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Abstract
There is a pressing need to improve the efficiency of drug development, and nowhere is that need more clear than in the case 
of neglected diseases like malaria. The peculiarities of pyrimidine metabolism in Plasmodium species make inhibition of 
dihydroorotate dehydrogenase (DHODH) an attractive target for antimalarial drug design. By applying a pair of comple-
mentary quantitative structure–activity relationships derived for inhibition of a truncated, soluble form of the enzyme from 
Plasmodium falciparum (s-PfDHODH) to data from a large-scale phenotypic screen against cultured parasites, we were able 
to identify a class of antimalarial leads that inhibit the enzyme and abolish parasite growth in blood culture. Novel analogs 
extending that class were designed and synthesized with a goal of improving potency as well as the general pharmacokinetic 
and toxicological profiles. Their synthesis also represented an opportunity to prospectively validate our in silico property 
predictions. The seven analogs synthesized exhibited physicochemical properties in good agreement with prediction, and 
five of them were more active against P. falciparum growing in blood culture than any of the compounds in the published 
lead series. The particular analogs prepared did not inhibit s-PfDHODH in vitro, but advanced biological assays indicated 
that other examples from the class did inhibit intact PfDHODH bound to the mitochondrial membrane. The new analogs, 
however, killed the parasites by acting through some other, unidentified mechanism 24–48 h before PfDHODH inhibition 
would be expected to do so.
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Introduction

There were approximately 228 million malaria cases in 
2018, with 405,000 deaths attributed to malaria [1]. Infec-
tion by Plasmodium falciparum and P. vivax are the most 
common causes of the disease in humans, with the former 
being responsible for the greatest mortality. Growing resist-
ance to currently available antimalarial drugs makes identi-
fication of new compounds with novel modes of action and 
activity against resistant parasites a matter of great urgency 
[2–4].

Finding new molecular targets is one way to reduce the 
risk of cross-resistance developing after introduction of a 
new antimalarial. Fortunately, biochemical idiosyncrasies 
of the parasite provide several distinct targets that reduce 
the risk of undesirable “off-target” effects. Unfortunately, 
the expected return on investment for “neglected diseases” 
like malaria is too low to motivate large-scale commercial 
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development of compounds directed at those disease targets. 
A few pharmaceutical companies have made substantial 
contributions to public-sector drug discovery efforts (par-
ticularly in the form of screening results), but most work in 
the area has been done by academic groups and nonprofit 
organizations.

Funding constraints and limited synthesis resources make 
in silico and collaborative approaches particularly attrac-
tive for such noncommercial applications. Computational 
methods being employed range from constructing quantita-
tive models of the relationship of molecular structure to the 
specific biological activity of interest (QSARs) or to more 
general molecular properties related to in vivo absorption, 
distribution, metabolism, excretion, and toxicity (ADMET 
QSPRs). Physiologically based pharmacokinetic (PBPK) 
simulations are also potentially useful, in that they are able 
to combine individual system-specific properties with drug-
specific information in order to anticipate how a compound 
will behave in vivo. Such simulations are needed to take 
into account complex interactions between physicochemi-
cal properties—e.g., lipophilicity, solubility, and permeabil-
ity. The goal here is to kill the parasites, of course, which 
makes such modeling applications somewhat different from 
those in which one is trying to adjust some physiological 
imbalance. The situation is similar to oncology, though the 
adversary in the case of malaria is—fortunately—more con-
sistent in its presentation. We were targeting the blood-stage 
parasite, so the goal was to get compounds to red blood cells 
in the systemic circulation and keep them there; distribution 
to peripheral tissues was not particularly desirable.

Efforts to use virtual screening to identify new antimalari-
als have had limited success. Zhang et al. [5], for example, 
built QSAR models using training data from a 3,133-com-
pound library that contained 158 confirmed actives. The 
models obtained were used to screen a commercial data-
base (ChemBridge, San Diego, CA) in order to identify new 
potential leads. From this virtual screen, 176 compounds 
representing 22 unique scaffolds were identified and tested 
for growth inhibition. Of these, 7 were active against P. fal-
ciparum chloroquine-susceptible (3D7) and chloroquine-
resistant (K1) strains ex vivo with a concentration required 
to kill half of the organisms  (XC50) of 1 μM or less [5].

Here, we used QSAR models and PBPK simulations 
to pick an attractive lead series from “hits” in a pheno-
typic assay, then extended that series by generating a 
virtual library of novel analogs. An array of predicted 
properties—PfDHODH inhibition, physiochemical prop-
erties, and pharmacokinetic profiles—were used to select 
a handful of candidates for further evaluation. The full 
range of predicted properties taken into consideration are 
spelled out in Supplementary Data Table S2. The ADMET 
Risks [6] they highlight can reduce oral bioavailability or 
pose toxicity problems, which makes them relevant in any 

drug design program. PBPK simulations using predicted 
ADMET properties as input parameters were carried out 
to determine whether virtual compounds were likely to 
have good enough oral absorption and slow enough sys-
temic clearance to sustain a blood concentrations high 
enough to kill the parasite given a dosing regimen accept-
able for existing antimalarial drugs (vide infra). Surviv-
ing virtual compounds were synthesized and characterized 
experimentally.

The methodology described herein focuses on the use 
of in silico tools for identifying novel lead compounds for 
synthesis in a way that exploits QSAR and PBPK mod-
eling to minimize the bench resources needed. The work-
flow can be characterized as follows:

1. Use enzymatic screening data to generate a predictive 
QSAR model for an attractive target.

2. Apply the QSAR obtained to a large and diverse library 
of structures and associated phenotypic activity to 
identify a lead series predicted to exhibit good ADMET 
properties in aggregate.

