

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 49 (2008) 3037-3041

Synthesis of enantiomerically enriched secondary and tertiary phenylthio- and phenoxy-aldols

Angela M. Bernard, Angelo Frongia*, Pier Paolo Piras, Francesco Secci, Marco Spiga

Dipartimento di Scienze Chimiche, Università di Cagliari, Complesso Universitario di Monserrato, S.S. 554, Bivio per Sestu, I-09042 Monserrato (Cagliari), Italy

> Received 17 January 2008; revised 7 March 2008; accepted 17 March 2008 Available online 19 March 2008

Abstract

 α -Phenoxy- and phenylthio-ketones have been explored as donors and acceptors in organocatalytic aldol reactions. Our studies have revealed effective methodologies for accessing structurally varied and enantiomerically enriched secondary and tertiary phenylthio- and phenoxy-aldols, expanding the scope and potential synthetic utility of organocatalytic direct aldol reactions. © 2008 Elsevier Ltd. All rights reserved.

Keywords: Organocatalyst; Asymmetric reaction; Aldol reaction; Proline

Enantiomerically enriched β-phenylthio- and phenoxysubstituted alcohols are particularly attractive synthetic intermediates since these have been used for a variety of organic transformations. β-Phenylthio alcohols are widely used as intermediates in the synthesis of oxiranes,¹ aziridines,² thiiranes,³ tetrahydrofurans^{1c,4} and β -hydroxy esters.⁵ Moreover, these are easily oxidized to β -hydroxy sulfoxides⁶ or sulfones⁷ which are extremely useful chiral building blocks for the synthesis of a variety of chiral organic compounds, such as oxiranes,⁸ allylic alcohols,⁹ lactones,¹⁰ and tetrahydrofurans.¹¹ Also their phenoxy analogues are very important chiral synthons¹² and are found as structural moieties¹³ in a variety of natural products. For this reason many methods have been developed for their enantioselective synthesis using kinetic resolution,¹⁴ baker's yeast,^{12,15} enzyme¹⁶ and chiral oxazaborol-idine-catalyzed borane¹⁷ mediated reduction of α -phenylthio- and phenoxy-ketones.

Among the different approaches that could be envisaged for their synthesis we were particularly interested in the

0040-4039/\$ - see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.03.066

organocatalyzed aldol reaction of phenylthio- and phenoxy-ketones, since one or two new stereogenic centres can be generated simultaneously in only one synthetic step.

Our synthetic plan reported in Figure 1 involved a double use of ketones 2 both as aldol donors and acceptors as we considered that both the reactivities were worth being examined mainly for the following two reasons.

First of all, despite recent advances in the area of asymmetric aldol reaction,¹⁸ in most cases simple ketones are usually examined as aldol donors and few direct catalytic

^{*} Corresponding author. Tel.: +39 070 6754405; fax: +39 070 6754388. *E-mail address:* afrongia@unica.it (A. Frongia).

aldol reactions with unsymmetric ketones α -substituted by heteroatoms such as oxygen,^{19a} sulfur,^{19b} chlorine^{19c} and fluorine^{19d} are reported.

Moreover, in nearly all the intermolecular organocatalyzed asymmetric aldol reactions, the substrates used as acceptors or electrophiles are mostly aldehydes,¹⁸ and only rarely some very highly active non enolizable ketones²⁰ carrying an electron-withdrawing group adjacent to the carbonyl carbon are used in this role.

For what concerns the first part of the project, we found that the reaction between phenoxyacetone and several aromatic aldehydes proceeded with high regioselectivities and good enantioselectivities favouring the formation of products 4 resulting from the reaction at the position adjacent to the oxygen atom of the ketone when using catalysts I and II, while the use of III (Table 1, entry 3) gave a mixture of the two regioisomers 3 and 4.

The product distribution observed for the reactions catalyzed by I and II (Table 1, entries 1, 2, and 4-6) was in accordance with the regiochemical outcome reported

in the literature for the direct aldol reactions between α-hydroxy ketones and aldehydes catalyzed bv L-proline.^{18,19a,22}

The aldol reaction of phenoxyacetone with an aliphatic aldehvde such as isobutvraldehvde did not proceed in the presence of either catalyst I, II, and III whilst 1-(phenylthio)cyclopropane carbaldehyde, that is an excellent electrophile for the aldol reaction,^{1c} afforded the corresponding aldol products **3e** and **4e** in good yields and high enantioselectivity, albeit with no regioselectivity (Table 1, entry 7).

