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ABSTRACT: Olefin cross-metathesis (CM) is a viable 
reaction for the modification of alkene-containing proteins. 
Although allyl sulfide or selenide side-chain motifs in 
proteins can critically enhance the rate of CM reactions, no 
efficient method for their site-selective genetic incorporation 
into proteins has yet been reported. Here, through the 
systematic evaluation of olefin-bearing unnatural amino 
acids for their metabolic incorporation, we have discovered 
S-allylhomocysteine (Ahc) as a genetically encode-able Met 
analogue that is both processed by translational cellular 
machinery and is also a privileged CM substrate residue in 
proteins. In this way, Ahc was used for efficient Met-codon 
reassignment in a Met-auxotrophic strain of E. coli (B834 
(DE3)), as well as metabolic labeling of protein in human 
cells and was reactive towards CM in several representative 
proteins. This expands the use of CM in the tool kit for ‘tag-
and-modify’ functionalization of proteins.

Alkenes can be installed into proteins by incorporation of 
some unnatural amino acids.1-4 However, although aliphatic 
alkene-containing amino acids such as homoallylglycine 
(Hag)4 are reactive in both self-metathesis and cross-
metathesis reactions as monomeric, protected amino acids in 
organic solvents5 and can be metabolically incorporated into 
proteins, they are unreactive in CM reactions in aqueous 
media.6 On the other hand, chemically-installed7 unnatural 
amino acids such as S-allylcysteine (Sac)6 and Se-
allylselenocysteine (Seac)8 have been demonstrated to be 
CM-reactive under aqueous conditions, with the allylic 
chalcogen heteroatom S (and even more so Se), providing 
crucial coordination to the metal catalyst centre.6,8,9 Schultz 
and co-workers have reported the incorporation of O-crotyl 
serine in yeast via amber stop-codon suppression, and have 
demonstrated its reactivity in on-protein intramolecular ring 
closing metathesis.10 However CM with genetically-
incorporated residues has yet to be demonstrated. 

An alternative approach to ‘non-sense’ codon reassignment 
involves the direct commandeering of ‘sense’ codons for 
amino acids such as methionine (Met) and subsequent 
reassignment to incorporate unnatural amino acids (e.g. Hag, 
norleucine, trifluoromethionine, homopropargylglycine & 
azidohomoalanine) as Met analogs.4,11-13 This effective 

reassignment of the Met codon exploits the flexibility of 
native methionyl-tRNA synthetase (MetRS) in accepting 
these analogs as substrates for tRNA loading.14 Here, by 
probing the flexibility of MetRS, we show metabolic labelling 
of proteins with an unnatural allyl chalcogen-containing 
amino acid (Met analogue S-allylhomocysteine (Ahc)) that is 
also metathesis-reactive.

The incorporation efficiency of amino acids and their analogs 
in vivo is controlled, to a significant extent, by their 
activation by the corresponding aminoacyl-tRNA synthetases 
(aaRS).4,15,16 Fersht & Dingwall first demonstrated that a Met 
analogue, L-ethionine, may be mischarged by the MetRS 
without being metabolically edited.17 By contrast, L-
homocysteine, a natural competitor of Met, is transformed to 
the corresponding thiolactone to avoid misreading in 
translation.18 Side-chain length and heteroatom position can 
therefore be critical determinants in ‘metabolic recognition’ 
of such analogs. Therefore, in our design (Fig. 1) of putative 
analogs we explored these aspects: tolerance of MetRS 
towards positioning of the side-chain heteroatom required 
for CM plus concomitant variation of side-chain length.

Figure 1. Design of -heteroatom Met analogs S-
allylcysteine (Sac, 1), Se-allylselenocysteine (Seac, 2), and 
δ-heteroatom analogs S-allylhomocysteine (Ahc, 3) & Se-
allyl homoselenocysteine (Ahs, 4).