3. Create unique combinations of active substituents from 
discovered scaffolds.

4. Predict activity, ADMET properties, and PK profiles 
based on QSAR and PBPK models.

5. Choose and synthesize attractive candidates from the 
analogs identified.

6. Measure biological activities and ADMET properties of 
the synthesized compounds.

7. Iterate as needed.

The work described here covers a single iteration of 
this workflow that provided us with an opportunity to 
assess the ability of our models to make good activity 
and ADMET property predictions for novel compounds. 
It also represents a proof-of-concept exercise of our lead 
discovery and optimization tools and analytical methods 
developed over the past several years. Our hope was that 
we might, in the process, also contribute something of 
value to the search for novel antimalarials.

As a proof-of-concept project, the scale of our work 
was necessarily limited. The scope was nonetheless broad 
and deep enough that we encountered several challenges 
typical of larger drug development projects. Those chal-
lenges included needing to revise our original design to 
incorporate more practical synthesis schemes, to revise 
synthesis targets to work around failed reactions, and to 
encountering an off-target mode of action. Fortunately, in 
our case the off-target activity was one that results in more 
rapid death of the parasite than inhibiting our intended 
target does.
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Lead selection and compound design

Plasmodium species cannot salvage preformed pyrimi-
dine bases for nucleic acid synthesis as its human hosts 
can. Dihydroorotate dehydrogenase (DHODH) is a critical 
enzyme in the de novo pyrimidine synthesis pathway in the 
parasite and, thus, a potential target for antimalarial drug 
therapies [7, 8]. The enzyme from Plasmodium species is 
located in the mitochondrion and utilizes ubiquinone (also 
known as coenzyme Q) as a cosubstrate.

Predicting DHODH inhibition

Data on PfDHODH inhibition were collected from the lit-
erature for a structurally diverse group of compounds. These 
included triazolopyrimidines [7, 9], diphenylureas [10], 
and 2-cyano-3-hydroxy acrylanilides [11], among others 
[12–15]. Quantitative data were not available for inhibition 
of the intact enzyme, which is bound to the mitochondrial 
membrane by its hydrophobic N-terminus in vivo [16]. A 
total of 89 of those compounds had been assayed against 
the soluble recombinant form of PfDHODH (s-PfDHODH) 
from which the hydrophobic “tail” has been removed. The 
very low solubility of CoQ-10 limits its utility in vitro, so 
an artificial ubiquinone (dodecylubiquinone [DQ]) is usually 
used as substrate instead.

The  IC50 data for these 89 compounds were converted 
to inhibition constants  (Ki’s) by assuming competitive 
inhibition against DQ and applying the method described 
by Cheng and Prusoff [17]. Two artificial neural network 
ensemble (ANNE) regression models were constructed 
(henceforth referred to as Model A and Model B) using 
ADMET Modeler™ module of ADMET Predictor® [18]. 
The models were built on distinct 20% hold-out test sets 
(see Supplementary Methods for details). That and the use 
of different random number seeds led to somewhat differ-
ent descriptor sets, complexities and performance statistics 
(Table 1). The two models complemented each other well, 
with Model A yielding more conservative activity estimates 

(fewer false positives) and model B being more sensitive 
(more prone to generating false negatives). Hence, using 
them together to identify potent compounds worked better 
than using either model alone. Plotting the observed versus 
predicted values from the models illustrated the ability of 
both models to adequately predict the  Ki values from both 
the training set that was used to build the models and the test 
set used to validate the models (Fig. 1). 

Selecting a lead series

The developed QSAR models were used to analyze struc-
tures for 13,533 antimalarials identified in a phenotypic 
screen of nearly 2 million compounds that was carried out 
by GlaxoSmithKline (GSK). The published data included 
P. falciparum growth inhibition for the chloroquine-sensi-
tive 3D7 (PubChem AID 2306) as well as for the multid-
rug resistant strain Dd2 (PubChem AID 2302). Data from 
a counter screen for mammalian cytotoxicity was available 
from PubChem AID 2303 [19].

There were some important limitations in working with 
this data set. First, evaluating efficacy against parasites cul-
tured in human erythrocytes provides no direct information 
on a compound’s mode of action. Secondly, only results for 
the active compounds (those that inhibited parasite growth 
by at least 80% at a concentration of 2 μM) were reported. 
The lack of data on inactives posed a considerable risk of 
synthesis resources being wasted on seemingly “novel” 
analogs that in fact had already been synthesized but not 
reported due to their lack of activity. Lastly, many of the 
compounds in the screening data set exhibited undesirable 
physical properties and/or undesirable substructures (e.g., 
multiple halogenated thiophene rings) that would cause them 
to be avoided by many pharmaceutical companies [20].

Candidate lead series from the active compounds in 
the phenotypic screening data set were identified and 
structural classes were generated in MedChem Studio™ 
[21] based on shared substructures. Unlike most other 
approaches [22], the method used in MedChem Studio 

Table 1  Properties and 
performance of the Ki models

RMSE root mean square error, MAE mean absolute error, SRCC  Spearman’s rank correlation coefficient, 
Q2 predictive relevance for the verification and test sets
a ANN architecture indicated by number of neurons x number of input descriptors
b Training set
c Internal test set used trigger early stopping
d Hold out test set [6]

Statistic Model A (1 × 9a) Model B (2 × 29)

Trainb Verifyc Testd Train Verify Test

MAE 0.51 0.52 0.44 0.29 0.37 0.43
SRCC 0.77 0.78 0.76 0.92 0.88 0.88
Q2 – 0.83 0.68 – 0.90 0.71
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does not cluster compounds (in this case, actives) into 
exclusive subsets based on the degree of pairwise overlap 
in their substructural fingerprints. Rather, it generates non-
exclusive classes of molecules that share a maximal com-
mon substructure. In most cases, this shared substructure 
is, itself, a scaffold in the medicinal chemistry sense. If 
not, it can readily be modified to become one. The non-
exclusivity is advantageous for lead series identification 
because it is typically easier to see cases where overlap-
ping classes can profitably be combined by merging the 
scaffolds that define them.