The reaction of phenylthioacetone 2a with *p*-nitrobenzaldehyde in the presence of catalysts I, II, and III led always to variable yields of product 4f, obtained as a racemic mixture and with low diastereoselection (Table 1, entries 8-10).

Interestingly, the aldol reaction with benzaldehyde in the presence of catalyst III afforded the corresponding aldol 4g in excellent diastereoselectivity and ee (90%) but in low yield (20%) (Table 1, entry 11).

Ta	bl	е	1
		-	-

	Di	rect	aldol	reaction	of aldeh	vdes with	phenvlthio-	and	phenoxyacetone ²¹
--	----	------	-------	----------	----------	-----------	-------------	-----	------------------------------

 \sim

	R-CH 1	IO +	0 X 2a, X= S 2b, X= 0	Cat. (20 mol%) DMSO 96h, r.t.		and/or R R 4 X		
			Соон Н І			Н	~	
Entry	Product (R)	Х	Cat.	Ratio 3:4	Yield ^a (%)	ee 3 ^b (%)	ee 4 ^b (%)	dr 4 ^c anti:syn
1	<i>p</i> -NO ₂ -Ph (4a)	0	Ι	<1:99	65	_	71	>99:1
2	p-NO ₂ -Ph (4a)	0	Π	<1:99	51	_	84	99:1
3	<i>p</i> -NO ₂ -Ph (3a ; 4a)	0	III	60:40	66	14	syn 22 anti 0	50:50
4	<i>p</i> -CN–Ph (4b)	0	Ι	<1:99	70	_	syn 64 anti 90	80:20
5	<i>p</i> -Cl–Ph (4c)	0	Ι	<1:99	70	_	syn 18 anti 99	75:25
6	Ph (4d) $\searrow SC_6H_5$	0	Ι	<1:99	66	_	syn 22 anti 64	85:15
7	(3e: 4e)	0	I	50:50	70	96	anti 93	96:4
8	$(\mathbf{3c}, \mathbf{4c})$ $n-NO_{2}-Ph (\mathbf{4f})$	S	т	<1.99	40		0	60.40
9	$p - NO_2 - Ph (4f)$	Š	П	<1.99	70		0	65:35
10	$p - NO_2 - Ph (4f)$	Š	Ш	<1:99	90		0	65:35
11	$\frac{p}{P} + (2q)$	Š	Ш	<1.99	20		90	99.1
12	Ph(3g)	ŝ	I	99:<1	27	68	_	_
13	<i>p</i> -CN–Ph (3h : 4h)	S	I	20:80	35	nd ^d	0	60:40
14	<i>p</i> -Cl–Ph (3i ; 4i)	S	Ι	50:50	40	78	0	50:50
15	$\bigvee_{\mathbf{SC}_{6}H_{5}}^{\mathbf{SC}_{6}H_{5}}$	S	I	95:5	40	95	_	99:1

~ ~

^a Isolated yields.

The ee values of the products were determined by HPLC analyses using Chiralcel OJ column or Chiralcel OD-H column.

^c syn/anti Ratio was based on ¹H NMR. Stereochemistry was assigned on the basis of previous aldol reactions.^{19a,e,d,20g}

^d Not determined.

This result prompted us to examine the reactivity of phenylthioacetone with other aldehydes and the results were quite peculiar. When benzaldehyde was reacted with phenylthioacetone using \mathbf{I} as a catalyst, the regioselectivity was inverted and regioisomer 3g was obtained in moderate ee (Table 1, entry 12). The reactivity of 2a in the presence of \mathbf{I} is quite remarkable since it looks as the regio- and the stereocontrol were dependent on the electronic properties of the aromatic moiety.

The reaction of phenylthioacetone with other different *p*-substituted aromatic aldehvdes confirmed a strong effect of the electronic properties of the aromatic moiety on the stereo- and regioselectivity. As revealed in Table 1, an apparent correlation was observed between the reaction regioselectivity/enantiocontrol and the reactivity of aldehydes. More specifically, the presence of electron-withdrawing substituents at the para position tends to increase the formation of regioisomer 4, ranging from <1% (benzaldehyde), 50% (4-chlorobenzaldehyde), 80% (4-cyanobenzaldehyde) to >99% (4-nitrobenzaldehyde) with moderate yields and no enantioselectivity. Regioisomer **3i** was obtained in good ee (78%) (Table 1, entry 14) whilst regioisomer 3i was obtained from the reaction of 1-(phenylthio)cyclopropanecarbaldehyde with useful levels of enantiocontrol (95%) but with poor conversion (40%) (Table 1, entry 15). Anyway α -phenylthioacetone was a less good donor in comparison with phenoxyacetone. Nevertheless, these results are quite intriguing and these deserve deeper attention in the future.