Two types of substrates were designed & synthesized; those 
with a γ-heteroatom (1, 2) and those with a δ-heteroatom (3, 
4). Previous work in our group has demonstrated that the 
chemical installation of Seac in proteins enhances the rate of 
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on-protein CM and allows for an increased breadth of 
metathesis partners compared to Sac.8,9 Thus, the metabolic 
incorporation efficiencies of selenium analogues of 1 & 3 (2 & 
4, respectively) were also considered. We reasoned too that 
since none of these uAAs possess a free side-chain SH / SeH 
(unlike e.g. L-homocysteine), they would not be ‘edited’ 
through conversion to corresponding chalcogen lactones. 1,2 
were prepared according to our prior methods.19 3 & 4 were 
synthesized in homochiral form (L-3, L-4) from L-Met and L-
SeMet respectively using a demethylative allylation strategy 
that proved direct and efficient (Scheme 1). 3 could also be 
readily synthesized from the commercially available DL-
homocysteine thiolactone as a racemate (DL-3, see SI). 

H2N CO2H

X (i) AcCl, MeOH
(ii) Boc2O, NEt3, CH2Cl2

BocHN CO2Me

X

(i) TFA, CH2Cl2
(ii) 5M LiOH, THF
(iii) DOWEX(H+)

BocHN CO2Me

X

X = S, L-Met
X = Se, L-SeMet

X = S: 94 %
X = Se: 84 %

X = S: 55 %
X = Se: 69 %

TBAI, K2CO3

H2N CO2H

X

X = S, Ahc (3): 74%
X = Se, Ahs (4): 58%

Demethylative
Allylation

I

counts min -1

Met Sac Seac Ahc Ahs H2O

Scheme 1. Synthesis of S-allylhomocysteine (Ahc, 3) and 
Se-allylhomoselenocysteine (Ahs, 4) & relative processing 
of Met and analogues 1-4 by MetRS determined through 
ATP-PPi exchange; endpoint 20 min (see SI).

First, to evaluate chalcogen-assisted CM reactivity of these 
motifs, protected forms of amino acids 1-4 were tested as 
small-molecule models (Scheme 2), as previously.6,8 
Pleasingly, all proved CM-reactive towards allyl alcohol, 
under aq. conditions typical6-9 of prior successful protein CM 
reactions in reasonably short reaction times; little or no 
homodimerization was observed. Encouraged by these 
results, we next explored incorporation of 1-4 into proteins.

Scheme 2. Cross-metathesis on model amino acids Sac 1, 
Seac 2, Ahc 3 & Ahs 4.

Molecular mechanics analysis was used to explore structural 
constraints in interactions with and processing by MetRS. 
Docking (see SI) of 1-4, and their corresponding adenylates, 
into the active site of E. coli MetRS (derived from Met-bound 
MetRS structure pdb 1PG0) used gradient-descent 
minimization of the energy of conformationally randomized 

ligands and an AMBER-derived forcefield (Figure 2 and SI).20 
Pleasingly, in their minimized poses all UAA analogs were 
found to occupy the Met-binding site of MetRS (Figure 2C). 
Consistent with previous studies,16 these revealed similar 
major contributors for binding of native Met (e.g. 
electrostatic interaction of Met-Nα with the sidechain of 
Asp52) to those known. Notably, in all cases (Met and uAAs 
1-4) the heteroatom (S / Se) of the sidechain was held by 
hydrogen bonding to the backbone amide NH of Leu13 at the 
heart of the Met-binding site. However, flexibility in the 
hydrophobic ‘end-wall’ of the site (determined by Tyr260), 
led to accommodation of a range of sidechain termini (Me or 
allyl, Fig. 2): heteroatom-to-Tyr260-O distances were 
displace by up to ∼0.5 Å. Moreover, primary binding contact 
with Asp52 was lost or distorted. Notably, for Ahc (3) 
compensatory interactions were predicted between Ahc-
C(=O)O and both of the backbone amide NHs of Tyr15 & 
Pro14 (Fig. 2B). Together these data highlighted both the 
critical role of sidechain heteroatom positioning and 
encouragingly suggested sufficient flexibility of MetRS (in 
accommodating extended termini Me / allyl) as well as 
compensatory binding modes in certain cases (i.e. Ahc).

Figure 2. Interactions of docked amino acids with MetRS 
for A) Met, B) Ahc (see Fig S1 for further poses of other 
analogs 1-4). C) Docked Met (blue backbone) adopts a 
similar pose in the same Met pocket of MetRS identified 
by crystallography (pdb 1PG0, white backbone).

