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A homogeneous catalyst system for the asymmetric ~ cis-hydrogenation of 2,5-disubstituted furans leadingto 2 ',3'-dideoxynucleoside analogues
is described. Best enantioselectivities (ee values of up to 72%) were obtained with cationic rhodium complexes ligated by diphospholanes of

the butiphane family. The selectivity of the hydrogenation was reversed by the addition of a base or a polar protic solvent in certain cases.
Ferrocene- and proline-based systems gave significant, but lower, ee values.

For olefins with suitable substitution patterns, such as the stereoselective reduction of asymmetrically substituted
enolacetates, enamides, allylic alcohols, or enones, a plethoraromatic rings still represents a particular challenge, which
of powerful catalysts, which allow for an enantioselective is reflected by the small number of successful reports.
hydrogenation, have been developgetihough the asym-  Although the hydrogenation of aromatic compounds is
metric reduction of alkenes devoid of such a directing polar considered to be rather a domain of heterogeneous catalysis,
anchor group is more demanding, some efficient catalytic enantiodifferentiation upon reduction of appropriately sub-
systems have been described in the literaturecontrast, stituted (hetero)arenes is more often achieved using structur-
ally diverse homogeneous catalysts. Cinchona-modified
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heterogeneous Pt or Pd catalydtsive been used for the
reduction of ethyl nipecotinatea series of 2-pyronsand
furan carboxylic acidswith varying ee values. Recently, an
efficient diastereoselective hydrogenation of chiral oxazo-
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lidinone-substituted pyridines with Pd(O}AY as catalyst has trivial task, an enantioselective hydrogenation of the furan
been reported. ring is highly desirable. In this paper, we want to com-
A ferrocene-based homogeneous diphosphinerhodiummunicate our results for the asymmetric hydrogenation of a
complex was applied by Fuchs for the reduction of a selected furan derivative, leading to enantiomerically en-
2-substituted pyrazine derivative yielding the corresponding riched 2,3-dideoxynucleosides.
piperazine with enantiomeric purities up to 78%tuder et Furan1'é (Table 1) appeared to be a promising substrate
al. employed Rh(nbdBF/(S9S-DIOP for the reduction of  for an asymmetric homogeneous hydrogenation for the
a series of pyridines and furans with enantioselectivities up

to 27%? 2-Methylquinoxaline was reduced to-}(29-2- [
meth_yl-1,2.,3_,4-tetrahydroqumox.alme with ee’s up to 900/_0 Table 1. Asymmetric Hydrogenation af with Chiral Rh and
by Bianchini and his group using an ortho-metalated di- g, Catalysts

hydride Ir complex fac-exo(R)-[IrH x{ CsH4sC*H(Me)N-

H
(CHZCHZ.PPQ)Z}]).N. Kuwano and co—.workers reported on o OYN O catalyst, H, o OYN o
the efficient reduction oN-protected indoles catalyzed by o N\i “eovent WN\J
[Rh(nbd}]SbR/(S9-(RR)-PhTRAPL with very good enantio- ~ Me9  \ MeO
selectivitiest? Substituted-quinolines were hydrogenated by 1 2
[Ir(cod)ClI], with (R)-MeO-Biphep? or with (R)-P-PHOS as -
. . yield>¢/
ligand with good to excellent ee valués. . G 4
. ) . catalyst (equiv) conditions' ee? (%)
Recently, we published a new diastereoselective route to
2 3-dideoxynucleoside analogdgom 2-substituted furaris. 1 [Rhmb(’g);])BF“/ 6 THFMQO;% (80 bar),  <5/0
In this short reaction sequence (Figure 1), planar, prochiral 9 [Rh(nbd)Cl],/7¢ THF, H, (50 bar), rt 7500
(0.3)
I : RaobaClyT THE EGN 00 equiv), 7310
(0.3) Hj (50 bar), rt (B-L-2)
OYH 4 [Rh(nbd)8)]ClO, THF, H; (50 bar), rt 65/0
R O activation g O, e Coupling o O ,N\IO 0.3
U MeOU MeO™ \_ = - 5 [Ru(p-cymene)Clg]o/9¢ THF, Hy (50 bar), rt 56/0
® ® (0.2)
L 6 [Ru(p-cymene)Cls]o/9¢ THF, Et3N (0.1 equiv), 77/26
elimination
St e 0.2) H; (50 bar), rt (B-L-2)
0 H chemoselective e} H 7 [Rh(cod)(10)]BF 4 THF, H2 (80 bar), 80 °C 10/0
}’ O hydrogenation (o] 0.2)
Ra O N\j ~— RO N '
= - )= 5 8  [Rh(cod)(10)]BF, THF, EtsN (0.1 equiv), 1070
® ‘o © (0.2) Hs (80 bar), 80 °C
9 [Rh(cod)(11)|BFy THF, H, (80 bar), 80 °C 6823
Figure 1. Reaction sequence for the synthesis 98 dideoxy- 0.3) (B-p-2)
nucleosides. 10  [Rh(cod)11)]BFy  MeOH, H5 (80 bar), 80 °C 10723
(0.3) (p-L-2)
11 [Rh(cod)(11)IBFy THF, H, (80 bar), 80 °C 60732
furylnucleosidesQ) served as key intermediates, which were (0.1) (5-p-2)