The second part of this work was stimulated by the recently reported result that 2-dimethyl-1,3-dioxan-5-one was a good substrate for asymmetric self-aldol condensation reaction.²³ This unusual reactivity of dioxanones is due to the fact that the electron-poor carbonyl group forces these ketones to display a highly electrophilic character. On the basis of the above mentioned result, we reasoned that α -phenoxy- and phenylthio-ketones should be active enough as enamine acceptors (by field/inductive effects) but less reactive than acetone as nucleophiles (by steric effects) in the ketone–ketone cross aldol reaction.

The cross aldol reaction of 2a with acetone, catalyzed by I, in DMSO at room temperature gave the aldol product 5a in 50% of yield and with an ee value of 47%. Under the same reaction conditions, 2b produced the corresponding aldol 5b in 40% yield and ee 39%. An ee value of 80% but low yield (30%) was obtained for the cross aldol reaction of 2a and acetone when II was used as the catalyst and the reaction was carried out in acetone.

The low yield could be explained by a competing formation of a very stable enamine²⁵ between the catalyst and the α -heteroatom substituted ketones. This conclusion is further substantiated by the fact that the reaction between phenylsulfonylacetone **2c** and acetone did not give the aldol product. In fact, here deprotonation at the α -carbon is facilitated by the enhanced acidity caused by the presence of a sulfone group and, consequently, the cat-

Table 2

Direct ketone-ketone cross aldol reaction²⁴

/	0 + 0 R X 2a-f		<u>Cat. (20 r</u> r.t.	O mol%)	он R *	×	
	$\begin{array}{l} \textbf{2a}, \textbf{X=S}; \textbf{R=CH}_3\\ \textbf{2b}, \textbf{X=O}; \textbf{R=CH}_3\\ \textbf{2c}, \textbf{X=SO}_2; \textbf{R=CH}_3\\ \textbf{2d}, \textbf{X=S}; \textbf{R=C}_{4}\textbf{H}_{5}\textbf{OCH}_2\\ \textbf{2e}, \textbf{X=SO}_2; \textbf{R=C}_{6}\textbf{H}_{5}\textbf{OCH}_2\\ \textbf{2f}, \textbf{X=S}; \textbf{R=C}_{6}\textbf{H}_{5}\textbf{SCH}_2\\ \end{array}$	СH ₂		р н н н	HN-SO	₂Ph	
Entry	Product (R)	Х	Cat.	Solvent	Yield ^a (%)	ee 5 ^{b,c} (%)	<i>t</i> (h)
1	CH ₃ (5a)	S	Ι	DMSO	50	47	96
2	CH ₃ (5b)	0	I	DMSO	40	39	96
3	CH ₃ (5a)	S	П	Acetone	30	80	96
4	CH ₃ (5b)	0	П	Acetone	20	27	96
5	CH ₃ (5c)	SO_2	П	Acetone	0		96
6	$C_6H_5OCH_2$ (5d)	S	I	DMSO	74	16	48
7	$C_6H_5OCH_2$ (5d)	S	П	Acetone	60	47	48
8	$C_6H_5OCH_2$ (5d)	S	Π	DMSO	30	40	48
9	$C_6H_5OCH_2$ (5d)	S	Π	CH ₃ CN	33	45	48
10	$C_6H_5OCH_2$ (5d)	S	Π	CHCl ₃	70	46	48
11	$C_6H_5OCH_2$ (5e)	SO_2	Π	Acetone	60	70	96
12	$C_6H_5SCH_2$ (5f)	S	Π	Acetone	60		96

^a Isolated yields.

^b The ee values of the products were determined by HPLC analyses using Chiralcel OJ column or Chiralcel OD-H column.

^c The absolute configuration of these products is unknown.

alyst is probably all engaged in a parasitic enamine formation.

Hoping to increase the reaction rate and yield, we selected 2d as an acceptor with the expectation that it would be highly electrophilic and yet sterically more deactivated towards enamine formation than 2a and 2b. L-Proline I catalyzed the reaction of 2d with acetone giving the aldol product 5d in 74% of yield and 16% of ee, while using II as the catalyst, 5d was obtained in 60% yield and in a 47% of ee. Attempts to increase the enantioselectivity performing the reaction in different solvents were unsuccessful (Table 2, entries 8–10). This result indicates that if this reaction follows the normal aldol mechanism,²⁶ the poor enantioselectivity is not surprising, since the energy difference between the two diastereomeric transition states, which leads to the two enantiomers, probably is not that much.

