

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 14 (2004) 1133–1137

Respiratory syncytial virus inhibitors. Part 2: Benzimidazol-2-one derivatives $\stackrel{\star}{\sim}$

Kuo-Long Yu,^{a,†} Yi Zhang,^a Rita L. Civiello,^a Ashok K. Trehan,^a Bradley C. Pearce,^a Zhiwei Yin,^a Keith D. Combrink,^{a,‡} H. Belgin Gulgeze,^a Xiangdong Alan Wang,^a Kathleen F. Kadow,^b Christopher W. Cianci,^b Mark Krystal^b and Nicholas A. Meanwell^{a,*}

^aDepartment of Chemistry, The Bristol-Myers Squibb Pharmaceutical Research Institute, 5, Research Parkway, Wallingford, CT 06492, USA ^bDepartment of Virology, The Bristol-Myers Squibb Pharmaceutical Research Institute, 5, Research Parkway, Wallingford, CT 06492, USA

Received 9 November 2003; revised 14 December 2003; accepted 18 December 2003

Abstract—Structure–activity relationships for a series of benzimidazol-2-one-based inhibitors of respiratory syncytial virus are described. These studies focused on structural variation of the benzimidazol-2-one substituent, a vector inaccessible in a series of benzotriazole derivatives on which $\mathbf{2}$ is based, and revealed a broad tolerance for substituent size and functionality. \bigcirc 2003 Elsevier Ltd. All rights reserved.

Respiratory syncytial virus (RSV) infections are common annual occurrences in the United States that are largely associated with the winter season, although the virus can also be detected during the summer months.²⁻⁶ Children are generally exposed to RSV initially before the age of 2 years and co-infection with other respiratory pathogens can lead to exacerbated symptoms.^{7,8} Infants with underlying cardiopulmonary problems are particularly susceptible to complications from RSV infection, which is the most common viral cause of death in children under 5 years of age.⁶ Moreover, reinfection with RSV is common in both children and adults, a consequence of incomplete immunity of limited durability, whilst the morbidity and mortality associated with RSV infections of the elderly may be significantly underestimated since it is frequently misdiagnosed as influenza.^{6,9} The humanized monoclonal antibody palavizumab (Synagis[®]), delivered by a series of injections, is licensed for the prevention of RSV

0960-894X/\$ - see front matter \odot 2003 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2003.12.072

infections,¹⁰ whilst ribavirin, frequently administered by aerosolization, is the only approved therapeutic agent.¹¹ However, ribavirin is a non-selective antiviral agent and teratogenic,¹² prompting a search for more potent and selective inhibitors of RSV.^{2,13} The majority of screening campaigns have relied upon a virus replication assay designed to identify leads without bias for a specific mechanistic intervention. Interestingly, many of the selective RSV inhibitors that have recently emerged have been characterized as interfering with the fusion of virus and host cell membranes.^{14–20}

We have recently profiled the fundamental structure– activity relationships associated with a new class of RSV fusion inhibitor, a series of benzotriazole derivatives of which 1 is representative.¹ The diethylaminoethyl side chain of 1 was found to be quite tolerant towards

^{*} Corresponding author. Tel.: +1-203-677-6679; fax: +1-203-677-7702; e-mail: nicholas.meanwell@bms.com

^{*} For Part 1 of this series, see ref 1.

[†] Current address: Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285-0438, USA.

^{*} Current address: Cumbre Inc., 1502 Viceroy Drive, Dallas, TX 75235, USA.

structural variation, with a broad range of polar and non-polar functionality compatible with RSV inhibition. The principal requirement related to a minimum 2 atom separation between the terminal functionality and the benzimidazole heterocycle. As part of a broad survey designed to delineate the pharmacophore associated with 1, replacement of the benzotriazole element with a benzimidazol-2-one was examined as a means of probing a substituent vector not available to $1.^{21-24}$ In this communication, we demonstrate that simple derivatives of 2 are potent inhibitors of RSV in vitro and establish a correspondence with 1.

