Synthesis of planar chiral [2.2]paracyclophane monophosphine ligands and their application in the umpolung allylation of aldehydes

Tang-Zhi Zhang, ${ }^{\text {a }}$ Li-Xin Dai ${ }^{\mathrm{a}}$ and Xue-Long Hou ${ }^{\mathrm{a}, \mathrm{b}, *}$
${ }^{\mathrm{a}}$ State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China
${ }^{\mathrm{b}}$ Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China

Received 12 December 2006; accepted 15 January 2007

Abstract

Chiral [2.2]paracyclophane monophosphines $\mathbf{8}$ were synthesized via resolution using chiral palladacycle 10. Chiral phosphinite 5 was also prepared from 4 -hydroxy[2.2]paracyclophane. Phosphines $\mathbf{8}$ and phosphinite $\mathbf{5}$ were used as the ligand in the umpolung allylation of aldehydes 14 with cyclohexenyl acetate 15 , giving homoallyl alcohols 16 in high diastereoselectivity and in moderate to good enantioselectivity. Palladacycle 10 was recovered by treating the palladacycle-phosphine complexes with sodium prolinate, followed by treatment with HCl in high yield.

© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

[2.2]Paracyclophane, with a unique framework of two benzene rings connected at the para-position by two ethylene chains, has shown its special properties in many aspects. ${ }^{1}$ Different types of compounds derived from it have also been successfully used as novel chiral ligands in asymmetric catalysis, with excellent asymmetric induction being realized in many types of asymmetric reactions. ${ }^{2,3}$ However, the preparation of enantiopure [2.2]paracyclophane derivatives is still quite difficult. To the best of our knowledge, there are no reports on the synthesis and applications of chiral monophosphine derivatives of [2.2]paracyclophane ${ }^{4}$ even though chiral monophosphines are a relatively simple class of compounds and have widely been used as ligands in asymmetric catalysis. ${ }^{5}$ We have demonstrated that planar chirality in pseudo-geminal disubstituted [2.2]paracyclophane ligands plays a definite role in asymmetric induction. ${ }^{2 \mathrm{c}, 3 \mathrm{~d}}$ To show the role of planar chirality in [2,2]paracyclophane ${ }^{2 \mathrm{c}, 3 \mathrm{~d}, 6}$ and explore the applications of planar chiral cyclophane in asymmetric catalysis, we turned our attention to a study of [2.2]paracyclophane monophosphines with only planar chirality. Herein we would like to report the synthesis of [2.2]paracyclophane monophosphines and their efficient resolution using cyclopalladated

[^0]0957-4166/\$ - see front matter © 2007 Elsevier Ltd. All rights reserved.
compounds, as well as their application in the Pd-catalyzed asymmetric allylation of aldehydes.

2. Results and discussion

Two procedures were developed for the synthesis of chiral monophosphine ligands. Firstly, using Cram's procedure, racemic 4-hydroxy[2,2]paracyclophane $\mathbf{3}$ was prepared from [2,2]paracyclophane $\mathbf{1}$ in two steps. ${ }^{7}$ Its resolution was realized using naproxen acid chloride instead of the more expensive camphanoyl chloride. ${ }^{8}$ The two diastereoisomers were purified three times by crystallizations. Esters $\left(S_{\mathrm{p}}, S\right)-4$ and $\left(R_{\mathrm{p}}, S\right)-4$ were reduced with LiAlH_{4} to produce (S)-3 and (R)-3 in 90% yields and in $>99 \%$ ee, respectively. Treatment of (R)-4-hydroxy[2,2]paracyclophane 3 with chlorodiphenyl phosphine in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ in toluene gave rise to the desired phosphinite 5 in 85% yield (Scheme 1). The absolute configurations of (R) - and (S) - $\mathbf{3}$ were determined by X-ray diffraction of the precursor, (R_{p}, S)-4 (Fig. 1).

Monophosphine (S)-8a was synthesized as follows: Treatment of (S) - $\mathbf{3}$ with trifluoromethanesulfonic anhydride in the presence of pyridine gave triflate derivative $(S)-6$ in 96% yield. The coupling reaction of triflate $(S)-6$ with $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{H}$ using $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{dppp}$ as catalyst afforded (S)-7a in 84% yield. Chiral monophosphine (S)-8a was

Scheme 1. Synthesis of chiral phosphinite cyclophane 5.

