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Graphical Abstract

Vitamin B12: an efficient type catalyst for the onepot synthesis of 3,4,5-trisubstituted furan-2(bl)-ones andN-aryl-3-
aminodihydropyrrol-2-one-4-carboxylates

Mehrnoosh Kangani, Malek-Taher Maghsoodlou*, NdataHazeri

Department of Chemistry, Faculty of Sciences, University of Sstan and Baluchestan, P.O. Box 98135-674, Zahedan, Iran
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Vitamin B12 was applied as catalyst for the one{pote-component synthesis of 3,4,5-trisubstittteen-2(51)-ones
from the condensation between aldehydes, aminegliatiglacetylendicarboxylates at ambient tempegin EtOH. In
addition, N-aryl-3-aminodihydropyrrol-2-one-4-carboxylates wesynthesis using mentioned catalyst at ambient
temperature in EtOH from condensation between fluhetigyde, amines, and dialkylacetylenedicarboxylates
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ARTICLE INFO ABSTRACT

Article history: Vitamin B12 was applied as catalyst for the one{hote-component synthesis of 3;4,5
Received 12 June 2015 trisubstituted furan-2¢3)-ones from the condensation between aldehydes, anan
Received in revised form 7 July 2015 dialkylacetylendicarboxylates at ambient tempeeatur EtOH. In addition,N-aryl-3
Accepted 13 July 2013 aminodihydropyrrol-2-one-4arboxylates were synthesis using mentioned catad
Available online ambient temperature in EtOH from condensation betwkrmaldehyde, amines,

dialkylacetylenedicarboxylase This methodology has number of advantages ssichsi
Keywords: of green and nonhazardous catalyst, clean workhgt reaction times, high yields anc
Vitamin B12 need to column chromatography.

3,4,5-Trisubstituted furan-2(5H)-ones
N-aryl-3-aminodihydropyrrol-2-one-4-carboxylates

1. Introduction

Vitamin B12, also called cobalamin (Cbl), Cbl hasmealled nature’s most beautiful cofactor and vaeshtified as the anti-
pernicious anemia factor from liver in 1948. Cbbwls biological activity in a very small amount. Gldts as the cofactor for two
enzymesij.e.,, methylmalonyl-CoA mutase and methionine synthasdyumans. Both enzymes are important for healtte B 12
content in food is very low. Its greatest abundaade meat, fish, and milk products; it is gengrabsent from fruits and vegetables,
but nor, an edible green and purple seaweed, imalainy product that contains a significant amoofhB12 Cbl found in food is
originally from these bacteria, in which the compieslecule is synthesized using at least 25 gen#iCob operon. Cbl acts as the
cofactor for two enzymes present in humans [1] (Hig. The properties and reactivity of vitamin Bl2ridatives have been
extensively investigated ever since it was shown @gspss a cobalt-carbon bond in the biological tofacadenosyl and
methylcobalamin [2-6]. These versatile organomietalbmplexes are used in a variety of enzymes talyzze radical rearrangements
and methyltransfers. Moreover, vitamin B12 has tbuge in organic chemistry for carbon-carbon bamthétions [7-12].

Furanones are the five-member heterocyclic compapodsessing lactone ring in their structures. &teterocycles are the core
structures of many bioactive natural products as aglkynthetic drugs such as rubrolide, sarcophirafurodilhemisuccinatestc.
[13, 14]. H-Furan-2-onederivatives exhibit many pharmacoldgécal biological activities including antifungalntibacterial, anti-
oxidants, anti-inflammatory, anti-microbial and iazencer agents [15-19]. Due to this wide range afndbnce and applicability,
various approaches toward substituted butenolides haen developed, which involve the use of ordahm [20], boronic acids
[21,22], transition-metal catalysts such as Pd(Qf23], Ru [24], Cu(ll) [25], AuCI [26], and secongaamines [27]. However, many
of these methods involve the use of expensiveysttahnd hazardous reagents in stoichiometric ataopAmew route to the synthesis
of furan skeletons was developed by Murtyal. via the multi-component reaction of aromatic aminddelaydes and acetylenic
esters, which lead to the preparation of 3,4,5-sulesd furan-2(5H)-one derivatives usifiecyclodextrin as a catalyst in water [28].
Recently, Nagarapu et al. reported that $r@h efficiently catalyze this reaction [29]. Thegence of pyrrol-2-ones (5-lactams or g-
lactams) in pharmaceuticals and natural products dumtinued to stimulate a great deal of interasthie development of new
methodologies for their synthesis [30,31]. Themseveral bioactive natural molecules with a py2ralre moiety, such as holomycin
and thiolutin [32], thiomarinol A4 [33], oteromyc[B4], pyrrocidine A [35], quinolactacin C [36], arygppacamide [37]. On the other
hand, dihydropyrrol-2-ones have been successfullgduas peptidomimetic [38], HIV integrase [39], heidals [40], DNA
polymerase inhibitors [41], caspase-3 inhibitorg][dytotoxic and antitumor agents [43], antibiot[dgl], and also inhibitors of the
annexin A2-S100A10 protein interaction [45]. Recendyfew methods have been reported for the syntleddisghly substituted
dihydropyrrol-2-ones using one-pot, four-compongegsctions in the presence of catalyst, such as Ac@Hehzoic acid, TiQ
nanopowder or Cu(OAgH,0O [46-51]. However, some of these methods have drdsbacach as high temperature and utilize a