Access to benzimidazol-2-one derivatives 2 was accomplished by several complementary pathways, summarized in Schemes 1 and 2. The process selected for individual targets was dictated by functional group compatibility or convenience. Alkylation of a monoprotected benzimidazol-2-one derivative 3 with an ester of bromoacetic acid was followed by liberation of the acid moiety (NaOH/MeOH for the Me ester, CF₃CO₂H for the *t*-butyl ester) to afford 4. Activation of the carboxylate of 4 using SOCl₂ or N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) was followed by the addition of a monosubstituted phenylene diamine derivative 5. Dehydration of the intermediate amide was induced by heating in AcOH at reflux to provide target benzimidazoles 2 (Scheme 1). Alternatively, as depicted in Scheme 2, alkylation of 2-hydroxymethylbenzimidazole (6), using NaH in a mixture of DMF and THF, was followed by SOCl₂-mediated chlorination to afford 7. The chloride 7 was used as an electrophile for a monoprotected benzimidazol-2-one derivative, either the carboethoxy derivative 8^{25} or the *iso*-propenyl-substituted compound 9^{26} to provide the protected precursor 10.

For 10 in which PG = iso-propenyl, hydrolysis under acidic conditions removed this protecting group²⁶ whilst for 10 with $PG = CO_2Et$, mild basic hydrolysis accomplished the conversion to 11.25 The *iso*-propenyl moiety of 9 or 10 was hydrogenated to afford the corresponding isopropyl-substituted compounds. Alkylation of the benzimidazolone nitrogen of 11 was readily accomplished under the influence of NaH, Cs₂CO₃ or the phosphazene base *t*-butylimino-tri(pyrrolidino)phosphorane (BTPP) in the presence of an electrophilic halide or mesylate, to afford target compounds 2. In some cases, the monoalkyated benzimidazol-2-one 3 was preformed using literature procedures^{25,26} and coupled with 7 to afford 2 in a more direct fashion. One final avenue exploited the mesyl moiety as a protecting group for the benzimidazole nitrogen atom in 7, a moiety readily removed from 10 using TBAF in THF to give 12. Alkylation of 12 using the same bases utilized to derivatize 11 provided target compounds 2. The ketone moieties of 2r, s and v were reduced with NaBH₄ whilst acetates 2x and y were hydrolyzed to the corresponding alcohols using K_2CO_3 in methanol.

The diazirene element incorporated into $2\mathbf{k}$ and \mathbf{m} was examined as a potential photolabelling moiety and was synthesized using 3,3-azo-l-(methanesulfonyloxy)butane²⁷ as the electrophile to alkylate **6**, a reaction mediated by KOtBu in THF.²⁸ Reaction of **8** with 4-(chloromethyl)phenyl acetate mediated by BTPP in the presence of $(nBu)_4$ NBr followed by saponification provided the corresponding phenol, which was protected as its TBDMS ether and coupled with the diazirene-containing chloride **7** using BTPP as the base. The TBDMS moiety was removed using TBAF in THF to provide phenol **2k**, which was doubly iodinated using NaI and

Table 1. Structure, RSV inhibitory activity and cytotoxicity associated with a series of substituted benzimidazol-2-one derivatives 2

