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ABSTRACT: Despite advances in methods for the decarbonyla-

tion of aldehydes, the decarbonylation of ketones has met with 

limited success because this process requires the activation of two 

inert carbon-carbon bonds. All of the decarbonylation reactions of 

simple unstrained ketones reported to date require the addition of 

a stoichiometric rhodium complex. We report herein the nickel/N-

heterocyclic carbene-mediated decarbonylation of simple diaryl 

ketones. This reaction shows unique acceleration effects based on 

the presence of both electron-donating and electron-withdrawing 

groups. 

The rhodium-mediated conversion of an aldehyde to its parent 

alkane with the concomitant release of a single molecule of car-

bon monoxide is known as the Tsuji-Wilkinson decarbonylation. 

This reaction allows for a formyl group to be used as a removable 

functionality, and has consequently been widely used in organic 

synthesis (Scheme 1a).1,2  

The extension of this decarbonylation reaction to ketone sub-

strates is highly desirable, because it would be a new method for 

the formation of carbon-carbon bonds (Scheme 1b). However, the 

realization of ketone decarbonylation reactions represent a much 

greater challenge than that of the corresponding aldehyde decar-

bonylation process, because the former process requires the cleav-

age of two carbon-carbon bonds,3 which are both kinetically and 

thermodynamically more stable than the carbon-hydrogen bond of 

a formyl group. In 1994, Ito and Murakami reported their pioneer-

ing work towards the decarbonylation reaction of strained and 

unstrained cyclic aliphatic ketones using RhCl(PPh3)3.
4 Although 

this reaction can be performed in a catalytic fashion with strained 

ketones, unstrained substrates require the addition of a stoichio-

metric rhodium complex to reach satisfactory levels of conver-

sion. Brookhart reported on the decarbonylation of diaryl ketones 

using a stoichiometric rhodium complex bearing a bulky cyclo-

pentadienyl ligand.5 Existing methods for the catalytic decar-

bonylation of unstrained ketones are limited to 1,2- and 1,3-

diketones,6 alkynyl ketones7 and ketones bearing a directing 

group.8 Furthermore, all of the decarbonylation reactions of un-

strained ketones reported to date are mediated by rhodium com-

plexes. Herein, we report the first nickel system capable of medi-

ating the decarbonylation of simple diaryl ketones.9 

 

 

Scheme 1. Metal Complex-Mediated Decarbonylation of 

Unstrained Aldehydes and Ketones 

 

 

We initially investigated the Ni(cod)2-mediated decarbonyla-

tion of 2-naphthyl phenyl ketone (1) in the presence of various 

ligands. Our initial screening efforts revealed that electron-rich 

phosphines, such as tricyclohexylphosphine (PCy3) and 1,2-

bis(dicyclohexylphosphino)ethane (dcype), failed to afford any of 

the desired decarbonylative product 2, with most of the starting 

material being recovered unchanged (Table 1, entries 1 and 2). 

We subsequently evaluated a series of N-heterocyclic carbene 

(NHC) ligands with the expectation that their strong σ-donor 

properties would facilitate the required C-C bond activation pro-

cess. Among the NHCs examined, IMesMe was found to be most 

effective, although the desired product was isolated in a low yield 

of 21% under the catalytic conditions. The yield increased to 63% 

when the reaction was conducted with stoichiometric Ni(cod)2 

(entries 9 in Table 1). It is noteworthy that no byproducts were 

formed in this reaction, and that the starting ketone 1 was recov-

ered in 38% yield. 
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Table 1. Development of the Nickel-Mediated Decarbonyl-

ation of Ketone 1
a
 

 
aReaction conditions: 1 (0.25 mmol), Ni(cod)2 (0.025 mmol), 

IMesMe·HCl (0.025 mmol), NaOtBu (0.06 mmol) in toluene (0.5 

mL) for 18 h at 160 °C. bReaction conditions: 1 (0.25 mmol), 

Ni(cod)2 (0.25 mmol), IMesMe·HCl (0.25 mmol), NaOtBu (0.25 

mmol) in toluene (1.0 mL) for 18 h at 160 °C. cIsolated yield. 