Classes were evaluated as potential lead series based on 
the QSAR-predicted inhibitory potencies against PfDHODH 
and the degree of parasite growth inhibition observed in the 
phenotypic screen for chloroquine-sensitive P. falciparum 
3D7 (PubChem AID 2306). ADMET Risk™, which indi-
cates how many of an array of ADMET property rules are 
violated by a compound [6], was also taken into consid-
eration. The rule thresholds are calibrated against a subset 
of the World Drug Index (WDI) that is enriched in orally 
delivered commercial drugs similar to that used by Lipinski, 
et al., for anticipating solubility and oral absorption prob-
lems [23]. Ninety percent of the WDI reference set have an 
ADMET Risk score less than seven.

Low group averages were preferred for both predicted  Ki 
and ADMET Risk, but the spread in each profile was also 
important. Lack of variation in potency indicates a “lack of 
SAR”, which makes it difficult to enhance activity against 
the target by modifying structure. Similarly, a lack of vari-
ation in ADMET Risk suggests that it will be difficult to 
engineer out potential liabilities by changing structures. The 
exception would be a class wherein all ADMET Risk scores 
are very low, and that was never the case in this dataset.

Results for three classes at an intermediate stage of the 
series definition process are shown in Fig. 2. Two of the 
classes—diphenyl ureas (DPUs) and triazolopyrimidines 
(Tzs)—represent PfDHODH inhibitor lead series that had 
already been explored or were being actively explored by 
other research groups [24, 27].

The 2-(3-aminopropylamino)-4-quinolone (APAQ) class 
was particularly promising because its scaffold bore a dis-
tinct resemblance to ubiquinone, which is a cosubstrate for 
PfDHODH in vivo (Fig. 3). They also resembled N-hydroxy-
2-dodecyl-4-quinolone (HDQ) (Fig. 3) which Dong et al. 
had determined to have good antimalarial activity, with PfD-
HODH as its primary target [25]. Although they reported 
that HDQ inhibited parasite growth in culture and were able 
to show that PfDHODH was the site of action, they did not 
have access to soluble enzyme. Hence the  XC50 obtained 
in culture could not be translated into an in vitro  Ki for the 
enzyme. HDQ was therefore not included in the data set used 
to build the PfDHODH inhibition models. Two quinolones 
found among the “hits” reported by Patel et al. [8] were 
initially grouped with some of the APAQs. These lack the 
defining 2-amino substitution and so did not appear in the 
final lead series, which was comprised of 113 actives.

None of the APAQs were reported to be cytotoxic to the 
mammalian HepG2 cells used in the companion AID 2303 
screen, which suggests that the intrinsic risk of mammalian 
toxicity is small. That said, many of them had discouragingly 
high ADMET Risk scores. In particular, the two most active 
examples (Fig. 3) violated 7 and 9 of the standard ADMET 
Risk rules, respectively. Both are large and were predicted to 
be excessively hydrophobic, to be highly bound in plasma, to 
exhibit low water solubility, and to be acutely toxic to rats. In 
addition, CID 44535189 has an excessively large number of 

Fig. 1  Performance plots for the ANNE regression models developed 
for in vitro PfDHODH inhibition built from literature data. The plot 
for Model A is on the left and the plot for Model B is on the right. 

Labeled points correspond to data from Supplementary Table S1: (a) 
Tz18; (b) P05; (c) G47; (d) D10; and (e) Tz11
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rotatable bonds and was predicted to exhibit chronic toxicity 
in mice. Besides the five likely liabilities shared with CID 
44535189, CID 44534046 was predicted to be metabolized 
by CYP2D6 and CYP3A4, to inhibit CYP3A4, and to bind 
to the human ether-a-go-go (hERG) gene product.

Analog generation and selection

The predictions of high lipophilicity, low water solubility, 
high susceptibility to metabolism by cytochrome P450s 
(especially CYP2D6), and hepatotoxicity were common 
among the actives in the APAQ class. Substituents from the 
less risky APAQs were combinatorially reshuffled in silico 
to generate lead candidates with more favorable activity 

and property profiles. Substituents from each R-group were 
drawn from the known actives in the class. Doing so 
increases the likelihood that the structures produced will be 
synthetically accessible, since at least one example already 
exists where that substituent was placed at that position. In 
addition: only single substitutions were allowed at the dis-
tal nitrogen; only simple substituents (hydrogen, halogen, 
methyl, or trifluoromethyl) were allowed on the quinolone 
ring; and substitution was restricted on the distal aromatic 
rings. The resulting constrained combinatorial R-group 
explosion produced a virtual library of ~ 99,000 novel 
analogs.

Attractive lead analogs from the virtual library were 
selected based on their predicted PfDHODH inhibitory 

Fig. 2  Comparing property distributions across three representative 
classes: triazolopyrimidines (Tzs), aminopropylaminoquinolones 
(APAQs) and diphenylureas (DPUs). The portion of each representa-
tive structure highlighted in blue corresponds to the class scaffold. 
Growth inhibition is shown as %inhibition vs. P. falciparum strains 

3D7 and DD2, which are chloroquine-sensitive and -resistant, respec-
tively. pKi_pred values are the negative log of the predicted  Ki in 
µM, so a larger number indicates higher potency; their distribution 
for Models A and B are shown. ADMET Risk is a measure of likely 
development liabilities that can range from 0 to 24 [6]

Fig. 3  Scaffold and structures of 
compounds associated with the 
APAQ lead series
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power in both QSAR models, their predicted ADMET prop-
erties, and their expected ease of synthesis. Compounds for 
which the predicted PfDHODH  Ki for Model A was greater 
than 0.1 µM and with ADMET Risk > 4 were set aside, as 
were compounds that were out-of-scope1 with respect to 
Model A. Though Model B was useful for identifying good 
lead series, it failed to provide much further discrimination 
between APAQ analogs, hence whether its prediction for a 
particular molecule was out-of-scope or not was disregarded.