Compd	R ¹	R ²	Antiviral activity $EC_{50} \ (\mu M)^a$	Cytoxicity CC ₅₀ (µM) ^b	Therapeutic index
2a	Н	iso-Propenvl	0.75 (1.165/0.326)	28.4 (30.1/26.6)	38
2h	CH ₂ CH ₂ CH(CH ₂) ₂	iso-Propenyl	0.004 (0.005/0.003)	24.7 (11.7/37.6)	6175
2c	CH ₂ CH ₂ CH(CH ₂) ₂	H	0.057 (0.084/0.030)	61.1(64.5/57.8)	1071
2d	CH ₂	CH ₂ CH ₂	0.011 (0.018/0.005)	18.6 (28.0/9.3)	1690
2u 2o	CH ₂ CH ₂ CH(CH ₃) ₂	allyl	0.016(0.010/0.000)	12.8(14.8/10.8)	800
20 2f	CH CH CH (CH)	CH CN	0.010(0.010/0.021)	A6 9 (18 1/110 1/2 17)	1671
21	$CH_2CH_2CH(CH_3)_2$	CH_2CN	0.028 (0.020/0.018/0.044)	40.8(18.1/119.1/5.1/)	10/1
2g	$CH_2CH_2CH(CH_3)_2$	$CH_2CH_2CH_2CN$	0.040(0.051/0.049)	59.0 (59.5/80.0)	1490
20	$CH_2CH_2CH(CH_3)_2$	$CH_2CH_2CH_2CH_2CN$	0.035 (0.043/0.023)	15.0(24.1/5.9)	428
21	$CH_2CH_2CH(CH_3)_2$	$CH_2CH_2CH_2CH_2CH_2CN$	0.025 (0.018/0.031)	13.4 (10.3/16.4)	536
2j	$CH_2CH_2CH(CH_3)_2$	CH_2 -4- C_6H_4 -OH	0.018 (0.015/0.021/0.017)	59.9 (49.9/108.5/21.3)	3327
2k	N→N CH ₃	CH ₂ -4-C ₆ H ₄ -OH	0.004 (0.003/0.005/0.003)	(>220/135.1/112.4)	> 28,000
21	CH ₂ CH ₂ CH(CH ₃) ₂	CH ₂ -3,5-di-I-4-C ₆ H ₂ -OH	0.686 (0.461/1.378/0.219)	>144.44 (n=3)	> 209
2m	N-N CH3	CH ₂ -3,5-di-I-4-C ₆ H ₂ -OH	0.038 (0.026/0.088/0.002)	27.13 (27.5/30.0/23.9)	713
2n	CH ₂ CH ₂ CH(CH ₃) ₂	CH ₂ -4-C ₆ H ₄ -CN	0.012 (0.014/0.010)	5.59 (5.7/5.4)	465
20	$CH_2CH_2CH(CH_3)_2$	CH_2 -4- C_6H_4 - $CON(CH_3)_2$	0.021 (0.013/0.028)	26.6 (21.6/31.6)	1266
2p	$CH_2CH_2CH(CH_3)_2$	CH2-4-C6H4-SO2CH3	0.009 (0.013/0.004)	7.5 (6.7/8.4)	833
2q	CH ₂ CH ₂ CH(CH ₃) ₂	CH_2 -4- C_6H_4 - $SO_2N(CH_3)_2$	0.004 (0.002/0.006)	> 152.7	> 38,175
2r	CH ₂ CH ₂ CO·CH ₃	iso-Propenyl	0.005 (0.005/0.004)	244.7	48,940
2s	CH ₂ CH ₂ CO·CH ₃	H	0.191 (0.184/0.198)	299.1	1565
2t	CH2CH2CHOH·CH3	iso-Propenyl	0.028 (0.046/0.01)	171.6 (211.2/131.9)	6128
2u	CH ₂ CH ₂ CHOH·CH ₃	H	0.416 (0.366/0.466)	> 261.9 (n=2)	> 629
2v	CH ₂ CO·Ph	Et	0.112 (0.062/0.024/0.25)	27.1 (59.9/11.1/10.4)	241
2w	CH ₂ CH(OH)·Ph	Et	0.037 (0.041/0.033)	> 240.7 (n=2)	>6505
2x	(CH ₂) ₃ CHOCO·CH ₃	Et	0.018 (0.007/0.029)	246.7 (243.2/250.2)	13,705
2v	(CH ₂)₄CHOCO·CH ₃	Et	0.021 (0.013/0.017/0.035)	160.7 (228.8/228.8/24.5)	7652
$\frac{-3}{2z}$	(CH ₂) ₂ OH	Et	0.229 (0.285/0.173)	64.1 (98.4/29.7)	279
2aa	$(CH_2)_2OH$	Et	0.01 (0.009/0.01)	179 4 (274 1/84 7)	17.940