 

Having optimized the reaction conditions, we proceeded to ex-

plore the scope of this nickel-mediated decarbonylation using a 

series of simple diaryl ketones (Table 2). We initially evaluated 

the effects of different substituents on the performance of the 

decarbonylation reaction. The results revealed that an electron-

donating substituent such as methyl (3a), butyl (3b) or dimethyl-

amino (3c) group was well tolerated at the para-position of the 

phenyl ring. A substrate bearing an electron-deficient trifluorome-

thyl group (3d) at the same position also successfully underwent 

decarbonylation. This reaction also exhibited a high level of toler-

ance toward substrates bearing an ortho substituent on the phenyl 

ring, such as ketones 4 and 5. Polyaromatic ketone 9 bearing a 

phenanthrene group reacted smoothly under current conditions to 

give the decarbonylation product. Decarbonylation of cyclic di-

aryl ketone 10 successfully occurred under these conditions to 

form 9,10-dihydrophenanthrene. Several benzophenone deriva-

tives (11-13) were also subjected to our newly developed nickel-

mediated decarbonylation conditions and reacted as expected to 

form the corresponding substituted biphenyls. We also applied 

these conditions to a substrate bearing two benzoyl groups (14), 

which preferentially afforded the mono-decarbonylated product 

15 in 64% yield, along with the corresponding di-decarbonylated 

product (16, 12%). Enolizable ketones generally failed to form the 

decarbonylation products, but rather led to the formation of a 

complicated mixture. For example, the nickel-mediated reaction 

of 2-acetylnaphthalene afforded the decarbonylation product in 

only 12%, although the conversion of the ketone substrate was 

81%. 

We subsequently conducted a series of competition experi-

ments to gain a deeper insight into the effect of the electronic 

properties of the diaryl rings on the outcome of the decarbonyla-

tion reaction. Intermolecular competitive experiments were per-

formed using 4,4’-disubstituted benzophenones bearing different 

substituents at the para-positions of their phenyl rings (11-13). 

These reactions were conducted under milder conditions than 

those described above with shorter reactions times (Scheme 2). 

While the electron-deficient ketone 12 is reacted faster than the 

electron-rich analogue 11 under these conditions (Scheme 2a), 

ketones 12 (bis-CF3-substituted) and 13 (methyl and CF3 substi-

tuted) reacted at similar rates (Scheme 2b). It is noteworthy that 

no crossover products were observed, indicating that this process 

occurs through an intramolecular mechanism.  

 

Table 2. Substrate Scope
a
 

 

aReaction conditions: 1 (0.25 mmol), Ni(cod)2 (0.25 mmol), 

IMesMe·HCl (0.25 mmol), NaOtBu (0.25 mmol) in toluene (1.0 

mL) for 18 h at 160 °C. Isolated yields are shown unless other-

wise noted. Numbers in the parentheses refer to the yield of the 

recovered starting ketone. bNMR yield. cKetone 1 was formed as a 

byproduct (4% GC yield). dKetone 1 was formed as a byproduct 

(9% GC yield).  

Scheme 2. Intermolecular Competition Experiments 
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To further investigate the substituent effect, we conducted a series 

of parallel reactions using substrates 11-13 to compare their initial 

rates of decarbonylation (Figure 1). Interestingly, ketone 13, 

which contains both electron-donating and electron-withdrawing 

groups, underwent the decarbonylation reaction at a much greater 

rate than ketones bearing two electron-donating groups (i.e., 11) 

or two electron-withdrawing groups (i.e., 12). 

 

 

Figure 1. Measurements of the Initial Rates of the Decar-

bonylation Reactions of 11-13. Data are the average of two 

independent experiments. 