Figure 1. ORTEP diagram of the X-ray structure of $\left(R_{\mathrm{p}}, S\right)$-4.
obtained in 86% yield by reduction of phosphine oxide with $\mathrm{Cl}_{3} \mathrm{SiH}$ (Scheme 2).

Although the products were obtained in high yields in every step, the process is cumbersome and expensive. Thus, another procedure was sought. According to the literature, ${ }^{4}$ bromo-lithium exchange of 4-bromo[2,2]paracyclophane 2 at low temperature followed by trapping of $\mathrm{Ph}_{2} \mathrm{PCl}$ gave racemic [2,2]paracyclophane monophosphine $\mathbf{8 a}$ in good yield (71% plus 20% yield of phosphine oxide $7 \mathbf{a}$, which could be reduced to $\mathbf{8 a}$ with $\mathrm{Cl}_{3} \mathrm{SiH}$). If monophosphine $\mathbf{8 a}$ could be resolved, it would be a simple method to obtain chiral monophosphines. There are many reports of resolving monophosphines using chiral palladacycles. ${ }^{9}$ Several palladacycles $\mathbf{9}-\mathbf{1 1}$ were tested in resolving 8a, amongst which palladacycle $\mathbf{1 0}$ was found to be the best (Scheme 3).

On mixing 8a with (+)-dichlorobis $[(R)$-dimethyl(1-(1-naph-thyl)ethyl)aminato- $C 2, N]$ dipalladium(II) $\quad \mathbf{1 0}^{10}$ in a 2:1 molar ratio in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at ambient temperature, two diastereomeric complexes $\left(R_{\mathrm{p}}, S\right)$-12 and $\left(S_{\mathrm{p}}, S\right)$ - 12 were produced after 15 min , which were readily separated by simple column chromatography. Treatment with sodium (S)-prolinate gave the enantiomerically pure $(R)-(-)-\mathbf{8 a}(44 \%$ yield, 99% ee) and (S)-(-)-8a (48% yield, 99% ee), respectively. Reaction of compound $(S, S)-\mathbf{1 3}$ with HCl allowed recovery of the valuable enantiomerically pure palladacycle (S)-10 in 92\% yield. Recovery of proline was not studied because of its water-solubility. A variety of chiral monophosphines $\mathbf{8 b} \mathbf{-}$ with different substituents on the phosphorus atom were synthesized and resolved in excellent

Scheme 2. Synthesis of chiral phosphine cyclophane 8a.

Scheme 3. Different palladacycles.
yields ($80-96 \%$, two steps) and in $>95 \%$ ee (Scheme 4, Table 1). The absolute configurations of (R) - and (S)-8 were determined by X-ray diffraction analysis of precursor (R_{p}, S)-12a (Fig. 2).

Catalytic enantioselective allylation of aldehydes represents one of the most efficient strategies for the synthesis of chiral homoallylic alcohols, which are useful intermediates in organic synthesis. ${ }^{11}$ Zanoni et al. ${ }^{12}$ were the first to report the asymmetric catalytic version of allylation of aldehydes by umpolung of a π-allyl palladium complex mediated by diethylzinc using chiral monodentate phosphorous as a ligand, affording products in satisfying yields with ee values of up to 70%. Subsequently, Zhou ${ }^{13 a}$ and Feringa ${ }^{13 b}$ provided further examples, in which higher enatioselectivities were realized. To examine the asymmetric induction of [2.2]paracyclophane monophosphine as a chiral ligand in asymmetric reactions, we chose the umpolung allylation of aldehydes as a model reaction.

In the presence of $\left[\operatorname{Pd}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2}(5.0 \mathrm{~mol} \% \mathrm{Pd})$ and ligands $(R)-5$ or $(S)-\mathbf{8}(10 \mathrm{~mol} \%)$, the reaction of aldehyde

Table 1. Resolution of phosphine $\mathbf{8}$ using palladacycle $\mathbf{1 0}^{\text {a }}$

Entry	$\mathbf{8}, \mathrm{R}$	Yield $^{\mathrm{b}}(\%)$ $(R)-\mathbf{8}$	ee (\%) $(R)-\mathbf{8}$	Yield $^{\mathrm{b}}$ $(S)-\mathbf{8}$	ee (\%) $(S)-\mathbf{8}$
1	$\mathbf{a}, \mathrm{C}_{6} \mathrm{H}_{5}$	44	99	48	99
2	$\mathbf{b}, 4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	44	98	45	98
3	$\mathbf{c}, 4-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	45	98	47	98
4	$\mathbf{d}, 3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	40	96	41	95
5	e, c-C66 H_{11}	41	99	43	99

${ }^{\text {a }}$ Molecular ratio: (1) phosphine $\mathbf{8} /$ palladacycle $\mathbf{1 0}=1 / 1$; (2) compound $12 /$ sodium (S)-prolinate $=1 / 1.2$.
${ }^{\mathrm{b}}$ Yield in two steps from racemic compound $\mathbf{8}$.