2ah	(CH ₂) ₄ OH	iso-Propenvl	0.004 (0.005/0.004)	170.9(268.0/73.8)	42 725
2ac	(CH ₂) ₄ OH	H	0 173 (0 172/0 045/0 303)	> 168.0	> 971
2ad	(CH ₂),OH	iPr	0.011 (0.013/0.010)	68 3 (56 4/80 2)	6209
2au 2ae	(CH ₂) ₄ OH	Ft	0.014 (0.004/0.020/0.019)	154.0(226.4/217/4/18.3)	11,000
2ac 2af	$(CH_2)_4OH$	CHa-4-C (Hu-CN	0.053 (0.093/0.012)	39.2 (43.5/35.0)	730
2a1 2ag	$(CH_2)_4OH$	iso Propenyl	0.055(0.095/0.012) 0.114(0.117/0.111)	> 247.2	> 2166
2ag 2ah	$(CH_2)_6OH$	iso Proponyl	0.015(0.021/0.000)	70 6 (87 0/72 2)	>2100
2aii	$(CH_2)_2 CN$		0.013 (0.021/0.009) 0.000 (0.006/0.103)	> 210.2	2122
2ai	$(CH_2)_2 CN$	11 ;Dr	0.099(0.090/0.103)	72.5(29.2/109.9)	0197
2aj 2ak	$(CH_2)_2CN$	IFI Dh	0.008 (0.000/0.010)	/5.3 (58.2/108.8)	9187
Zak Zal	$(CH_2)_2CN$	FII	0.005(0.005/0.005)	12.1(n-1)	17,400
2a1 2am	$(CH_2)_3CN$	iso Propenyl	0.003(n-1)	15.1 (n-1) 102 8 (205 2/180 2)	2020
2am 2am	$(CH_2)_4CN$	iso-Propenyl	0.027 (0.039/0.013)	192.8 (203.3/180.3)	/140
2an	$(CH_2)_5CN$	iso-Propenyl	0.013 (0.016/0.009)	12.3(12.2/12.3)	946
2a0	$(CH_2)_6CN$	iso-Propenyl	0.006 (0.006/0.007)	36.0/>241.8	> 6000
2ap	$(CH_2)_6CN$		0.005 (0.004/0.007)	> 188.8	> 3 /, /60
Zaq	$(CH_2)_3CN$	$(CH_2)_4CN$	0.025 (0.022/0.028)	> 242.42	> 9090
2ar	$CH_2CH_2CH_2SO_2CH_3$	iso-Propenyl	0.03 (0.042/0.017)	123.3 (197.2/49.4)	4110
2as	$CH_2CH_2CH_2SO_2CH_3$	H	1.489 (1.91//1.060)	215.5 (206.5/224.5)	144
2at	$CH_2CH_2CH_2SO_2CH_3$	$(CH_2)_4CN$	0.0/1 (0.088/0.054)	> 214.29	> 3018
2au	$CH_2CH_2CH_2SO_2CH_3$	$(CH_2)_4OH$	0.092 (0.071/0.028/0.179)	> 229.02	> 2489
2av	$CH_2CH_2CH(CH_3)_2$	CO ₂ Et	0.298 (0.448/0.148)	57.7 (79.5/35.9)	193
2aw	$CH_2CH_2CH(CH_3)_2$	CO-NH ₂	0.050 (n=1)	133.7 (n=1)	2674
2ax	$CH_2CH_2CH(CH_3)_2$	CO-NHEt	0.052 (0.093/0.011)	18.7 (31.4/6.0)	359
2ay	$CH_2CH_2CH(CH_3)_2$	CO-NHPh	0.041 (0.038/0.044)	21.6 (32.9/10.3)	526
2az	$CH_2CH_2CH(CH_3)_2$	CO-NHCH ₂ Ph	0.086 (0.034/0.137)	6.44 (4.4/8.5)	74
2ba	$CH_2CH_2CH(CH_3)_2$	CO-CH ₃	0.710 (1.050/0.370)	115.6 (131.4/100.0)	162
2bb	$CH_2CH_2CH(CH_3)_2$	SO ₂ CH ₃	0.007 (0.005/0.01)	16.3 (20.6/12.0)	2328
2bc	$CH_2CH_2CH(CH_3)_2$	$SO_2CH(CH_3)_2$	0.065 (0.059/0.080/0.055)	16.9 (29.5/29.5/22.4)	260
2bd	CH ₂ CH ₂ CH(CH ₃) ₂	$SO_2N(CH_3)_2$	0.062 (0.039/0.085)	27.1 (18.9/37.0)	437