In a further effort to improve the enantioselectivity, we supposed that an increased steric demand of one of the two substitution groups on the carbonyl was expected to enforce the high levels of stereocontrol. Gratifyingly, the aldol reaction between **2e** and acetone using **II** as the catalyst afforded the desired compound **5e** in 60% of yield and 70% ee (Table 2, entry 11).

In summary, α -phenoxy- and phenylthio-ketones have been examined as donors and acceptors in organocatalytic aldol reactions. Our studies have revealed effective methodologies for accessing structurally varied and enantiomerically enriched secondary and tertiary phenylthio- and phenoxy- aldols, expanding the scope and potential synthetic utility of organocatalytic direct aldol reactions. Further investigations into the mechanistic aspects and the use of new organocatalysts for this reaction are underway and will be reported in due course.

Acknowledgements

Financial support from the Ministero dell'Università e della Ricerca Scientifica e Tecnologica, Rome, and by the University of Cagliari (National Project 'Stereoselezione in Sintesi Organica, Metodologie ed Applicazioni') and from CINMPIS is gratefully acknowledged.

Supplementary data

Supplementary data (Experimental procedures and analytical data for all new compounds) associated with this article can be found, in the online version, at doi: 10.1016/j.tetlet.2008.03.066.

References and notes

- (a) Sànchez-Obregòn, R.; Ortiz, B.; Walls, F.; Yuste, F.; Garcia Ruano, J. L. *Tetrahedron: Asymmetry* **1999**, *10*, 947–955; (b) Goergens, U.; Schneider, M. P. J. Chem. Soc., Chem. Commun. **1991**, 1064–1066; (c) Bernard, A. M.; Frongia, A.; Guillot, R.; Piras, P. P.; Secci, F.; Spiga, M. Org. Lett. **2007**, *9*, 541–544.
- Toshimitsu, A.; Abe, H.; Hirosawa, C.; Tamao, K. J. Chem. Soc., Perkin Trans. 1 1994, 3465–3471.
- Nunno, L. D.; Franchini, C.; Nacci, A.; Scilimati, A.; Sinicropi, M. S. Tetrahedron: Asimmetry 1999, 10, 1913–1926.
- (a) Gruttadauria, M.; Meo, P. L.; Noto, R. *Tetrahedron* 1999, 55, 4769–4782; (b) Fox, D. J.; House, D.; Warren, S. *Angew. Chem., Int. Ed.* 2002, 41, 2462.
- Itoh, T.; Yonekawa, Y.; Sato, T.; Fujisawa, T. Tetrahedron Lett. 1986, 27, 5405–5408.
- 6. Carreno, M. C. Chem. Rev. 1995, 95, 1717-1760.
- Tanikaga, R.; Hosoya, K.; Kaji, A. J. Chem. Soc., Perkin Trans. 1 1987, 1799–1803.
- Solladié, G.; Demailly, G.; Greck, C. Tetrahedron Lett. 1985, 26, 435– 438.
- 9. Bueno, A. B.; Carreno, M. C.; Garcia Ruano, J. L.; Hamdouchi, C. *Tetrahedron: Asymmetry* **1995**, *6*, 1237–1240.
- Bravo, P.; Resnati, G.; Viani, F.; Arnone, A. *Tetrahedron* 1987, 43, 4635–4647.
- 11. Tanikaga, R.; Hosoya, K.; Kaji, A. Chem. Lett. 1987, 829-832.
- (a) Kang, S. B.; Ahn, E. J.; Kim, Y. *Tetrahedron Lett.* **1996**, *37*, 9317–9320; (b) Bernard, A. M.; Cadoni, E.; Frongia, A.; Piras, P. P.; Secci, F. Org. Lett. **2002**, *4*, 2565–2567; (c) Alberti, G.; Bernard, A. M.; Frongia, A.; Piras, P. P.; Secci, F.; Spiga, M. Synlett **2006**, 2241–2245.
- 13. Enders, D.; Niemeier, O.; Straver, L. Synlett 2006, 3399-3402.
- (a) Singh, S.; Kumar, S.; Chimni, S. S. *Tetrahedron: Asymmetry* 2001, *12*, 2457–2462; (b) Ljubovic, E.; Sunjic, V. *Tetrahedron: Asymmetry* 1997, 8, 1–4.
- Fujisawa, T.; Itoh, T.; Nakai, M.; Sato, T. *Tetrahedron Lett.* 1985, 26, 771–774.
- Musa, M. M.; Ziegelmann-Fjeld, K. I.; Vieille, C.; Phillips, R. S. J. Org. Chem. 2007, 72, 30–34.
- 17. Cho, B. T.; Choi, O. K.; Kim, D. J. Tetrahedron: Asymmetry 2002, 13, 697–703.
- (a) List, B. Tetrahedron 2002, 58, 5573–5590; (b) List, B. Acc. Chem. Res. 2004, 37, 548–557; (c) Notz, W.; Tanaka, F.; Barbas, C. F., III. Acc. Chem. Res. 2004, 37, 580–591; (d) Dalko, P. I.; Moisan, L.

