 7b 2-NO2C6H4 9b 72 80 96:4 96

3 7c 4-CF3C6H4 9c 72 94 92:8 99

4 7d 4-NCC6H4 9d 72 90 90:10 94

5 7e 4-ClC6H4 9e 72 48 92:8 98

6 7f 2-ClC6H4 9f 72 84 94:6 >99

7 7g 4-FC6H4 9g 96 60 87:13 97

8 7h 2,6-diClC6H3 9h 48 97 >99:1 97

9 7i Ph 9i 72 50 92:8 97

10 7j 4-MeC6H4 9j 96 28 86:14 95

11 7k 1-Naphthyl 9k 96 31 92:8 94

12 7l 2-Furyl 9l 72 62 81:19 96

13 7m 2-Pyridyl 9m 3 98 60:40 92

14 7n 4-Pyridyl 9n 3 90 69:31 39

15 7c 2nd Cycle 9c 80 86 92:8 99

16 7c 3rd Cycle 9c 72 90 92:8 99

17 7c 4th Cycle 9c 72 92 92:8 99

a The reaction was performed with aldehyde 7 (0.2 mmol), ketone 8 
(0.8 mmol), 3 (0.02 mmol), and H2O (0.2 mL) at r.t.
b Combined yields of isolated diastereoisomers.
c Determined by 1H NMR of the crude product.
d Determined by chiral-phase HPLC of the anti product.
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(m, 1 H), 5.82 (dd, 1 H, J = 9.6, 4.4 Hz), 3.67 (d, 1 H, J = 4.4 
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90:10), 20 °C, 210 nm, 0.5 mL/min, one enantiomer 
tR = 20.2 min, another enantiomer tR = 22.1 min.
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