

Available online at www.sciencedirect.com

CHINESE CHEMICAL LETTERS

Chinese Chemical Letters 22 (2011) 1309-1312

www.elsevier.com/locate/cclet

Synthesis and preliminary biological evaluation of a technetium-99m labeled thymidine analog

Chun Xiong Lu^{a,b,*}, Zheng Wu Wang^{b,c}, Quan Fu Jiang^a, Jie Tang^a, Cheng Tan^a, Jian Kang Zhang^a

^a Key Laboratory of Nuclear Medicine, Ministry of Health/Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China

^b School of Chemical & Material Engineering, Jiangnan University, Wuxi 214122, China ^c Department of Food Science & Technology, School of Agriculture and Biology Shanghai Jiao Tong University, Shanghai 200240, China

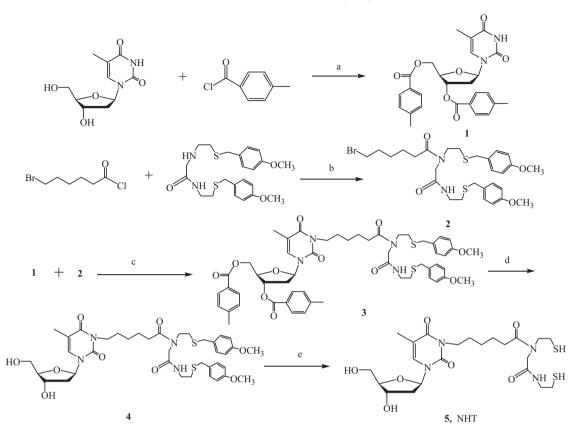
> Received 2 April 2011 Available online 28 July 2011

Abstract

The synthesis and labeling of 99m Tc- N^3 -{N'-[2-sulfanyl-ethylamino)acetyl]-2-aminoethyl-sulfanyl-1-hexanamide}thymidine (99m Tc-NHT) were studied. In the presence of sodium glucoheptonate (GH) and ethylene diamine tetraacetic acid (EDTA), 99m Tc-NHT was obtained by using bisaminoethanethiol (N₂S₂) as a bifunctional coupling agent. The radiochemical purity of the 99m Tc-NHT was over 95%. Biodistribution of 99m Tc-NHT was performed in hepatoma HepA tumor-bearing mice. At 2 h p.i., the ratios of tumor-to-bone and tumor-to-blood were 4.41 ± 0.32 , 2.45 ± 0.24 and 1.51 ± 0.18 , respectively. © 2011 Chun Xiong Lu. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

Keywords: Synthesis; 99mTc-NHT; Biodistribution; Thymidine analog; Tumor imaging

In clinical oncology, 2'-deoxy-2'-[¹⁸F]fluoro-D-glucose (¹⁸F-FDG), a glucose derivative, has been widely used for tumor imaging with positron emission tomography (PET) in recent years. However, ¹⁸F-FDG is a non-specific tracer for tumor imaging since glucose is highly utilized by many other cells, such as macrophages found in inflammatory lesions [1,2].

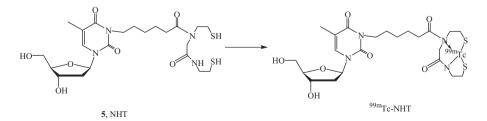

To overcome this inconvenience of FDG, many studies have been focus on the development of a variety of DNA precursors [1,3–5]. Specifically, the labeled thymidine analog can target the proliferative activity of malignant lesions [6,7], several useful ligands, such as ¹¹C-labeled nucleoside thymidine [1], 3'-deoxy-3'-[¹⁸F]fluoro thymidine ([¹⁸F]-FLT) [1,3–5] and its analog ¹⁸F-FMAU [8] have been demonstrated their good imaging features. However, these tracers labeled with either ¹¹C or ¹⁸F, which were short half-life isotopes produced by a cyclotron, with complicated radiochemical synthesis and the lower radiochemical yield and high cost of PET examination, all these limited their use as tracers in routine clinical studies.

Technetium-99m (99m Tc), the most commonly used radioisotope in SPECT, is continuously available at a reasonable cost in many hospitals and has ideal nuclear properties for imaging ($T_{1/2} = 6.02$ h, $\gamma = 140$ keV). Therefore

* Corresponding author.