14 with cyclohexenyl acetate $\mathbf{1 5}$ proceeded smoothly to provide the corresponding homoallylic alcohol 16 (Eq. 1), the results are shown in Table 2. It can be seen that all reactions afforded syn-products in high diastereoselectivity, and the best yield (92% yield) and enantioselectivity (58% ee) were provided using $\mathbf{8 b}$ as a ligand and benzaldehyde as a substrate (entry 3) while ligands $(R)-5$ and (S)-dicyclo-hexyl[2,2]paracyclophane-4-ylphosphine 8e showed lower reactivity and asymmetric induction than those with diaryl-cyclophan-4-ylphosphine ligands 8a-d (entries 1 and 6 vs 2-5).

Scheme 4. Synthesis of chiral phosphine cyclophane 8 via resolution.

Figure 2. ORTEP diagram of X-ray structure of $\left(R_{\mathrm{p}}, S\right)$-12a.

Table 2. Pd-Catalyzed asymmetric allylation of aldehydes $\mathbf{1 4}$ with cyclohexenyl acetate $\mathbf{1 5}^{\text {a }}$

Entry	14, R	Ligand	Time (h)	16, Yield ${ }^{\text {b }}$	$\begin{aligned} & \text { syn:anti } \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { ee }^{\mathrm{d}} \\ & (\%) \end{aligned}$
1	a, Ph	(R)-5	16	a, 45	95:5	21
2	a, Ph	(S)-8a	12	a, 90	99:1	56
3	a, Ph	$(S)-\mathbf{8 b}$	12	a, 92	99:1	58
4	a, Ph	$(S)-8 \mathbf{c}$	24	a, 80	92:8	27
5	a, Ph	(S)-8d	24	a, 82	92:8	35
6	a, Ph	$(S)-\mathbf{8}$	30	a, 52	90:10	15
7	b, $1-\mathrm{Np}$	$(S)-\mathbf{8 b}$	12	b, 95	98:2	60
8	c, $4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	$(S)-8 \mathrm{~b}$	12	c, 54	97:3	7
9	d, $4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	$(S)-\mathbf{8 b}$	16	d, 85	99:1	57
10	e, $2-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	$(S)-\mathbf{8 b}$	10	e, 89	99:1	42
$11^{\text {e }}$	f, $\mathrm{PhCH}_{2} \mathrm{CH}_{2}$	$(S)-\mathbf{8 b}$	36	f, 38	91:9	72

${ }^{\text {a }}$ Molecular ratio: $\quad\left[\mathrm{Pd}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2} /(S)-\mathbf{8} / \mathbf{1 4} / \mathbf{1 5} / \mathrm{Et}_{2} \mathrm{Zn}=2.5 / 10 / 100 / 120 /$ 240.
${ }^{\mathrm{b}}$ Isolated yield.
${ }^{\text {c }}$ Determined by HPLC and/or ${ }^{1} \mathrm{H}$ NMR.
${ }^{\mathrm{d}}$ Determined by HPLC.
${ }^{\mathrm{e}} \mathrm{THF} /$ toluene $=1 / 1$ as solvent.
Using $(S)-\mathbf{8 b}$, the allylation of various aldehydes $\mathbf{1 4 b}-\mathbf{f}$ with cyclohexenyl acetate $\mathbf{1 5}$ was examined. The highest ee (72%) was provided when aliphatic aldehyde $\mathbf{1 4 f}$ was used, albeit the yield was unsatisfactory (entry 11) while a high yield (95%) and good ee (60%) were found using 1-naphthaldehyde (entry 7). The reactions using benzaldehydes $\mathbf{1 4 d}$ and 14 e with a methoxy group on the phenyl ring gave products in moderate ee (entries 9 and 10), but those with a nitro group on the phenyl ring delivered the product in much lower ee (entry 8).