As is often the case, descriptors for some of the com-
pounds ultimately selected for synthesis based on activity 
predictions fell well outside the range of descriptors for com-
pounds used to train one or more of the metabolism models 
available at the time. Predictions for such compounds were 
considered “out-of-scope” extrapolations and, therefore, not 
necessarily reliable. Compounds with in-scope predictions 
were favored in selecting candidates for further analysis but 
ignoring those for which any prediction was out-of-scope 
was impractical. Such limitations in coverage are common 
for any novel chemistry, but they are also a major motivation 
for continuously refining and expanding ADMET models to 
improve their predictive performance.

Once analogs predicted to have relatively low potency 
or discouraging ADMET properties had been filtered out, 
approximately 34,001 analogs still remained. Of those, 
17,334 bore symmetrical central diamine moieties, a fea-
ture expected to greatly simplify synthesis. ADMET Predic-
tor now includes a synthetic difficulty score analogous to 
that described to the synthetic accessibility score described 
by Ertl and Schuffenhauer [26]. That functionality was not 
available when this project began, however, so assessment 
was carried out manually by visual inspection of analogs 
displayed in a tile view, i.e., in a gridded rather than a row 
format. In retrospect, the manual process was reasonably 
effective. The synthetic difficulty scores for the symmetri-
cal diamine analogs ranged from 1.95 to 5.0 (median 3.62, 
where 10 is most difficult) and the final dozen candidates 
(vide infra) ranged from 2.5 to 4.15 (median 3.35), indicat-
ing that the final candidates were fairly representative of the 
initial pool in terms of synthetic accessibility.

Marginal aqueous solubility was a central concern that 
had to be balanced against model predictions that substi-
tution at the central carbon of a 1,3-diaminopropyl bridge 
should improve activity and reduce CYP metabolism. 
This and other ADMET Risks prompted us to manually 
expand the library by introducing small point changes to 
some marginal analogs. One such change was “mutat-
ing” a gem-cyclohexyl ring at the central carbon of the 

aminopropylamino bridge to a gem-cyclopentyl ring. No 
such compound existed among the GSK actives, though 
there were several derived from trans 1-amino-2-amino-
methylcyclopentane [19, 27]. A 1,2-ring is expected to adopt 
a quite different 3D conformation from that for a 2,2-ring, 
thereby placing the terminal group at quite different posi-
tions in space.

After the initial set of lead compounds were selected, 
their expected pharmacokinetic profiles were evaluated 
by applying the in silico predictions and standard human 
physiologies in GastroPlus® [28] to predict plasma concen-
tration-versus-time profiles. Property estimates were taken 
from ADMET Predictor and dosing regimens were similar to 
those used for existing antimalarial drugs, e.g., chloroquine. 
Target plasma concentrations were based on predicted  Ki 
values.

An initial set of diverse synthesis candidates (Supplemen-
tary Table S2) was selected from among those predicted to 
have good potency as well as an acceptable ADMET Risk 
score and favorable simulated in vivo PK profiles. The 
twelve synthesis targets produced by this process had struc-
tural variations at three different positions: the R1 substitu-
ent on the quinolone end of the scaffold; the R2 and R3 sub-
stituents off of the distal nitrogen of the aminopropylamino 
bridge; and the R4 and R5 substituents off of the central car-
bon in the bridge. The beginning of the reduction-to-practice 
phase was announced in a press release in September 2011 
[29] and bids were solicited from several contract synthe-
sis companies. Four of the targets distributed are shown in 
Fig. 4.

The individual compounds proposed were synthetically 
feasible, but the number of separate intermediates and vari-
ations in reaction conditions required would have been pro-
hibitively expensive. Instead, variations were restricted to 
either end of the molecule and we focused on a single kind 
of aminopropylamino bridge. Doing so made it likely that 
similar reaction conditions and intermediates could be used 
to make multiple analogs. The convergent synthesis plan 
greatly reduced the potential for complications and budget 
overruns. Though not often dwelt on in the literature, such 
considerations are often a critical practical consideration for 
any molecular design project; hence their explicit inclusion 
here. In the end, we settled on seven analogs built around a 
simplified scaffold bearing the novel gem-cyclopentyl group 
at the central carbon of the bridge. Diversity was provided 
by placing three different substituents on the distal nitrogen 
(i.e., R2) (Fig. 5).

Kalexsyn, Inc. (Kalamazoo, MI) synthesized a revised 
list of seven target analogs. Carbonyl precursors suitable for 
reductive amination were available or accessible for some of 
the desired R2 substituents, considerably simplifying their 
synthesis.

1 A prediction was flagged as “out of scope” when any of its descrip-
tor values fell more than 10% outside the range of the corresponding 
values seen for the data set upon which the model was trained.
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Experimental results and discussion

The candidates chosen under the plan outlined above 
struck a reasonable balance between structural diversity 
and being accessible via reasonably convergent and paral-
lel synthetic methodologies. Despite our hopes and best 
intentions, however, the particular substituents targeted for 
the distal nitrogen still needed some tweaking as regards 
how the coupling was carried out. Similarly, although 
the 6-methoxy analog moiety is very similar in structure 
to that in the 6-chloro and unsubstituted quinolones, its 

synthesis required a distinct approach. Fortunately, both 
approaches were relatively straightforward. What is pro-
vided here is an overview for illustrative purposes. That 
said, it is complete enough to give a sense of how much 
effort was involved in generating the seven targeted ana-
logs. More details are provided in the Supplementary 
Materials.

Synthesis

The general synthesis procedure used is outlined in 
Scheme  1. gem-Dicyanocyclopentane was prepared by 

Fig. 4  Four of the 12 APAQ 
synthesis targets initially put out 
for bids

Fig. 5  Initial scaffold used 
for R-Group explosion versus 
the final, simplified scaffold 
shared by the analogs that were 
synthesized

Scheme 1  Syntheses of three 
variations on the free amino 
APAQ scaffold 7 

5

5   + 7a: X = H
7b: X = Cl
7c: X = OMe

6a: X = H
6b: X = Cl
6c: X = OMe
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condensation of malononitrile with dibromobutane and 
reduced to the diamine 5 using lithium hydride in tetrahy-
drofuran. Subsequent reaction with 2-chloro-4-methoxyqui-
nolines yielded 7a–c after hydrolysis in HCl.