Angew. Chem., Int. Ed. 2004, 43, 5138–5175; (e) Tanaka, F.; Barbas, C. F, III. In Modern Aldol Reactions; Marhrwald, R., Ed.; Wiley-VCH: Weinheim, 2004; Vol. 1, Chapter 6; (f) Guillena, G.; Nàjera, C.; Ramòn, D. Tetrahedron: Asymmetry 2007, 18, 2249–2293.

- (a) Notz, W.; List, B. J. Am. Chem. Soc. 2000, 122, 7386–7387; (b) Xu, X.-Y.; Wang, Y.-Z.; Cun, L.-F.; Gong, L.-Z. Tetrahedron: Asymmetry 2007, 18, 237–242; (c) He, L.; Tang, Z.; Cun, L.-F.; Mi, A.-Q.; Jiang, Y.-Z.; Gong, L.-Z. Tetrahedron 2006, 62, 346–351; (d) Zhong, G.; Fan, J.; Barbas, C. F., III. Tetrahedron Lett. 2004, 45, 5681–5684; (e) Maggiotti, V.; Bahmanyar, S.; Reiter, M.; Resmina, M.; Houk, K. N.; Gouverneur, V. Tetrahedron 2004, 60, 619–632.
- (a) Tokuda, O.; Kano, T.; Gao, W.-G.; Ikemoto, T.; Moruoka, K. Org. Lett. 2005, 7, 5103–5105; (b) Luppi, G.; Cozzi, P. G.; Monari, M.; Kaptein, B.; Broxterman, Q. B.; Tomasini, C. J. Org. Chem. 2005, 70, 7418–7421; (c) Samanta, S.; Zhao, C.-G. Tetrahedron Lett. 2006, 47, 3383–3386; (d) Wang, Y.-J.; Shen, Z.-X.; Li, B.; Zhang, Y.-W. Chin. J. Chem. 2006, 24, 1196–1199; (e) Samanta, S.; Zhao, C.-G. J. Am. Chem. Soc. 2006, 128, 7442–7443; (f) Tang, Z.; Cun, L.-F.; Cui, X.; Mi, A.-Q.; Jiang, Y.-Z.; Gong, L.-Z. Org. Lett. 2006, 8, 1263–1266; (g) Guillena, G.; Hita, M.; Nàjera, C. Tetrahedron: Asymmetry 2006, 17, 1027–1031; (h) Wang, X.-J.; Zhao, Y.; Liu, J.-T. Org. Lett. 2007, 9, 1343–1345; (i) Xu, X.-Y.; Tang, Z.; Wang, Y.-Z.; Luo, S.-W.; Cun, L.-F.; Gong, L.-Z. J. Org. Chem. 2007, 72, 9905– 9913.
- 21. A typical procedure for the reaction of aldehydes with phenylthioand phenoxyacetone is as follows: To a mixture of anhydrous DMSO (20 mL) and ketone donor (5 mL) was added the corresponding aldehyde (4.4 mmol) followed by the catalyst (20 mol %) and the resulting mixture was stirred at room temperature for 96 h. The reaction mixture was poured into saturated ammonium chloride solution, the layers were separated and, the aqueous phase was extracted several times with diethyl ether. The combined organic extracts were dried with anhydrous Na₂SO₄ and evaporated to afford the crude aldol adducts. The residue was purified by flash chromatography (silica gel, light petroleum-diethyl ether 1:1). 4-Hydroxy-4-(4-nitrophenyl)-3-phenoxybutan-2-one (4a): Orange oil. Yield 65%. IR (neat): 3500, 1720, 1517, 1347 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ : 2.15 (s, 3H), 3.22 (d, 1H, J = 3.6 Hz), 4.63 (d, 1H, J = 6 Hz), 5.25– 5.27 (m, 1H), 6.75-6.79 (m, 2H), 6.99 (t, 1H), 7.21-7.33 (m, 2H), 7.61 (d, 2H), 8.20 (d, 2H). ¹³C NMR (75 MHz, CDCl₃) δ: 27.5, 73.3, 85.4, 114.9, 122.4, 123.4, 127.6, 129.9, 146.1, 157.0, 208.7. MS: m/z $(\%) = 283 (M^+ - 18 (5)), 212 (3), 154 (4), 133 (8), 89 (12), 77 (48), 63$ (16), 51 (28), 43 (100). $[\alpha]_{\rm D}^{26}$ +2.7 (c 0.36, CH₂Cl₂), 84% ee. The ee was determined by HPLC on a Chiralcel OD-H column with hexane*i*-PrOH (80:20) as the eluent, flow rate 1 mL/min, $\lambda = 254$ nm. t_R (major): 7.4 min, t_R (minor): 8.4 min. Anal. Calcd for C₁₆H₁₅NO₅: C, 63.78; H, 5.02; N, 4.65. Found: C, 63.7; H, 5.06; N, 4.69.
- Guillena, G.; Hita, M.; Nàjera, C. Tetrahedron: Asymmetry 2006, 17, 1027–1031.
- (a) Suri, J. T.; Mitsumori, S.; Albertshofer, K.; Tanaka, F.; Barbas, C.
 F., III J. Org. Chem. 2006, 71, 3822–3828; (b) Grondal, C.; Enders, D.
 Tetrahedron 2006, 62, 329–337; (c) Majewski, M.; Niewczas, I.;
 Palyam, N. Synlett 2006, 15, 2387–2390.
- 24. A typical procedure for the direct ketone-ketone cross aldol reaction is as follows: To a suspension of catalyst (20 mol %) in anhydrous acetone 5 mL was added the corresponding α -phenoxy- or phenylthio ketone (0.4 mmol). The resulting mixture was stirred at room temperature for a certain time and the reaction progress was monitored by TLC. The reaction mixture was poured into saturated ammonium chloride solution, the layers were separated and, the aqueous phase was extracted several times with diethyl ether. The combined organic extracts were dried with anhydrous Na₂SO₄ and evaporated to afford the crude aldol adducts. The residue was purified by flash chromatography (silica gel, light petroleum-diethyl ether 1:1). *4-Hydroxy-5-phenoxy-4-((phenylsulfonyl)methyl)pentan-2-one* **(5e)**: Orange oil. Yield 60%. IR (neat): 3400, 1720, 1340, 1150 cm⁻¹ 1 1 H NMR (300 MHz, CDCl₃) δ: 2.26 (s, 3H), 3.22 (ABq, 2H, J = 17.7 Hz, J = 36 Hz), 3.66 (ABq, 2H, J = 14.4 Hz, J = 30.3 Hz), 4.09 (d, 2H,