To experimentally test these predictions, E. coli MetRS was 
expressed19 and the relative activities for loading of Met, and 
analogs 1-4 onto tRNA determined using ATP-PPi exchange 
(see Scheme 1 and SI).21 Met, as natural substrate, proved 
most effective, as expected. However, from the panel of 
olefinic uAAs 1-4, only the S-allyl uAAs 1 & 3 showed 
significant activity above background; Ahc 3 showed the 
greatest activity (∼6-fold > 1, Scheme 1). Determination and 
comparison of the Michaelis-Menten parameters for Met & 3 
(Table 1, SI and Fig S2) suggests that both display similar 
binding to MetRS (as judged by KM) although 3 has a lower 
kcat. Thus, despite the clear differences in structure, the 
turnover (as judged by kcat/KM) of Ahc (3) by MetRS was less 
than an order-of-magnitude lower than for native substrate 
Met (Table 1). Following these in silico & in vitro predictions 
& validations of putative uAA processing, in vivo 
incorporation of each Met analog was investigated. The 
nucleosome constituent protein histone H322,23 was tested as 

Page 2 of 6

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



the first target model protein using the Met-auxotrophic 
B834(DE3) E. coli strain. Efficient incorporation (> 95%) was 
only observed for Ahc 3, by both LCMS and tryptic digest-
MSMS (Fig. 3 and SI).

Table 1. Michaelis-Menten Parameters for MetRS 
Met Ahc (3)

kcat (s-1) 23.2 ± 2.7 3.1 ± 2.7

KM (M) 870 ± 188 1030 ± 235

kcat/KM (s-1M-1) 0.026 ± 0.006 0.0030 ± 0.0007

a See also Figure 3 B,C and SI for further details. 

120 Se

120 S

120
Se

Met 
Auxotroph

E. coli

Histone
H3

Ahc (3)
H2N COOH

S

120
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H2N COOH

Se

Sac (1)
H2N COOH

S

Seac (2)
H2N COOH
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-

X
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X

X

X

Calc. = 15222
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Figure 3. Successful incorporation of Ahc, 3 into Histone 
H3; Sac 1, Seac 2 and Ahs 4 were not incorporated (see SI). 

These experiments highlighted 3 as the most suitable for 
genetic incorporation. Proteins of varying structure and 
function were chosen to test scope. Thus, in addition to H3, 
single-site incorporations of Ahc were successfully carried 
out in right-handed β–helix pentapeptide repeat protein 
Np276,24 and in TIM-barrel β-glycosidase SsβG.25 Excellent 
levels (>95%) of multi-site incorporation of Ahc were also 
demonstrated: in monomeric α–helix bundle DNA-binding 
protein SarZ,26 as well as multimeric  bacteriophage coat 
protein Qβ.27 For all proteins, site and level of incorporation 
was confirmed by LCMS of intact protein and tryptic-MSMS 
analysis. Ahc-incorporated proteins retained both secondary 
& tertiary structure (as determined by CD, see SI) and 
function (retention of glycosidase activity by SsβG, and DNA 
binding by SarZ, see SI and Figs S6-8). Typical yields (mg/L) 
for Ahc-incorporated proteins were: SarZ ~0.5 (in LBQB), 
~2.9 (LB); SsG ~4.5 (LB); IgG-Fc ~1 (DMEM); H3 ~2.4 (LB); 
Np276 ~1.1 (LB).

With Ahc-containing proteins in hand, their reactivity 
towards CM was tested; allyl alcohol or fluorescein-olefin 6 
were used as model metathesis partners. Evaluations of 
reaction conditions and optimizations were conducted 
through systematic variation of various parameters (SI Tables 
S1 and S2) and highlighted: the utility of tBuOH or DMSO as 
co-solvents (where needed) lacking alpha-protons; potential 
utility of PEG-500 as co-solvent; strong benefit of MgCl2 as 
an additive;6 phosphate-based buffers and mild denaturant 
(e.g. through guanidinium) to increase solubility and 
stability; and Ru scavenging during work-up for LCMS 
monitoring. Following this process and, consistent with the 
observed reactivity for Ahc in model amino acids, CM was 
observed on all tested Ahc-containing proteins with 

conversions ranging from 55% (for bulkier 6) to >95% for 
allyl alcohol, including for the intact Qβ virus-like particle 
bearing 180 reaction sites (Scheme 3), and for SarZ, which 
has two reaction sites. SsβG was found to retain its functional 
activity following CM reactions (see Table S4). 