 a Values are the means of two experiments performed on consecutive weeks with the data from individual experiments shown in parentheses. (NA = not active).

 ${}^{b}CC_{50}$ refers to the concentration of drug causing a 50% reduction in cell viability in the absence of respiratory syncytial virus infection. Therapeutic Index = CC_{50}/EC_{50} .

iodogen. This chemistry was developed initially using a structurally simple and chemically inert isoamyl side chain, to afford **2**l.

The compounds that comprise this survey of benzimidazol-2-one-derived RSV inhibitors were evaluated as inhibitors of the cytopathic effect induced by the Long (A) strain of RSV in the HEp-2 human lung epithelial carcinoma cell line. The antiviral activity is reported as an EC₅₀, which represents the concentration of compound required to provide 50% protection, and is compared with the concentration of compound that causes cytotoxicity to uninfected HEp-2 cells. The results are compiled in Table 1 where the therapeutic index is calculated as the ratio of CC₅₀ to EC₅₀.

The survey delineated by the examples compiled in Table 1 establishes the viability of the benzimidazol-2one moiety as a scaffold from which potent RSV inhibitors can readily be derived. The benzimidazol-2-one moiety provides an opportunity to probe a vector unavailable to the benzotriazole ring system by modulating the N substituent. In general, when the urea nitrogen is substituted, this heterocycle provides a potency advantage that can be substantial when compared to similarly substituted benzotriazole derivatives described earlier.¹ The nature and scope of the benzimidazol-2-one N substituents examined in Table 1 were selected to provide not only insight into basic aspects of structureactivity correlates, but were also designed to incorporate structural elements and substituents capable of additional functionalization and modification. This formed the basis of a broader campaign to obtain a suitable compromise between antiviral potency and physical chemical properties that would allow evaluation in animal models of infection. The unsubstituted benzimidazole 2a is 40-fold more potent than the analogous N-1 substituted benzotriazole,¹ providing an initial indication of the superior intrinsic potency associated with the N-substituted benzimidazolone heterocycle. Whilst 2a demonstrates respectable inhibitory activity, it was anticipated based on the earlier studies that the introduction of an isoamyl side chain element would enhance potency. This expectation was indeed realized with 2b, which is over 2 orders of magnitude more potent than 2a and more than 10-fold better than the best benzotriazole derivative examined.¹ Within the context of the interrogation of isoamyl derivatives defined by 2b-j, 2l, **2n-q**, and **2av-bd**, it is readily apparent that the range of N substituents compatible with potent RSV inhibition is quite expansive, providing ample opportunity for structural variation and manipulation. The excellent activity intrinsic to prototype 2c is readily improved by substitution of the benzimidazol-2-one N atom with structurally simple alkyl and alkenyl groups (2b, d, and e), alkyl nitriles that exhibit little dependence on chain length (2f-i), functionalized benzyl derivatives (2j, l, and **n**-q) and several polar, electron withdrawing substituents (2av-bd).

Included in this work are several new benzimidazole side chain elements (R^1) that extend and further define the silhouette associated with this class of RSV fusion

inhibitor. From the homologous series of nitriles defined by 2ah and 2al-ao, it is evident that side chain length exerts only a limited effect on potency since the EC_{50} variation across this series is 5-fold with no clearly discernible pattern. This effect appears to be reproduced in the 2 *i*-Pr-substituted compounds **2aj** and **ap**, although this series was not examined as systematically as the iso-propenyl homologues. For the series of alkyl alcohol derivatives 2z-ag, antiviral activity potency appears to be optimal with 3 and 4 CH₂ units separating the polar hydroxyl moiety from the heterocyclic nucleus. The two diazirine-derivatives 2k and m provided potent antiviral agents, the result with 2m particularly gratifying since this molecule could readily be labeled with ¹²⁵I to furnish a photoaffinity agent with the potential to provide more detailed insights into the mode of action of this class of RSV fusion inhibitor at a molecular level.²⁸⁻³⁰ From the limited comparisons available, the diazirine side chain exhibits advantage over the simpler isoamyl moiety.