F Corresponding author.
E-mail address: mt_maghsoodlou@yahoo.comt_maghsoodlou@chem.usb.ac.ir

Page 2 of 7



chlorinated solvent. Therefore, the developmentaofilder and more efficient route for one-pot swsik of these important
heterocycles is still in demand. Thus, in contimieour research on multi-component synthesis [SRwES herein report a green
synthesis of 3,4,5-trisubstituted furan-BjSones andN-aryl-3-aminodihydropyrrol-2-one-4-carboxylates ngsicatalytic amount of
vitamin B12 as catalyst at ambient temperaturet@HE(Schemes 1 & 2).

Fig 1. The structure of vitamin B12.

2. Experimental

2.1. Chemistry

Chemicals were purchased from Merck (Darmastadt,Geimawcros (Geel, Belgium) and Fluka (Buchs, Switzedlarand used
without further purification. The Vitamin B12 was pheased from the Sigma-Aldrich company. Melting poinesre taken on an
Electrothermal 9100 apparatus. IR spectra were médabn a JASCO FT/IR-460 plus spectrometer. *HheNMR and°*C NMR
spectra were recorded on a Bruker DRX-400 Avanveumgnt with CDCJ as solvent and using TMS as internal referencéO@t
MHz and 100 MHz, respectively.

2.2 General procedure for the synthesis of 3,4,5-trisubstituted furan-2(5H)-ones

A mixture of aminel (1 mmol), dialkylacetylenedicarboxylage(1 mmol), aromatic aldehyd®(1mmol) and vitamin B12 (0.001g)
in EtOH (2 mL) was stirred at ambient temperaturegjgpropriate time (Scheme 1). After completion of saction (monitored by
TLC), the water was added to produce solid precmitand the precipitate was filtered off and washed ethanol (3x2 mL) to give
the pure product. The structures of the synthesized compounds weasacterized by their IRH NMR and**C NMR spectra and
were found to be identical with data described inliteeature.

Art

COR HN
RO,C
cat. B12 2

ALNH,  + H + AZCHO ————» ZN=0
EtOH (2 mL), r.t.
COR N
1 2 3 4a-0

Scheme 1Synthesis of 3,4,5-trisubstituted furan-2(5H)-oimethe presence of vitamin B12 as catalyst in Egdldmbient temperature.
2.3 General procedure for the synthesis of N-aryl-3-aminodihydropyrrol-2-one-4-carboxyl ates

A mixture of amin5 (1 mmol) and dialkylacetylenedicarboxyl&€l mmol) in EtOH (2 mL) was stirred for 25 min. Neamine7
(2 mmol), formaldehyd8& (37% solution, 1.5 mmol) and vitamin B12 (0.00lwgyre added in successively. The reaction mixture was
allowed to stir at ambient temperature for apprdaprieme. After completion of the reaction (monitdigy TLC), the water was added
to produce solid precipitate, and the precipitats fileered off and washed with ethanol (3x 2 mLytee the pure produ& (Scheme
2). The structures of the synthesized compounds wleecterized by their IRH NMR and**C NMR spectra and were found to be
identical with data described in the literature 8],
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Scheme 2Synthesis oN-aryl-3-aminodihydropyrrol-2-one-4-carboxylateslire presence of vitamin B12 as catalyst in EtOHnabient temperature.