S

R+

catalyst 5
5 M GdmCl, 50 mM NaPi

MgCl2, 30% t-BuOH
or PBS (+/- DMSO)

RT/37 oC, pH 7.4-8.0, 3 h

S

49

4

43

16
Np276-Ahc61, > 95%a SsG-Ahc49, 55%b H3-Ahc120, >90%a

SarZ-Ahc4-Ahc43, 73%b Q-Ahc16, 82%a

120
61

S
OH 180

R

S OH
S RS OH

S
R

S
R

S

OH

1

Ubq-Ahc1, 84%a

R = OH or
6

Scheme 3. CM on Ahc-incorporated proteins: single-site 
Np276, Histone H3, SsβG, Ubq and multi-site 
incorporated SarZ and Qβ. Conversion based on aMS with 
allyl alcohol, or bfluorescence assay (Figs S3-5) with 6.

Finally, direct Ahc incorporation in mammalian cells could 
have useful application in the generation of probes in cellulo 
and in chemical proteomic strategies (such as noncanonical 
amino acid tagging28,29). We next tested and demonstrated 
such incorporation using Ahc in human (HEK293T) cells 
(Fig. 4 & SI). As a test protein from human cells, not only was 
installation of Ahc into the Fc region of IgG determined by 
both MS & MSMS (see SI) but the incorporated Ahc was also 
found to be reactive, allowing direct CM-labeling of IgG-Fc 
through reaction with olefinic-biotin 7.30 7 also proved 
effective in reaction with other proteins (e.g. SarZ, SsβG, see 
SI). Given the potential used of biotin tags in affinity 
proteomic methods,28,29 this both highlights the capability of 
Ahc to serve as a general Met analogue across different 
translational systems / cell types and also suggests its utility 
in the future interrogation of human proteomes.

In conclusion, our results demonstrate that the previously 
unexplored amino acid S-allyl homocysteine (Ahc) is an 
effective Met surrogate that is incorporated into proteins not 
only by the translational apparatus of Met-auxotrophic E. coli 
(with good efficiency >95%) thereby allowing genetic control 
of olefin cross metathesis in proteins using sense (Met) 
codon reassignment but also even into human cells. Such 
incorporation could be potentially be improved further by 
use of MetRS variants.3 It should be noted that there remain 
some limitations of the CM method; we observed here, for 
example, that in one case the use of tBuOH for improving 
the solubility of catalyst 5 led to the loss of activity of the 
highly solvent-sensitive protein SarZ (see SI). In addition, 
whilst reactions using 5 typically proceed with strong E-
selectivity,9 some E/Z-heterogeneity may also exist in 
conjugates. Thus, with the continuing development of water-
soluble31,32 or Z-selective33 catalysts for cross-metathesis and 
the genetically-controlled capabilities disclosed here, there is 
now good motivation for the development of effective, in vivo 
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Ahc-enabled CM in cellular systems, thereby enabling access 
to a broad range of metal-mediated biological applications.

32

IgG-Fc-Ahc32

catalyst 5
MgCl2, 30% t-BuOH
5 M GdmCl, 50 mM 

NaPi pH 8.0,
RT, 3 h

NH
NHO

H
HN

H S

O

S

32

S

human cells
HEK293T@IgG-Fc

Ahc (3)
H2N COOH

S

biotin-labeled
IgG-Fc

avidin
pulldown

digest

LC-MS/MS

7

NH

HN

O

H

NHH

S

O

Figure 4. Use of Ahc in human cells and CM-labelling of 
Ahc-incorporated IgG-Fc with olefin-biotin 7. Insets show 
MS/MS of isolated IgG-Fc29-36 peptide DTL-M*-IMSR 
containing analog M*=3 and anti-biotin Western (non-
reducing, size markers, 20, 30, 40, 50, 60, 80, 110 kDa; 
arrows show IgG-Fc monomer and dimer) demonstrating 
incorporation and CM reaction with 7, respectively. 
Dotted box shows potential affinity proteomic workflow.
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