3. Conclusion

In conclusion, we have developed a simple and efficient procedure for the preparation of a range of planar chiral [2.2]paracyclophane monophosphines using chiral palladacycle as a resolving reagent. This asymmetric induction ability was demonstrated in the Pd-catalyzed allylation of aldehydes. In addition, the chiral palladacycle can be
recovered by treating the palladacycle-phosphine complex with sodium prolinate, followed by treatment with HCl . Further investigations on the applications of planar chiral paracyclophanes in asymmetric catalysis are in progress.

4. Experimental

General: All reactions were performed under an argon atmosphere using oven-dried glassware. Solvents were treated prior to use according to the standard method. ${ }^{1} \mathrm{H}$ NMR spectra were recorded in CDCl_{3} or $\mathrm{C}_{6} \mathrm{D}_{6}$ at room temperature. Chemical shifts are given in parts per million relative to TMS as an internal standard. Optical rotations were measured using a thermally jacketed 10 cm cell at $20^{\circ} \mathrm{C}$ (concentration c given as $\mathrm{g} / 100 \mathrm{~mL}$). IR spectra were measured in cm^{-1}. Ee values were determined by chiral HPLC. The commercially available reagents were used as received without further purification. Compounds 3, ${ }^{7} 9,{ }^{14}$ $\mathbf{1 0},{ }^{10} \mathbf{1 1},{ }^{15} \mathrm{Ar}_{2} \mathrm{PCl},{ }^{16}$ were prepared using literature procedures.

4.1. Resolution of 4-hydroxy[2,2]paracyclophane 3

A mixture of racemic 4-hydroxy[2,2]paracyclophane 3 $(2.24 \mathrm{~g}, 10 \mathrm{mmol})$ and naproxen acid chloride $(2.98 \mathrm{~g}$, $12 \mathrm{mmol})$ in pyridine (20 mL) was stirred for 4 h at room temperature. It was diluted with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$, and vigorously stirred, until a white precipitate appeared. The precipitate was filtered off, washed with $\mathrm{H}_{2} \mathrm{O}(5 \times 100 \mathrm{~mL})$ and pentane $(2 \times 40 \mathrm{~mL})$, and dried in vacuum to give the mixture of diastereomeric esters $4(4.09 \mathrm{~g}, 94 \%$ yield). Three fractional crystallization from ethyl acetate and hexane (1:1) gave $\left(R_{\mathrm{p}}, S\right)-\mathbf{4}\left(0.52 \mathrm{~g}, 12 \%\right.$ yield) and $\left(S_{\mathrm{p}}, S\right)-\mathbf{4}$ $(0.67 \mathrm{~g}, 15 \%$ yield). The filtration was combined and reused in the resolution again.

Naproxen ester $\left(S_{\mathrm{p}}, S\right)$-4: mp 138-140 ${ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{20}=+31.9(c$ $1.05, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.88-7.79$ $(\mathrm{m}, 3 \mathrm{H}), 7.61(\mathrm{dd}, J=8.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.17(\mathrm{~m}$, $2 \mathrm{H}), 6.46-6.39(\mathrm{~m}, 4 \mathrm{H}), 6.31(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.17 (dd, $J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{dd}$, $J=14.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.00-2.84(\mathrm{~m}, 6 \mathrm{H})$, 2.71-2.50 (m, 2H), $1.78(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.1,157.7,148.9,139.3,138.9$, $141.4,135.2,135.0,133.8,133.2,132.7,132.0,130.7$, $129.8,129.3,129.2,129.0,127.6,127.3,126.3,126.1$, 119.2, 105.6, 55.3, 45.9, 35.1, 34.7, 34.0, 31.4, 18.1. EIMS m / z (relative intensity \%): $436\left(\mathrm{M}^{+}, 13\right), 185$ (66), 91 (100). IR (KBr): 3016, 2926, 2850, 1743, 1633, 1608, 1486, 1451, 1412, 1395, 1376, 1268, 1215, 1088, 1052, 1031, 1004, 925, 901, 854, 796, 715, 652, 621, 512, 476. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{O}_{3}$: C, 82.54; H, 6.46. Found: C, 82.50; H, 6.44.