J = 1.5 Hz), 4.42 (br s, 1H), 6.85–7.91 (m, 10H). ¹³C NMR (75 MHz, CDCl₃) δ : 31.5, 47.2, 59.7, 72.2, 72.4, 114.6, 121.4, 127.7, 129.2, 129.4, 133.8, 140.5, 158.0, 209.2. MS: m/z (%) = 290 (M⁺–58 (3)), 197 (3), 141 (77), 107 (11), 91 (12), 77 (100), 51 (36). $[\alpha]_D^{20}$ +18.6 (c 0.43, CHCl₃), 70% ee. The ee was determined by HPLC on a Chiraleel OD-H column with hexane–*i*-PrOH (90:10) as the eluent, flow rate 1.2 mL/min, $\lambda = 254$ nm. t_R (major): 22.7 min, t_R (minor): 26.6 min.

Anal. Calcd for $\rm C_{18}H_{20}O_5S:$ C, 62.05; H, 5.79; S, 9.2. Found: C, 62; H, 5.7; S, 9.34.

- 25. Lin, J.-F.; Wu, C.-C.; Lien, M.-H. J. Phys. Chem. 1995, 99, 16903– 16908.
- (a) Bahmanyar, S.; Houk, K. N.; Martin, H. J.; List, B. J. Am. Chem. Soc. 2003, 125, 2475–2479; (b) Hoang, L.; Bahmanyar, S.; Houk, K. N.; List, B. J. Am. Chem. Soc. 2003, 125, 16–17.