2-Chloro-4,6-dimethoxyquinoline (6c) was prepared by 
condensation of malonic acid with p-anisidine, yielding 
2,4-dichloro-6-methoxy quinoline [30], which was converted 
to the desired dimethoxy compound by treatment with meth-
oxide in methanol (Scheme 2).

Reductive alkylation of the distal amino group in 7a 
with thiophene carbaldehyde to yield 8 proceeded readily 
with cyanoborohydride in methanol at room temperature, 
whereas preliminary formation of the imine and heating 
were required to generate the tetrahydrocarbazole analog 9 
and the tetrahydroquinolines 10a–c from the corresponding 
ketones (Scheme 3).

Protection of the indole nitrogen in the former case 
was not necessary. In fact, difficulties with deprotect-
ing the product made it counterproductive. Blocking the 
amino group in the tetrahydroquinolone, on the other 
hand, was essential. Though reductive amination with the 
free amine failed, the t-butyloxycarbonyl(Boc)-protected 

dihydroquinolone reacted cleanly. Deprotection with 
 ZnBr2 in dichloromethane (DCM) or transesterification 
in formic acid followed by hydrolysis in NaOH afforded 
the targeted analogs 11a–c (Scheme 3).

Analogs bearing an unsubstituted imidazolinone ring 
in place of the dimethylthiophene ring in 8 were attrac-
tive in terms of predicted activity and ADMET properties. 
Unfortunately, several attempts to prepare and purify them 
failed. Some N-protected intermediates were generated, 
but all broke down during deprotection or during purifica-
tion. The 1,3-dimethylimidazolinones 12a and 12b were 
synthesized in their stead (Scheme 4). The added methyl 
groups were predicted to reduce solubility somewhat, 
but absorption was expected to be enhanced. Moreover, 
the methyl groups were predicted to be cleaved off in the 
liver to produce the original targets. This change in targets 
necessitated the use of N,N’-dimethylimidazolinone-4-car-
boxaldehyde, which was prepared from ethylene glycol 
and N,N’-dimethyl urea, then formylated with  POCl3 in 
dimethylformamide. Condensation with the respective free 
amino precursor yielded the desired APAQs (Scheme 4).

Scheme 2  Synthesis of 
2-chloro-4,6-dimethoxy qui-
noline

6c

Scheme 3  Synthesis of targeted 
APAQs 8–11 

9

7a

7a

8

7a-c
10a: X = H
10b: X = Cl
10c: X = OMe

11a: X =H
11b: X = Cl
11c: X = OMe

R = Boc

R = H



Journal of Computer-Aided Molecular Design 

1 3

ADMET properties: predicted vs. experimental

To become a drug candidate, a lead molecule must possess 
many favorable pharmacological properties, including good 
solubility, metabolic stability, and low toxicity as well as 
activity. Hence, ADMET QSARs and QSPRs provide a valu-
able complement to activity models in avoiding unfavorable 
ADMET profiles, provided the predictions they provide are 
accurate and reliable. Measured physicochemical properties 
of the most active synthesized compounds were determined 
experimentally and are compared with the predictions from 
ADMET Predictor 9.0 in Table 2. Most of the observed and 
predicted properties have a root mean squared error (RMSE) 
of 0.8 log units or less. Aqueous solubility was an exception, 
but not an unexpected one. That is because the compounds 
were all isolated as foams that subsequently solidified to 
glassy solids, the solubilities of which can be quite difficult 
to measure accurately.

Rates of in vitro clearance determined from a panel 
of recombinant microsomes containing human CYPs 
were measured, as was that by human liver microsomes 
(HLMs). The results obtained are shown in Table 3. The 

overall performance of the models in ADMET Predictor 
is good, but interpretation is more complicated than for 
the physicochemical properties. These are not predictions 
of simple intrinsic clearance, as several of the relevant 
concentrations at half-maximal metabolic velocity  (Km’s) 
are predicted to be low enough for partial saturation to 
be an issue (Supplementary Table S3). This underscores 
the desirability of having affinity models (here, for  Km) 
available to put data on microsomal stability obtained at a 
single concentration into proper context.

The results for CYP2C9 and CYP2C19 in Table 3 also 
illustrate why it is important to make regression models 
for enzyme activity contingent on classification models 
that distinguish substrates from nonsubstrates [6, 31]. 
Nonsubstrates are necessarily absent from the data used 
to construct the regression models, and the classification 
models confidently identify them [32] as being out-of-
scope for the corresponding regression models. The clear-
ance predictions provided represent the values expected 
if they were substrates, which the classification models 
confidently predict they are not.

Scheme 4  Synthesis of imida-
zolinone analogs 12a and 12b 

12a: X =H
12b: X = Cl7a-b

Table 2  Predicted and measured physicochemical properties of the candidates

Compound 8 9 11a 11b RMSE 

Name SLP0005 SLP0003 SLP0004 SLP0006  

S+Sw (µg/mL) 
 obsd. solubility 

1.8 
33 

0.32 
0.76 

3.4 
32 

1.2 
22 11-fold 

S+logP 
 obsd. logP 

4.7 
4.2 

5.05 
4.4 

4.3 
3.5 

5.0 
5.45 ±0.63 

S+pKa1

 obsd. pKa1

5.24 
4.95 

5.24 
4.80 

5.29 
4.22 

5.14 
4.75 ±0.63 

S+pKa2

 obsd. pKa2

8.01 
8.33 

7.63 
7.36 

7.74 
7.80 

7.55 
7.55 ±0.21 

S+logD6.8

 obsd. logD6.8

3.44 
2.68 

4.46 
3.76 

3.54 
2.46 

4.36 
4.73 ±0.77 

logP logarithm of the octanol:water partition coefficient, logD6.8 logP at pH 6.8, obsd observed, pKa1 negative logarithm of the first dissociation 
constant, pKa2 negative logarithm of second dissociation constant, RMSE, root mean squared error, S+ denotes a proprietary model from Simu-
lations Plus, Inc., Sw aqueous solubility
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The situation is somewhat different for CYP1A2. Here 
the substrate classification predictions are uncertain—the 
confidences are near toss-up (41–60%), but they are still 
consistent with the low to nonexistent experimental clear-
ance values for this isoform.