Naproxen ester $\left(R_{\mathrm{p}}, S\right)$-4: mp $145-146{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{20}=+48.5(c$ $0.58, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.90-7.78$ $(\mathrm{m}, 3 \mathrm{H}), 7.62(\mathrm{dd}, J=8.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.18(\mathrm{~m}$, $2 \mathrm{H}), 6.62(\mathrm{dd}, J=7.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.45-6.36(\mathrm{~m}, 4 \mathrm{H})$, 6.24 (dd, $J=7.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}) ; 5.94(\mathrm{~s}, 1 \mathrm{H}) ; 4.14$ (dd, $J=14.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.94(\mathrm{~s}, 3 \mathrm{H}) ; 3.04-2.93(\mathrm{~m}, 4 \mathrm{H})$; $2.62-2.12(\mathrm{~m}, 4 \mathrm{H}) ; 1.72(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.2,157.7,148.8,139.4,138.9$, $141.4,135.4,135.2,133.9,133.2,132.8,131.9,131.3$, $130.0,129.2,129.0,127.9,127.4,126.3,119.3,105.6,55.3$, 45.6, 35.2, 34.7, 33.6, 31.4, 17.8; EIMS m / z (relative intensity \%): 438 (M+2, 11), 410 (25), 185 (100). IR (KBr): 2929, 2852, 1744, 1607, 1508, 1486, 1413, 1394, 1267, 1234, 1152, 1107, 1031, 925, 904, 867, 822, 716, 690, 646, 514, 481. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{O}_{3}$: C, 82.54; H, 6.46. Found: C, 82.50; H, 6.44.

4.2. (R)-4-Hydroxy[2.2]paracyclophane (R)-3 ${ }^{8}$

A mixture of $\mathrm{LiAlH}_{4}(0.450 \mathrm{~g}, 11.7 \mathrm{mmol})$ and $\left(R_{\mathrm{p}}, S\right)-4$ $(0.474 \mathrm{~g}, 1.17 \mathrm{mmol})$ in anhydrous THF $(40 \mathrm{~mL})$ was heated AT reflux for 8 h . The mixture was then cooled to $0^{\circ} \mathrm{C}$ and ethyl acetate $(10 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and 2 M $\mathrm{HCl}(50 \mathrm{~mL})$ were successively added under stirring. The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$ and the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ $(2 \times 50 \mathrm{~mL})$ and NaHCO_{3} solution and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuum. The crude product was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to produce (R)-4-hydroxy[2.2]paracyclophane 30.240 g (98% yield), $\mathrm{mp} 226-228^{\circ} \mathrm{C}$ (Ref. $8 \mathrm{mp} 232-234^{\circ} \mathrm{C}$). $[\alpha]_{\mathrm{D}}^{20}=+8.4\left(\right.$ c $\left.1.15, \mathrm{CHCl}_{3}\right)$, ee $>99 \%$ by HPLC analysis using Chiralpak AD column, hexane/isopropanol $=90: 10$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{R} 1}=12.96 \mathrm{~min}$ (major), $t_{\mathrm{R} 2}=$ 16.37 min (minor). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.00$ (dd, $J=7.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{dd}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.46-6.37(\mathrm{~m}, 3 \mathrm{H}), 5.54(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 1 \mathrm{H})$, 3.37-2.60 (m, 8H); EIMS m/z (relative intensity \%): 224 ($\mathrm{M}^{+}, 62$), 120 (96), 104 (81), 91 (100).

4.3. (S)-4-Hydroxy[2.2]paracyclophane (S)-3 ${ }^{8}$

This was obtained by the same method as that for $(R) \mathbf{- 3}$ from $\left(S_{\mathrm{p}}, 1 S\right)-3(0.451 \mathrm{~g}, 1.11 \mathrm{mmol})$ in 94% yield $(0.233 \mathrm{~g})$; $\mathrm{mp} 229-230^{\circ} \mathrm{C}$ (Ref. $8 \mathrm{mp} 232-234^{\circ}$). $[\alpha]_{\mathrm{D}}^{20}=-8.2(c$ $1.05, \mathrm{CHCl}_{3}$), ee $>99 \%$ by HPLC analysis using Chiralpak AD column, hexane/isopropanol $=90: 10$, flow rate $0.7 \mathrm{~mL} /$ $\min , t_{\mathrm{R} 1}=12.96 \mathrm{~min}($ minor $), t_{\mathrm{R} 2}=16.37 \mathrm{~min}$ (major) .