Methyl 2,5-dihydro-5-oxo-2-phenyl-4-(phenylaminajin-3-carboxylate4@): White solid; IR (KBr, crit): 3260, 3208, 1702, 1661;
'H NMR (400 MHz, CDCJ): 6 3.77 (s, 3 H, OCH), 5.76 (s, 1H, benzylic), 7.13 (t, 1BI= 7.3 Hz),7.24-7.31 (m, 7H), 7.52 (d, 2H5
8 Hz), 8.90 (br, NH, 1H)}*C NMR (100 MHz, CDGJ)): § 165.3 and 162.7 (CO), 156.3, 136.1, 134.9,129.8,71228.6, 127.4, 125.9,
122.3, 112.8 (C of aromatic), 61.6(C of methoxy),15(C of benzylic).

Methyl 4-(p-tolylamino)-2,5-dihydro-5-oxo-2-phenylfuran-3-castylate @b): White solid; IR (KBr, crif): 3228, 2950, 1706, 1677,
1513;"H NMR (400 MHz, CDC)): 6 2.27 (s, 3H, CH), 3.76 (s, 3H, OCH), 5.72 (s, 1H, benzylic),7.09 (d, 2Bi= 8 Hz), 7.22-7.270
(m, 5H, aromatic), 7.34 (d, 2H,= 8.4 Hz), 8.86 (br, 1H, NH)C NMR (100 MHz, CDGJ)): ¢ 165.3 and 162.8 (CO), 156.4, 135.8,
135.0, 133.5, 129.6, 128.6,128.5, 127.5, 122.4,61(2 of aromatic), 61.3 (C of methoxy), 52.0 (Chehzylic), 20.9 (C of methyl).

Ethyl 2-(4-cyanophenyl)-2,5-dihydro-5-oxo-4-(phemylino)-furan-3-carboxylate4€): White solid; IR (KBr, crif): 3293 (NH),
2977, 2225 (CN), 1731, 1684,1666, 1589;NMR (400 MHz, CDCJ): § 1.23 (t, 3H,J = 7.2 Hz,CH), 4.24 (q, 2H, = 7.2 Hz, CH)),
5.82 (s, 1H, benzylic), 7.17 (t, 18= 7.2 Hz), 7.32-7.47 (m, 6H, aromatic), 7.59 (d, 2H,8 Hz), 9.03 (br, 1H, NH)’*C NMR (100
MHz, CDCL): 6 164.6 and 162.5 (CO), 156.89, 140.8, 135.7, 1329,2, 128.3, 126.3, 122.1, 118.1,112.6 (C of atmpd 12.2 (C
of CN), 61.6 (C of methoxy), 60.8 (C of benzylic),a4C of ethoxy).

Methyl 2,5-dihydro-5-oxo-1-phenyl-4-(phenylamindy-byrrole-3-carboxylate9a): White solid, IR (KBr, crif): 3310 (NH), 1705,
1684, 1645;H NMR (400 MHz, CDCJ): ¢ 3.76 (s, 3H, OCH), 4.57 (s, 2H, Ch), 7.16-7.23 (m, 4H, ArH),7.34 (t, 2H,= 8.0 Hz,
ArH), 7.42 (t, 2HJ = 8.0 Hz, ArH), 7.81 (d, 2H] = 8.0 Hz, ArH), 8.05 (br s,1H, NH).

Ethyl 4-(p-tolylamino)-2,5-dihydro-5-oxo-fi-tolyl-1H-pyrrole-3-carboxylate9d): Yellow solid, IR (KBr, cnt'): 3310 (NH), 1707,
1682, 1649 H NMR (400 MHz, CDCJ): 6 1.25 (t, 3H,J = 7.2 Hz, OCHCH), 2.36 (s, 3H, Ch), 2.37 (s, 3H, CH,4.23 (t, 2HJ =
7.2 Hz, OCHCHg), 4.52 (s, 2H, Ch), 7.06 (d, 2H)J = 8.4 Hz, ArH), 7.14 (d, 2H] = 8.0 Hz, ArH), 7.21 (d, 2H] =8.4 Hz, ArH), 7.69
(d, 2H,J = 8.8 Hz, ArH), 8.01 (br s, 1H, NHJC NMR (100 MHz, CDGJ)): 6 164.7 and163.7 (CO), 143.1,136.3, 136.2, 134.6,2134
129.6, 128.9, 122.9, 119.1, 102.4(C of aromati8)34CH-N), 60.2 (C of methoxy), 21.0 (Cof methyl), 20.9¢Cmethyl), 14.2 (C of
ethoxy).