2 [Rh(cod)(12)]BF, THF, H, (80 bar), 80 °C  98/72
(0.1) (8-0-2)
[Rh(cod)(12)]BF4 THF, NEt; (0.2 equiv), 30749

subsequently transformed into the target compounds by al
chemo- and diastereoselective heterogeneous hydrogenatioq3

using Pd/C or Rh/AlO; as catalysts. The requirgticon- 0.2) Hy (80 bar), 80 °C (B-1-2)
figuration is thereby established, and only two out of four 14 [Rh(cod)(12)]BF;  THF, Cs:COj3 (0.25 equiv), 10729
possible diastereocisomers are formed. Since the separation 0.1) Ha (80 bar), 80 °C (B-1-2)
of the enantiomers (th8-p- and 5-L-nucleoside) is not a 15  [Rh(cod)(12)]BF, THF, H: (80 bar), 80 °C  67/58

(0.01) (B-p-2)
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and/or thymine) in the substrate might enable a precoordi-
nation with the catalyst, which should enhance the selectivity.
The fully hydrogenated tetrahydrofuran derivatige the
selectively base-hydrogenated furdnand nucleobas@
formed upon hydrogenolytic €N bond cleavage were
expected as possible byproducts in the hydrogenatidn of
Table 1 summarizes our results obtained for the asym-
metric hydrogenation of furaf. Emphasis in this catalyst
screening study was put on commercially available ligands

(NEt) led to some enantioselectivity (10% ee; entry 3). The
selectivity-enhancing effect of an admixed base has already
been observed by Kuwano and co-workers, but to a much
larger extent? As expected, by using the mirror-imaged
ligand §-(R)-7 the p-b-nucleoside (65% vyield, 8% ee)
predominated.

The catalyst [Rh(nbd®)]CIO, was unselective re-
garding enantiocontrol but exhibited a good reactivity
(entry 4).L-Hydroxyproline-derived ligan®?° with [Ru(p-

and recently published diphosphines. Depending on catalystcymene)CJ]. provided racemic tetrahydrofura? in 56%

precursor, additives, solvent, and reaction conditions, marked
differences within the individual systems have been observed.

yield (entry 5). Again, addition of a base (0.1 equiv of BJEt
entry 6) significantly enhanced both yield and ee (77%

In this paper, only systems leading to hydrogenated productsand 26%, respectively). The benzothiophene-based catalyst

are disclosed. The yield always refers to isolated product
The amount and distribution of side products thymige (
and4'7 (Figure 2) was not accurately determined for each
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Figure 2. Ligands6—12.

run. Surprisingly, the fully hydrogenated tetrahydrofugéh
was not detected under conditions described in this paper.
Products arising from trans-hydrogenations (de vah@$%)
were not observed in any of these experiments.

The reactivity of the cationic catalyst generated in situ from
[Rh(nbd}]BF, and the bulky electron-rich ligand of the
Josiphodamily (R)-(S)-6® was significantly lower than the
one of the neutral Rh catalyst with the structurally similar
ligand R)-(9-7.1° The latter afforded the desired product in
good yields (73-75%, entries +3). The addition of a base
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[Rh(cod)(R,R)-10)|BF,* performed rather disappointingly,
giving 2 in only 10% yield without any detectable selectivity
(entry 7). The addition of base only influenced the chemo-
selectivity of the hydrogenation, yielding side prodddb
a larger extent.

However, the increase of the steric bulk in the ligand
sphere by switching from bis(dimethylphospholangRj-
10 to the bis(diethylphospholane) derivativé&9)-112*
improved not only the activity but also the selectivity of the
catalyst (68% yield and 23% e@-0-2), entry 9). MeOH
instead of THF as solvemeversedthe enantioselectivity of
the hydrogenation. Though in low yield;L-2 was prefer-
entially obtained (23% ee; entry 10). A lower catalyst loading
(from 0.3 to 0.1 equiv) led to a slightly decreased yield but
increased the ee (32%; entry 11). By further increasing the
steric demands of the catalyst, yields and enantioselectivities
could be improved. Addition of 0.1 equiv bltiphanetype
catalyst [Rh(cod)® R)-12)|BF,** allowed for the reduction
of 1 in 98% yield together with 72% enantiomeric purity
(entry 12). The addition of a base (NBtr CsCOs) reversed
the stereoselectivity of the hydrogenation (entries 13 and 14),
yielding predominantly5-L-2 with 49% and 29% ee,
respectively. The performance of [Rh(co®R)-12)|BF, at
a catalyst loading of 1% still gavB-p-2 with 67% vyield
and 58% ee.

In the present paper, one of the highest enantioselectivities
for a homogeneous hydrogenation of a furan derivative is
reported.
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