CYP kinetics are complicated by the potential for auto-
inhibition [33]. The APAQs were not tested as inhibitors, 
but all were predicted to inhibit CYP2D6. That may explain 
the consistent overestimation of CYP2D6 clearance for 
CYP2D6, for which the predicted affinities are high—i.e., 
for which the  Km’s are all less than 1 μM (Supplementary 
Table S3). All four analogs are also predicted to be CYP3A4 
inhibitors, but the corresponding  Km’s are 15 μM or above, 
making autoinhibition unlikely to be a problem at 1 μM.

Pharmacokinetic predictions

The intrinsic clearances for the most active APAQs would 
have posed a risk high enough to discourage further develop-
ment of these compounds had they not exhibited acceptable 
pharmacokinetic profiles using the other property predic-
tions. In fact, high predicted microsomal clearance was the 

Table 3  Predicted and measured rates of metabolism by CYPs in vitro

 Property 8 9 11a 11b  

CYP Name SLP0005 SLP0003 SLP0004 SLP0006  

1A2 Substratea

Pred. CL1µMb

Obsd. CL1µM

No (60%) 
(6.9) 
10 

Yes (48%) 
4.9 

 9.3c

No (41%) 
(5.5) 
7.3c

Yes (43%) 
10.7 
NDd 2-folde

2C9 Substratea

Pred. CL1µMb

Obsd. CL1µM

No (89%) 
(137) 
4.1d

No (77%)  
(231) 
NDd

No (96%) 
(214) 
1.8d

No (76%) 
(245) 
NDd (CLint predicted 

as if they were 
substrates) 

2C19 Substratea

Pred. CL1µMb

Obsd. CL1µM

No (94%) 
(532) 
14.6 

No (93%) 
(115) 
3.8 

No (87%) 
(642) 
3.5 

No (97%) 
(571) 
2.2c

2D6 Substratea

Pred. CL1µMb

Obsd. CL1µM

Yes (82%)f

330 
31 

Yes (63%)f

381 
10.6 

Yes (63%)f

420 
30 

Yes (82%)f

447 
18 20-fold 

3A4 Substratea

Pred. CL1µMb

Obsd. CL1µM

Yes (92%) 
41 
256 

Yes (98%) 
135 
179 

Yes (98%) 
155 
298 

Yes (98%) 
84 

263 3-fold 

HLM Pred. CL
Obsd. CL 

171 
220 

138 
120 

117 
230 

250 
620 1.8-fold 

CLint intrinsic clearance, CYP cytochrome P450, HLM human liver microsomes, ND not detected, Obsd,observed, Pred predicted. aPredicted to 
be a substrate (yes/no; percent confidence)
b Clearance at 1 µM expressed as µL/min/mg HLM protein. Clearance predictions for compounds predicted not to be substrates are set off by 
parentheses
c Possibly a substrate
d Unlikely to be a substrate
e Fold-errors calculated from the root mean square errors (RMSE) in the log for compounds predicted to be substrates
f Predicted to be an inhibitor as well as a substrate

Fig. 6  Human concentration–time profile expected for 9 based on 
PBPK simulation using GastroPlus. Pharmacokinetic parameters 
were taken from experimental values where available and estimated 
using the QSAR models in ADMET Predictor otherwise.  Conc 
concentration, Ki predicted inhibition constant for PfDHODH when 
plasma protein binding is taken into account
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reason several otherwise attractive candidates that failed to 
yield acceptable pharmacokinetic profiles were set aside dur-
ing analog selection. The result for compound 9 is shown 
in Fig. 6. Here the predicted fraction unbound in plasma 
(fup < 3%) and high volume of distribution (Vd; estimated at 
7 L/kg) offset the relatively high predicted intrinsic clear-
ance. Basically, too little of the compound is likely to get 
into the liver for hepatic metabolism to be a problem. As 
a result, the bioavailability is predicted to be high enough 
to produce a favorable in vivo profile, given an appropriate 
dosing schedule—here, a schedule similar to that currently 
used for chloroquine.

Both  fup and  Vd are in fact flagged as ADMET Risks by 
default, because they can make it harder for a drug to get 
from the plasma into peripheral tissues. That is not relevant 
to the blood phase of the Plasmodium life cycle, but would 
affect the ability of the compound to attack liver stages. The 
fact that they can offset potential first-pass metabolic liabili-
ties is one good reason to examine pharmacokinetic simula-
tion results for compounds of interest that raise piece-wise 
risk flags [31].

The QSAR predictions of Vd and fup for 9 are similar to 
the values predicted for chloroquine (10.6 L/kg2 and 9%, 
respectively), which is widely used to treat malaria, and thus 
are not unrealistic pharmacokinetic parameters.

Biological results

All aminoquinolones synthesized for this project were 
assayed for ex vivo antimalarial activity in blood culture and 
for inhibition of s-PfDHODH. Characterization in terms of 
kill rate is very resource-intensive, as is determining whether 
or not parasites can be rescued from growth inhibition by 
transfection with Saccharamyces cerevisiae DHODH (ScD-
HODH) DNA (see the section below on “Inhibition of intact 
PfDHODH”). These assays were, therefore, only carried out 
for the two most active candidates for which sufficient mate-
rial was available—8 and 11b. In addition, historical data for 
some of the APAQs in the PubChem dataset, including ScD-
HODH rescue and ex vivo activity, were made available by 
the Tres Cantos Medicines Development Campus-Diseases 
of the Developing World, GSK (Tres Cantos) [19].