The safety margin for this series of RSV inhibitors, as determined by the therapeutic index, ranges from 10 for **a** to 48940 for **2r**. Three compounds, **2a**, **p**, and **az**, demonstrated measurable cytotoxicity towards the host cell line at concentrations of less than 10 μ M. Nevertheless, the high intrinsic antiviral potency associated with **2n** and **p** result in a significant therapeutic index. In general, the safety margin for this series of RSV inhibitors series is acceptable with no obvious patterns based on overall lipophilicity, a documented correlate with cytotoxicity.³¹

In summary, the data presented in Table 1 establish the benzimidazol-2-one moiety as an effective structural background for the generation of potent inhibitors of RSV and both broadens and extends structure–activity relationships for this chemotype.¹ The availability of an additional structural vector unavailable to the benzotriazole prototypes has provided significant potency advantage and there is broad tolerance for functionality in this region of the pharmacophore. Structural evolution of the benzimidazol-2-one class of RSV inhibitor towards compounds that demonstrate antiviral activity in animal models of RSV infection will be described in due course.

Acknowledgements

We would like to thank Drs. Kim Wright and Richard J. Colonno for their support and encouragement throughout this work.

References and notes

- For Part 1 of this series, see: Yu, K.-L.; Zhang, Y.; Civiello, R. L.; Kadow, K. F.; Cianci, C.; Krystal, M.; Meanwell, N. A. *Bioorg. Med. Chem. Lett.* 2003, 13, 2141.
- 2. Meanwell, N. A.; Krystal, M. Drug Disc. Today 2000, 5, 241.
- 3. Ottolini, M. G.; Hemming, V. G. Drugs 1997, 54, 867.

- 4. Wyde, P. R. Antiviral Res. 1998, 39, 63.
- 5. Halstead, D. C.; Jenkins, S. G. South. Med. J. 1998, 91, 433.
- Thompson, W. W.; Shay, D. K.; Weintraub, E.; Brammer, L.; Cox, N.; Anderson, L. J.; Fukuda, K. JAMA 2003, 289, 179.
- Greensill, J.; McNamara, P. S.; Dove, W.; Flanagan, B.; Smyth, R. L.; Hart, C. A. *Emerging Infect. Dis* 2003, 9, 372.
- 8. Heikkinen, T.; Chonmaitree, T. *Clin. Microbiol. Rev.* **2003**, *16*, 230.
- 9. Hashem, M.; Breese Hall, C. J. Clin. Virol. 2003, 27, 14.
- Johnson, S.; Oliver, C.; Prince, G. A.; Hemming, V. G.; Pfarr, D. S.; Wang, S.-C.; Dormitzer, M.; O'Grady, J.; Koenig, S.; Tamura, J. K.; Woods, R.; Bansal, G.; Couchenour, D.; Tsao, E.; Hall, W. C.; Young, J. F. J. Infect. Dis. 1997, 176, 1215.
- 11. Gilbert, B. E.; Knight, V. Antimicrob. Agents Chemother. 1986, 30, 201.
- 12. Reyes, G. R. Curr. Opin. Drug Disc. Dev. 2001, 4, 651.
- (a) Prince, G. A. *Exp. Opin. Ther. Patents* **1999**, *9*, 753. (b)
 Prince, G. A. *Exp. Opin. Invest. Drugs* **2001**, *10*, 297. (c)
 Krilov, L. R. *Exp. Opin. Ther. Patents* **2002**, *12*, 441.
- 14. Tidwell, R. R.; Geratz, J. D.; DuBovi, E. J. J. Med. Chem. 1983, 26, 294.
- Ding, W. D.; Mitsner, B.; Krishnamurthy, G.; Aulabaugh, A.; Hess, C. D.; Zaccardi, J.; Cutler, M.; Feld, B.; Gazumyan, A.; Raifeld, Y.; Nikitenko, A.; Lang, S. A.; Gluzman, Y.; O'Hara, B.; Ellestad, G. A. J. Med. Chem. 1998, 41, 2671.
- Nikitenko, A. A.; Railfeld, Y. E.; Wang, T. Z. Bioorg. Med. Chem. Lett. 2001, 11, 1041.
- 17. Razinkov, V.; Gazumyan, A.; Nikitenko, A.; Ellestad, G. A.; Krishnamurthy, G. Chem. Biol. 2001, 8, 645.
- Razinkov, V.; Huntley, C.; Ellestad, G. A.; Krishnamurthy, G. Antiviral Res. 2002, 55, 189.
- Huntley, C. C.; Weiss, W. J.; Gazumyan, A.; Buklan, A.; Field, B.; Hu, W.; Jones, T. R.; Murphy, T.; Nikitenko, A. A.; O'Hara, B.; Prince, G.; Quartuccio, S.; Raifeld, Y. E.; Wyde, P.; O'Connell, J. F. Antimicrob. Agents Chemother. 2002, 46, 841.
- Douglas, J. L.; Panis, M. L.; Ho, E.; Lin, K.-Y.; Krawczyk, S. H.; Grant, D. M.; Cai, R.; Swaminathan, S.; Cihlar, T. *J. Virol.* **2003**, *77*, 5054.