E-mail address: luchunxiong@yahoo.com.cn (C.X. Lu).

^{1001-8417/\$-}see front matter © 2011 Chun Xiong Lu. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved. doi:10.1016/j.cclet.2011.06.012



Scheme 1. Reagents and conditions: (a) DMAP, CH_2Cl_2 , ref; (b) DMAP, CH_2Cl_2 , 0 °C; (c) K_2CO_3 , DMF/acetone (1/1, v/v), 50 °C; (d) CH_3ONa , methanol, rt; (e) CF_3COOH , $Hg(CH_3COO)_2$, H_2S , 0 °C.

it is important to develop a 99m Tc labeled thymidine analog so as to provide the ideal characteristics needed for routine clinical studies [9–12].

In this communication, we report the synthesis of a thymidine analog, N^3 -{N'- [2-sulfanylethylamino)acetyl]-2amino-ethylsulfanyl-1-hexanamide}thymidine (NHT), which could be labeled easily by technetium-99m and explored the primary labeling conditions. Biodistribution of ^{99m}Tc-NHT was performed in hepatoma HepA tumorbearing mice. The purpose of this study is to conjugate thymidine analog with chelating agent and evaluate the feasibility of technetium-99m-labeled thymidine analog as candidate for tumor imaging agent.

The labeled precursor NHT was synthesized through a multiple-step reaction using thymidine as a starting material and the total yield was 34.68%. The synthesis procedure is outlined in Scheme 1. Thymidine was protected at the 3',5'-O-position with *p*-toluoyl chloride in CH₂Cl₂ to give compound **1**, and 6-bromohexanoyl chloride was coupled with *N*-[2-((2-S-(4-methoxybenzyl)sulfanyl)ethyl)amino]acetyl-S-(4-methoxybenzyl)-2-aminoethanethiol (N₂S₂) in CH₂Cl₂ to give compound **3** was through substitution reaction using compound **1**

Scheme 2. Reagents and conditions: SnCl₂, GH, EDTA, Na^{99m}TcO₄, 100 °C, 30 min.

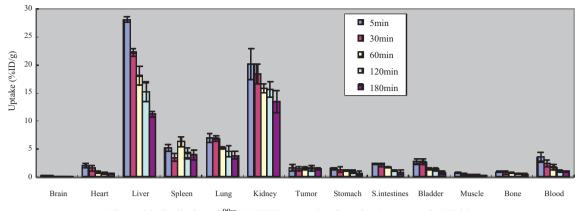


Fig. 1. Biodistribution of 99m Tc-NHT in tumor-bearing mice ($x \pm \sigma$, n = 5, %ID/g).

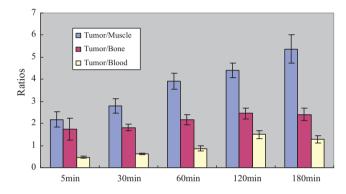


Fig. 2. Ratios of tumor-to-muscle, tumor-to-bone and tumor-to-blood.

and compound 2 in an acetone/DMF mixed solvent. The compound 4 was obtained by removing the toluoyl protecting groups of compound 3 with sodium methoxide in methanol. The thiol protecting groups, 4-methoxybenzyl, of compound 4 were removed with $Hg(OAc)_2$ in trifluoroacetic acid to give compound 5 (NHT) [13].

Using $SnCl_2$ as reducing agent, and in the presence of sodium glucoheptonate (GH) and ethylene diamine tetraacetic acid (EDTA), a series of studies were performed to optimize labeling efficiency of ^{99m}Tc-NHT, as show in Scheme 2. When the reaction temperature was set at 100 °C and kept for 30 min, the labeled yield and radiochemical purity (RCP) were over 95%, which determined by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC) [14].

RCP of freshly prepared ^{99m}Tc-NHT was evaluated every hour at room temperature to determine whether it was stable within 6 h. The results showed that the ^{99m}Tc-NHT had good stability in vitro.

Biodistribution of 99m Tc-NHT was performed in hepatoma HepA tumor-bearing mice showed that the high uptake of 99m Tc-NHT in liver and kidney, which means that the clearance of 99m Tc-NHT was mainly through the hepatobiliary pathway and the renal pathway, as show in Fig. 1. At 2 h post injection, the ratios of tumor-to-muscle, tumor-to-bone and tumor-to-blood were 4.41 ± 0.32 , 2.45 ± 0.24 and 1.51 ± 0.18 , respectively, as show in Fig. 2.