XC50s for cultured parasites

Antimalarial activity in blood culture was determined as 
previously described [35, 36] at the University of Califor-
nia, Riverside, under conditions essentially identical to those 

used by GSK [19]. Table 4 shows the experimental results 
obtained in asynchronous cultures, expressed as the con-
centration required to reduce growth by 50%  (XC50). With 
the exception of the imidazolinones 12a and 12b, the new 
compounds were more potent than the most active APAQs 
in the GSK data set.

With the exception of 12a, the novel analogs met the 
minimum potency threshold (better than 2 μM) for parasite 
proliferation called for in the Medicines for Malaria Venture 
(MMV) guidelines at the time [37], with 11b satisfying the 
ideal criteria with an  XC50 below 100 nM. Similar antima-
larial potencies were obtained in replicate assays carried out 
at UC Riverside and at Tres Cantos. The compounds were 
also tested in the chloroquine-resistant Dd2 strain, which 
contains an efflux pump [38]. It was gratifying to see that 
the ratio of  XC50′s between the resistant and susceptible 
strains—i.e., the resistance ratio (Table 4)—was lower for 
all of the APAQs than the value of 15.5 reported for chlo-
roquine [39].

Speed of killing time course assay

The parasite reduction ratio (PRR) is an indicator of how 
rapidly parasites are killed by antimalarial treatment [40]. 
Preliminary assays carried out at Tres Cantos for 8 and 11b 
yielded 48-h parasite in vitro reduction ratios (PPRs) of 
approximately 3 log units, i.e., 99.9% of the parasites were 
killed in the first 48 h of exposure (1 lifecycle). This was 
slightly better than pyrimethamine, which was included as 
a positive control. Such rapid killing of the parasite is very 
desirable for antimalarials [41]. Little or no lag time in the 

Table 4  Antimalarial activity of APAQs in asynchronous blood cul-
ture

PfDHODH dihydroorotate dehydrogenase from Plasmodium falcipa-
rum, Ki inhibition constant, Pred predicted
a Concentration required to reduce parasite growth rate by 50%
b (−) and (+) denote chloroquine-susceptible and -resistant strains, 
respectively
c Most active APAQs in the GSK data set

Compound Pred. PfDHODH XC50 (µM)a,b Resistance 
ratio (±)

Ki (µM) 3d7(−) Dd2(+)

12a 0.049 10.0 46 4.6
12b 0.051 1.61 6.4 3.9
11a 0.023 0.55 2.3 4.1
11c 0.037 0.37 1.78 4.8
8 0.037 0.30 1.47 5.0
9 0.025 0.106 0.21 2.0
11b 0.038 0.037 0.24 6.6
CID  44534046c 0.112 0.89 4.6 5.2
CID  44535189c 0.077 0.85 8.6 10.1

2 The actual  Vd for chloroquine is difficult to determine experimen-
tally, but is probably much higher [34].
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onset of killing was evident for either compound, compared 
to the 24–48 h time lag reported for triazolopyrimidine 
inhibitors of PfDHODH [42].

Inhibition of s‑PfDHODH in vitro

Identification of a compound’s mode of action is important 
in drug discovery because it opens the door to structure-
based drug design and because it helps alert researchers to 
undesirable off-target activities that might cause concern. 
In some cases, it highlights opportunities for synergistic 
inhibition of multiple targets by a single compound, i.e., 
for polypharmacology [43]. PfDHODH was the intended 
target for this proof-of-principle project, so we wanted to 
know whether the identified lead series (in general) and 
our new analogs (in particular) inhibited the enzyme in 
intact parasites.

The literature data set used to build our PfDHODH 
inhibition models was based on in vitro assays carried out 
using the truncated, soluble form of the enzyme introduced 
by Baldwin et al. [10]. Patel et al. subsequently used it 
to screen a library of 208,000 compounds and validated 
the 38 “hits” obtained by testing for inhibition of para-
site growth in blood culture [8] The seven compounds we 
designed and synthesized were poor inhibitors of s-PfD-
HODH with in vitro  IC50 > 100 μM when assayed under 
those conditions at the Tres Cantos laboratory.

This result was somewhat unexpected, because of the 
active quinolones in the QSAR model training set (com-
pounds P01 and P02 in Supplemental Table S1) and the 
potency of HDQ mentioned above. The substituents at the 
C2 position in the APAQs are longer and bulkier than are 
the styryl and pentyl groups in P01 and P02, but they are 
still much smaller than the 30- to 50-carbon polyisopre-
noid tail of the natural substrate, CoQ10.

The solubility of s-PfDHODH results from the removal 
of the hydrophobic tail that anchors the enzyme to the 
mitochondrial membrane, where its native cosubstrate 
resides in vivo. A compound that inhibits the truncated, 
soluble enzyme in vitro is likely to inhibit the full-length, 
membrane-bound form. The converse—that an inhibitor 
of the full-length enzyme will necessarily inhibit the trun-
cated one—is not necessarily true, especially for inhibitors 
like the APAQs that resemble ubiquinone more than they 
resemble dihydroorotate [16]. Atovaquone, for example, 
inhibits the full-length enzyme from P. falciparum with 
a  Ki of 27 µM after solubilization in Triton X-100 [44], 
whereas the corresponding value for the truncated enzyme 
is reportedly > 500 µM when assayed under similar condi-
tions [45]. Binding to the s-RrDHODH from rat is much 
tighter  (Ki ~ 0.08 µM) and intermediate for the correspond-
ing human enzyme ((Ki ~ 2 µM). The organization of the 
N-terminal “stump” where competitive CoQ inhibitors 

bind differs substantially from species to species and 
changes upon inhibitor binding [45]. These observations 
suggest that the absence of inhibition by APAQs in the 
in vitro assay could be due to the loss of the hydrophobic 
N-terminal residues and may not reflect the activity in liv-
ing parasites.