- Yu, K.-L.; Civiello, R. L.; Krystal, M. R.; Kadow, K. F.; Meanwell, N. A. World Patent Application WO 00/04900, February 3, 2000.
- Yu, K.-L.; Civiello, R. L.; Combrink, K. D.; Gulgeze, H. B.; Pearce, B. C.; Wang, X.; Meanwell, N. A.; Zhang, Y. W. US 6,506,738, January 14, 2003.
- Yu, K.-L.; Civiello, R. L.; Combrink, K. D.; Gulgeze, H. B.; Sin, N.; Wang, X.; Meanwell, N. A.; Venables, B. L. W. US 6,489,338, December 3, 2002.
- 24. Yu, K.-L.; Civiello, R. L.; Combrink, K. D.; Gulgeze, H. B.; Wang, X.; Meanwell, N.; Venables, B. L.; Zhang, Y.; Pearce, B. C.; Yin, Z.; Thuring, J. W. US Patent Application 2002/099208; July 25, 2002.
- Meanwell, N. A.; Sit, S.-Y.; Gao, J.; Wong, H. S.; Gao, Q.; St. Laurent, D. R.; Balasubramanian, N. J. Org. Chem. 1995, 60, 1565.
- (a) Davoll, J. J. Chem. Soc. 1960, 308. (b) Davoll, J.; Laney, D. H. J. Chem. Soc. 1960, 314.
- 27. Church, R. F. R.; Weiss, M. J. J. Org. Chem. 1970, 35, 2465.
- Dischino, D. D.; Cianci, C. W.; Civeillo, R.; Krystal, M.; Meanwell, N. A.; Morimoto, H.; Williams, P. G.; Yu, K.-L. J. Radiolabelled Cpd. Radiopharm. 2003, 46, 1105.
- Cianci, C.; Yu, K.-L.; Sin, N.; Combrink, K.; Clark, J.; Genovesi, E.; Yang, Z.; Kadow, K.; Wang, A.; Civiello, R.; Venables, B.; Li, Z.; Zadjura, L.; Voss, S.; Pearce, B.; Trehan, A.; James, J.; Roach, J.; Gulgeze, B.; Lamb, L.; Medina, I.; Langley, D.; Luo, G.; Meanwell, N.; Colonno, R.; Krystal, M. 42nd Interscience conference on antimicrobial agents and chemotherapy, San Diego, CA, Sept. 27–30, 2002, Abstract F-1705.
- Cianci, C.; Yu, K.-L.; Combrink, K.; Sin, N.; Pearce, B.; Wang, A.; Civiello, R.; Voss, S.; Luo, G.; Kadow, K.; Genovesi, E.; Venables, B.; Gulgeze, H.; Trehan, A.; James, J.; Lamb, L.; Medina, I.; Roach, J.; Colonno, R.; Clark, J.; Meanwell, N.; Krystal, M. Antimicrob. Agents Chemother. 2004, 48, 413.
- Chen, P.; Cheng, P. T. W.; Alam, M.; Beyer, B. D.; Bisacchi, G. S.; Dejneka, T.; Evans, A. J.; Greytok, J. A.; Hermsmeier, M. A.; Humphreys, W. G.; Jacobs, G. A.; Kocy, O.; Lin, P.-F.; Lis, K. A.; Marella, M. A.; Ryono, D. E.; Sheaffer, A. K.; Spergel, S. H.; Sun, C.-Q.; Tino, J. A.; Vite, G.; Colonno, R. J.; Zahler, R.; Barrish, J. C. J. Med. Chem. 1996, 39, 1991.