In summary, we have synthesized a novel thymidine analog NHT, which can be easily labeled with ^{99m}Tc. Biodistribution of ^{99m}Tc-NHT in tumor-bearing mice showed that the high uptake of ^{99m}Tc-NHT in liver and kidney. At 2 h p.i., the ratios of tumor-to-muscle, tumor-to-bone and tumor-to-blood were 4.41 ± 0.32 , 2.45 ± 0.24 and 1.51 ± 0.18 , respectively. This indicated that ^{99m}Tc-NHT might be a potential SPECT imaging agent for tumor study.

Acknowledgments

Financial support was provided by Natural Science Foundation of Jiangsu Province (no. BK2008112), and Department of Health of Jiangsu Province (no. H200624).

References

- [1] A.F. Shields, J.R. Grierson, B.M. Dohmen, et al. Nat. Med. 4 (1998) 1334.
- [2] R. Kubota, S. Yamada, K. Kubota, et al. J. Nucl. Med. 33 (1992) 1972.
- [3] L. Lu, L. Samuelsson, M. Bergstrfm, et al. J. Nucl. Med. 43 (2002) 1688.
- [4] A.F. Shields, J. Nucl. Med. 44 (2003) 1432.
- [5] H. Barthel, M. Perumal, J. Latigo, et al. Eur. J. Nucl. Med. Mol. Imaging 32 (2005) 257.
- [6] H. Barthel, M.C. Cleij, D.R. Collingridge, et al. Can. Res. 63 (2003) 3791.
- [7] W. Chen, T. Cloughesy, N. Kamdar, et al. J. Nucl. Med. 46 (2005) 945.
- [8] H. Sun, A. Sloan, T.J. Mangner, et al. Eur. J. Nucl. Med. Mol. Imaging 32 (2005) 15.
- [9] Y. Zhang, X. Dai, D.F. Kallmes, et al. Tetrahedron Lett. 45 (2004) 8673.
- [10] B. Teng, Y. Bai, Y. Chang, et al. Bioorg. Med. Chem. Lett. 17 (2007) 3440.
- [11] S. Celen, T. Groot, J. Balzarini, et al. Nucl. Med. Biol. 34 (2007) 283.
- [12] C. Lu, Q. Jiang, H. Yu, et al. Nucl. Sci. Technol. 21 (2010) 106.
- [13] Analytical data for NHT. IR (film, cm⁻¹): (3360, 2926, 2835, 1680, 1663, 1629, 1556, 1470, 1363, 1271; ¹H NMR (400 MHz, CD₃OD): δ 8.25 (s, 1H), 7.82 (m, 1H), 6.31 (t, 1H, *J* = 6.6 Hz), 4.37–4.42 (m, 1H), 4.16 (s, 1H), 3.97 (m, 2H), 3.92 (m, 2H), 3.73–3.80 (m, 2H), 3.61 (m, 2H), 3.50 (m, 1H), 3.33–3.43 (m, 4H), 3.22 (m, 1H), 2.70–2.74 (t, 1H, *J* = 7.2 Hz), 2.59–2.69 (m, 3H), 2.51–2.56 (t, 1H, *J* = 7.6 Hz), 2.41–2.44 (d, 1H, *J* = 6 Hz), 2.17–2.33 (m, 2H), 1.91 (s, 3H), 1.58–1.74 (m, 4H), 1.35–1.42 (m, 2H); ¹³C NMR (400 MHz, CD₃OD): δ 175.1, 170.0, 164.5, 151.5, 135.4, 110.2, 87.8, 86.5, 78.0, 71.2, 61.8, 49.0, 41.5, 41.0, 33.1, 31.2, 29.5, 26.8, 26.5, 26.0, 25.0, 13.2; ESI–MS (*m/z*); 533.1.([M+H]⁺).
- [14] HPLC of 99m Tc-NHT: Lichrospher C18 column (150 mm × 4.6 mm, 5 μ m), eluted with water/methanol (85/15, v/v); flow rate: 1.0 mL/min, retention time: 6.70 min.