Inhibition of intact PfDHODH

Fortunately, there is a way to address this question, though 
the method is somewhat indirect. P. falciparum parasites 
engineered to express DHODH from the yeast Saccharamy-
ces cerevisiae (ScDHODH) use fumarate as an oxidizing 
agent instead of ubiquinone, so their growth is not inhibited 
by (i.e., they are “rescued from”) inhibitors that compete 
with ubiquinone. Painter et al. used this technique to validate 
PfDHODH as an antimalarial drug target [46].

Unbeknownst to the Simulations Plus and U.C. Riverside 
groups, the Tres Cantos group had already tested several 
2-aminoquinolone actives from the GSK antimalarial data 
set for rescue by ScDHODH transfection. Their previously 
unpublished work showed that parasites were rescued from 
growth inhibition by 10 of 102 APAQs assayed, with some 
additional compounds giving an equivocal result, i.e., par-
tial rescue. An additional sixteen 2-amino-4-quinolones hav-
ing different bridging groups were also assayed; three of 
these were clearly subject to rescue, whereas three yielded 
ambiguous results. Illustrative example structures are shown 
in Fig. 7.

The APAQs from which parasites were rescued by ScD-
HODH transfection did inhibit s-PfDHODH in vitro, but 
with higher in vitro  IC50′s (i.e., with lower affinity) than 
expected given the phenotypic assay results—3.1 and 
5.2 μM for the most potent examples. The most potent GSK 
analog (CID 44,537,350) had an in vitro  IC50 of 0.86 μM. It 
bore a 4-(2-pyridyl)butylamino group in place of the 3-ami-
nopropyl amino group in our series.

The limitation of this test is that the failure of transfection 
to rescue parasites from the other APAQs tested—includ-
ing 8 and 11b—does not imply that those compounds do 
not inhibit the intact Plasmodium enzyme. It does imply, 
however, that PfDHODH inhibition is not their exclusive 
mode of antimalarial action. Basically, 8 and 11b start kill-
ing the parasite in culture immediately (see above), whereas 
specific PfDHODH inhibitors take 24–48 h to do so [47]. A 
somewhat analogous situation exists for atovaquone, which 
is much more potent in blocking respiratory oxidation of 
ubiquinol than in inhibiting PfDHODH directly [46]. In 
that case, the time frame and the end result—the parasite is 
starved of the CoQ it needs to synthesize pyrimidine nucleo-
tides—are the same for both targets,only the target itself is 
different.
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The bottom line is that APAQs as a class evidently do 
inhibit PfDHODH ex vivo but that, at least for our most 
potent analogs, some other, more rapid-onset mode of action 
is responsible for their antimalarial activity.

Other suggested modes of action

The malarial methionyl t-RNA synthetase (PfMRS) has also 
been suggested as a target. A patent for 2-aminoquinolones as 
antibiotics was filed in 1999 [27, 48] and the mode of action 
was characterized as being inhibition of bacterial MRS. How-
ever, the 26 compounds characterized as MRS inhibitors in 
that patent were not among the actives in the Gamo et al. data 
set [19], which argues against the idea that MRS might be 
the target in malaria. Subsequent to the work described here, 
two other APAQs characterized as bacterial MRS inhibitors 
(REP3123 and REP8839 in Fig. 8) were shown to inhibit the 
malarial enzyme in vitro and to be potent antimalarials ex vivo 
[49].

Those authors did not test for activity against PfDHODH, 
however, nor did they present conclusive evidence that 

blocking PfMRS was the compounds’ mode of action in the 
intact parasite.

In fact, the rapid knockdown and absence of a lag time 
in the PRR experiments argues against any kind of protein 
synthesis inhibition being involved, at least for 8 and 11b [50].

Conclusions

The 2-(3-aminopropylamino)-4-quinolones generated by the 
model-driven in silico design approach described here are 
potent antimalarial lead drug candidates. The methodology 
used to design compounds that target PfDHODH yielded 
lead candidates with excellent activity against P. falcipa-
rum parasites as well as acceptable ADMET properties and 
favorable PK profiles. Compounds from the first design 
iteration were predicted to be more potent in blood culture 
than structurally related literature compounds and their 
experimentally determined potencies were consistent with 
that expectation. It seems likely that further iterations and 
in vivo characterization would be productive.

Fig. 7  Active GSK APAQs 
from which P. falciparum 
grown in blood culture were 
rescued by transfection with 
ScDHODH

Fig. 8  Malarial methionyl 
t-RNA synthetase (PfMRS) 
inhibitors with antimalarial 
activity
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The results presented here do not pin down the primary 
antimalarial mode of action for the APAQs, but do indicate 
that it is probably neither PfDHODH nor protein synthesis. 
Fortunately, the lack of cytotoxicity the lead series showed 
against mammalian cells in culture suggests that inhibition 
of the primary target, whatever it is, is not intrinsically 
problematic with respect to human beings. If that is indeed 
the case, having multiple activities should improve pros-
pects for further development iterations centered around 
this class of chemistry, since hitting multiple targets is a 
good way to slow development of resistance.

This successful proof-of-principle study highlights 
how useful in silico tools can be in de novo design and 
for identifying lead compounds from phenotypic screens. 
The example chosen illustrates how including predictive 
PBPK simulations early in the workflow can reduce the 
risk of relying too heavily on any single ADMET property 
filter when selecting analogs for synthesis. Applied more 
generally, the overall approach has the potential to reduce 
the number of compounds that need to be synthesized to 
get from discovery through optimization, to make animal 
testing more efficient, and to reduce attrition in clinical 
trials. Beyond being useful as a proof-of-principle, the 
exercise provided prospective validation of several kinds 
of in silico property predictions as well as an example 
of the kind of unexpected off-target activity commonly 
encountered in drug development projects—in this case, 
a desirable one.
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