Methyl 4-(benzylamino)--tolyl-2,5-dihydro-5-oxo-H-pyrrole-3-carboxylate9m): White solid, IR (KBr, crit): 3310 (NH), 1704,
1682, 1646'H NMR (400 MHz, CDCJ): ¢ 1.34 (t, 3H,J = 7.2 Hz, OCHCH), 4.27 (t, 2HJ = 7.2 Hz, OCHCH), 4.41 (s, 2H, Cht
N), 5.12 (d, 2HJ = 6.4 Hz, CH-NH), 6.90 (br s, 1H, NH), 7.28-7.37 (m, 5H, ArH), 7.522#, J = 8.8 Hz, ArH), 7.70 (d, 2H] = 8.8
Hz, ArH); *C NMR (100 MHz, CDGCJ): ¢ 165.6 and 164.3 (CO), 139.5, 136.2, 134.8, 1298,7] 127.5, 127.3, 119.4, 97.1(C of
aromatic),51.0 (C of methoxy), 48.0 and 46.6 {04, 20.9 (C of methyl).

3. Results and discussion

The reaction condition was optimized for the synthes 3,4,5-substituted furan-23-one derivatives, for this purpose the
reaction between benzaldehyde, aniline and dimetatgiendicarboxylate was chosen as a model systamrdaction was initially
carried out in different conditions (Table 1). Sinowe wanted to present a green and environmentahigmeprotocol for this
experiment, we did not test organic solvents ungiese conditions.

Table 1

Optimization of the reaction conditions for the thasis of4ain EtOH2

Entry Catalyst (mo | %) Time (h) Isolated
yields (%)

1 TiO, (10) 10 25

2 Zn(SQ),-7H,0 (10) 9 25

3 Zr(NGs), (10) 9 30

4 ZrCl, (10) 9 50

5 HCIO~SiC; (10) 9 20

6 KHSQ, (10) 9 26

7 NHHSQ, (10) 9 40

8 Vitamin B12 (7.35 * 10-5) 2 85

a

Amounts of material in all reactions: aldehyder(thol), aniline (1 mmol) and DMAD (1 mmol).

The scope and efficiency of these procedures weptored for the synthesis of a wide variety of substd 3,4,5-substituted
furan-2(8H)-ones (Table 2). Generally, the results were excelteterms of yield and product purity. A seriesapbmatic aldehydes
and amines were investigated (Table 2, proddets). In all cases, aromatic aldehydes containingtelaedonating groups gave
shorter times and higher yields than that with etectvithdrawing groups.

Table 2

Synthesis of 3,4,5-substituted furan- Aj5ones.

Product Art Ar? R Time (min) Isolated mp (°C) Lit.mp (°C) [Ref]
yield (%)

4a Ph Ph Me 120 85 159-162 159-162 [24]
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4b Ph 4-Me—GH4 Me 60 75 280-282 284-287 [24]

4c 4-Me-GsHy Ph Me 60 85 179-180 181-183 [24]
4d 4-Cl-CgH4 Ph Me 60 75 148-150 149-152 [24]
4e 4-CN-GsHa Ph Et 120 80 152-154 152-154 [52]
4f Ph 4-F-GH,4 Me 60 85 290-293 293-295 [25]
49 Ph 4-Cl-GH., Me 60 85 167-170 165-166 [53]
4h Ph 3-NQ-CeH,4 Me 90 80 199-202 203-205 [53]
4i 4-OMe—GH4 Ph Me 60 85 235-238 239-242 [53]
4j 4-NO—CeH4 Ph Me 80 80 129-130 130-131[53]
4k Ph Ph Et 60 90 166-168 164-166 [22]
41 Ph 4-Me—GH4 Et 60 90 119-121 120-121 [22]
4m 4-Me—GsH,4 Ph Et 60 85 185-186 188-191 [22]
4n 4-Cl-GH,4 Ph Et 60 80 180-182 184-185 [22]
40 4-OMe—-GH4 Ph Et 60 80 174-176 174 [22]

A proposed mechanism for the formationda shown in Scheme 3. There are many reactive Bitéhe vitamin B12 molecule that
can active carbonyl group (Fig.1).

H O
N
AT J(‘ ) L
o Ar
P ,
COR? C Al L O HN
ROL Arl/H NoR BN RO,C
Al'l-NHz + \ \ —— a ‘ 8 —_— H 6] —_— y %
COR? ROy 2"y ROC A N
H . H-Q

‘c=o” c
1 2 C=QL HN-, b 4
Ar2 \
3 " HN"

Scheme 3Proposed mechanism for the one-pot three-compa@yertihesis of 3,4,5-substituted furan§sones in the presence of vitamin
B12 as green catalyst.