This unique acceleration effect resulting from the push/pull sub-

stituents on the phenyl rings was also observed with heterocyclic 

ketones (Table 3). 3-Quinolyl ketones bearing a relatively elec-

tron-rich aryl group, such as 17 and 18, exhibited high reactivity 

toward the nickel-mediated decarbonylation, whereas those bear-

ing an electron-withdrawing aryl group (i.e., 20) were less reac-

tive. A similar trend was also observed for the 4-quinolyl ketone 

19 bearing an electron-rich phenyl ring. It is noteworthy that a 

promising turnover was observed with ketone 17. 

Table 3. Decarbonylation of Quinolinyl Ketones
a
 

 

aReaction conditions: same as Table 2. Numbers in the paren-

theses refer to the yield of the recovered starting ketone. bRun 

using 20 mol% of Ni(cod)2/IMesMe·HCl and 25 mol% of NaOtBu. 

cNMR yields. 

 

A mechanistic model to account for the unique electronic effects 

observed in this reaction is shown in Scheme 3. The initial oxida-

tive addition of one of the C(aryl)-C(=O) bonds to nickel(0) spe-

cies would lead to the formation of aroylnickel(II) intermediate A, 

which would undergo a decarbonylation reaction to form dia-

rylnickel complex B. Finally, reductive elimination from B would 

afford the desired biaryl product, along with a nickel carbonyl 

species, which would be unable to undergo an oxidative addition 

of the C(aryl)-C(=O) bond. Indeed, a new signal was observed at 

1980 cm-1 in the IR spectra of the crude reaction mixture (see SI 

for details). As is the case for the oxidative addition of other 

strong σ-bonds by nickel,10 the initial oxidative addition process 

(14→A) would require an electron-rich nickel species bearing a 

strong σ-donor ligand. Conversely, the introduction of an elec-

tron-withdrawing group to the substrate undergoing activation by 

the electron-rich nickel species would therefore accelerate this 

process. Although the oxidative addition of unstrained C-C(=O) 

has been reported to be mediated by rhodium-based complexes,4-

8,11,12 no examples have been reported using nickel complexes 

except for those involving the use of special chelating sub-

strates.9,13 We propose that the subsequent decarbonylation of A 

would proceed through transition state TSAB, where the nickel(II) 

center in A would act as an electrophile and attack the ipso carbon 

of the aroyl ligand. A similar mechanism has been proposed for 

the palladium(II)-mediated decarboxylation of benzoic acid deriv-

atives.14 According to the current decarbonylation mechanism, the 

presence of an electron-donating substituent on the aryl group of 

the aroyl ligand would make this group more reactive. This mech-

anistic model can therefore account for the unique electronic ef-

fect observed in the current decarbonylation reaction (Figure 1). 

The overall rate for this ketone decarbonylation reaction should be 

determined based on the rates of the two C-C bond cleavage pro-

cesses, because the effect of the relatively facile reductive elimi-

nation process on the rate would be negligible. Substrates baring 

both electron-donating and electron-withdrawing groups would 

therefore undergo the decarbonylation reaction with greater ease 

because both of the C-C bond cleavage processes would be accel-

erated by these different substituents. The results of the competi-

tion experiments (Scheme 2) can be explained by assuming that 

initial oxidative addition of the C(aryl)-C=O bond would occur 

irreversibly. Under these conditions, the selectivity would be de-

termined by the rate of the initial C-C bond cleavage, and elec-

tron-deficient ketones would therefore be expected to react at a 

much greater rate than their electron-rich counterparts.15 

 

Scheme 3. Possible Mechanism 

In conclusion, we have developed a nickel-mediated reaction for 

the decarbonylation of simple aromatic ketones that proceeds via 

the cleavage of two carbon–carbon bonds. This reaction repre-

sents the first reported example of a nickel-mediated decarbonyla-

tion of unstrained simple ketones. This new reactivity of nickel 

complexes toward C-C bond activation, as well as the unique 

electronic effects of the substituents on the outcome of these pro-

cesses, could provide valuable insights for the development of 

new organometallic reactions. Studies aimed at expanding this 

new reactivity of nickel complexes to catalytic transformations 

are ongoing in our laboratories. 
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