Next, the reaction condition was optimized for thatBgsis ofN-aryl-3aminodihydropyrrol-2-one-4-carboxylates. fatdehyde,
aniline, and dimethylacetylenedicarboxylate weresemoas model compounds. The reaction was initialyied out in different
condition (Table 3). As can be seen in Table 3 lyg@taamount of vitamin B12 (7.35 * 10-5 mol%) wasuhd to be the most effective
catalyst for the reaction at room temperature.

Table 3

Optimization of the reaction conditions for the thasis of9ain EtOH2

Entry Catalyst (mol%) Time (h) Isolated yields
(%)

1 TiO, (10) 15 25

2 Zn(SQ),-7H,0 (10) 15 25

3 Zr(NGy)4 (10) 12 30

4 ZrCl, (10) 12 50

5 HCIO~SIO; (10) 12 20

6 KHSQ, (10) 15 26

7 NHHSQ, (10) 15 40

8 Vitamin B12 (7.35 * 10-5) 2 75

a

Amounts of material in all reactions: aniline (2nml), DMAD (1 mmol), and formaldehyde (1.5 mmol).

To demonstrate the utility and generality of thisthod, the various substituted anilines, dimetimgdiethyl acetylenedicarboxylates
and formaldehyde were employed successfully to géadne desiretll-aryl-3-aminodihydropyrrol-2-one-4-carboxylat@a—h (Table
4). Encouraged by these results, different polyfionalized dihydropyrrol-2-one8i—p were synthesized using two different amines.
Aliphatic amines, such as benzyl amine, 1-(pyridightnethanamine and-butyl amine, were reacted with dialkylacetylene-
dicarboxylates, anilines and formaldehyde to predhe corresponding products in good to high yields

Table 4

Synthesis oN-aryl-3-aminodihydropyrrol-2-one-4-carboxylates.

Product R! R? Ar Time (min) Isolated yield (%) m.p (°C) Lit. mpQ) [Ref]
9a Ph Me Ph 120 75 154-155 155-156 [48]
9b Ph Et Ph 60 85 136-138 138-140 [47]
9c 4-Me-GeH4 Me 4-Me-GH,4 90 85 177-179 177-178 [48]
od 4-Me-GHq Et 4-Me-GH,4 60 85 128-130 131-132 [47]
9e 4-OMe-GH, Et 4-OMe-GH,4 120 80 152-154 152-154 [54]
of 4-F-GsH,4 Me 4-F-GH,4 60 85 163-165 163-165 [53]
9g 4-CI-CsH,4 Et 4-CI-GH,4 60 85 167-170 168-170 [53]
9h 4-Br-GeHq Et 4-Br-GH, 90 80 167-169 169-171 [53]
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9i PhCH Me Ph 60 85 136-138 140-141 [47]
9j PhCH Et Ph 60 80 81127 129 130 [47]
9k PhCH Me 4-F-GH4 60 90 166-168 166-168 [53]
9l PhCH Me 4-Br-GH, 60 90 119-121 120-121 [48]
9m PhCH Me 4-Me-GH,4 60 85 144-146 144-146 [53]
9n CsH4N-2-CH, Me 4-Me-GH,4 60 80 104-106 106-108 [47]
90 Nn-C4Hg Me Ph 60 80 60-62 60 [48]

9p n-C4Hg Et 4-Br-GH,4 60 85 94-97 94-96 [53]

On the basis of the above experimental results ttiegevith the related reports, a proposed reactiechanism for this one-pot,
four-component hetero-annulations is illustrate@ameme 4.

o i
COR? - H
Rl/.'\_L OR?
RLNH,  + \\ —_— | Ko)/* o o
2 R%0,C H RL RL
COR 2 N OR? N3 NH
5 6 o | \ - -y NAr | —» | N-Ar
o R?0,C L R20,C R?0,C
Ar-NH, + H)LH _— p N H-Q Ar 9
7 o e H2N~~\ c d i
N HN

Scheme 4.Proposed mechanism for the one-pot four-commpoggnthesis ofN-aryl-3-aminodihydropyrrol-2-one-4-carboxylates the
presence of vitamin B12 as catalyst.

4. Conclusion

In summary, we report an eco-friendly and straigitésd one-pot condensation for the synthesis ofb3psubstituted furan-
2(5H)-ones and\-aryl-3-aminodihydropyrrol-2-one-4-carboxylatesthe presence of catalytic amount of vitamin Bl2adsighly
effective ,green and homogenous catalyst. Vitami@ Blclean, safe, non-toxic, and easy access. Mergthis method has several
other advantages such as, high yields, operatisinglicity, clean and neutral reaction conditiomdjich makes it a useful and
attractive process for the synthesis of a wide tadébiologically active compounds.
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