4.4. (R)-Diphenyl([2.2]paracyclophan-4-yl)phosphinite (R)-5

To a solution of (R)-4-hydroxy[2.2]paracyclophane (3) ($0.202 \mathrm{~g}, 0.90 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.9 \mathrm{~mL}, 6 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ was added $\mathrm{PPh}_{2} \mathrm{Cl}(0.35 \mathrm{~mL}, 1.8 \mathrm{mmol})$ dropwise at $-78^{\circ} \mathrm{C}$. The mixture was stirred at room temperature overnight, concentrated in vacuum, purified by flash column chromatography (ethyl acetate/petroleum ether = $1 / 10)$ to give $(R)-5$ as a white solid $(0.312 \mathrm{mg}, 85 \%$ yield). Mp 211-213, $[\alpha]_{\mathrm{D}}^{20}=+24.1\left(c 1.05, \mathrm{CHCl}_{3}\right)$, ee $>99 \%$ by HPLC analysis using Chiralcel OD column, hexane/isopropanol $=90: 10$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{R} 1}=11.21 \mathrm{~min}(\mathrm{ma}-$ jor), $t_{\mathrm{R} 2}=12.18 \mathrm{~min}$ (minor). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$: $\delta 7.87-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.00(\mathrm{~m}, 8 \mathrm{H})$, $6.52-6.18(\mathrm{~m}, 5 \mathrm{H}), 3.61-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.01-3.44(\mathrm{~m}, 7 \mathrm{H})$; ${ }^{31} \mathrm{P}$ NMR (161.92 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) 107.3 ppm ; EIMS m / z (relative intensity \%): $408\left(\mathrm{M}^{+}, 5.0\right), 201(15), 45$ (100). IR $(\mathrm{KBr}): 2923,2849,1593,1492,1434,1407,1241,1089$, 979, 877, 805, 744, 696, 503. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{OP}$: C, 82.33; H, 6.17. Found: C, 82.18; H, 6.15.

4.5. (S)-[2.2]Paracyclophan-4-yl trifluoromethanesulfonate (S) -6^{17}

To a solution of (S)-4-hydroxy[2.2]paracyclophane 3 $(0.175 \mathrm{~g}, 0.78 \mathrm{mmol})$ and pyridine $(0.5 \mathrm{~mL}, 6 \mathrm{mmol})$ in dichloromethane (2 mL) was added trifluoromethanesulphonic anhydride ($0.33 \mathrm{~mL}, 2 \mathrm{mmol}$) dropwise with stirring at $0^{\circ} \mathrm{C}$. The mixture was stirred overnight. The solution was then washed with 1 M HCl , water and saturated brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent in vacuum gave a brown solid which was purified by flash column chromatography (ethyl acetate/petroleum ether $=1 / 10$) to give $(S)-6$ as a white solid $(0.269 \mathrm{~g}, ~ 96 \%$ yield). $[\alpha]_{\mathrm{D}}^{20}=-15.4\left(c \quad 0.81, \mathrm{CHCl}_{3}\right), \mathrm{mp} 67-70^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.90(\mathrm{dd}, J=8.0,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.60-6.45(\mathrm{~m}, 5 \mathrm{H}), 6.17(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.37$ (m, 1H), 3.17-3.02 (m, 6H), 2.86-2.79 (m, 1H); ${ }^{19}$ F NMR (56.4 MHz): -74.1 ppm ; EIMS m/z (relative intensity \%): $356\left(\mathrm{M}^{+}, 28\right), 223$ (22), 104 (100), 73 (17).

4.6. (S)-Diphenyl([2.2]paracyclophan-4-yl)phosphine oxide (S) -7^{18}

A mixture of $\mathrm{dppb}(49 \mathrm{mg}, 0.114 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(17 \mathrm{mg}$, $0.076 \mathrm{mmol}), \mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{H}(307 \mathrm{mg}, 1.51 \mathrm{mmol}),(S)-4$-trifluoromethylsulfonate[2.2]paracyclophane ($269 \mathrm{mg}, 0.755$ mmol) in DMSO was stirred at room temperature for $10 \mathrm{~min} ; i-\mathrm{Pr}_{2} \mathrm{NEt}(0.66 \mathrm{~mL}, 3.8 \mathrm{mmol})$ was then added, and heated to $100^{\circ} \mathrm{C}$ for 12 h , then cooled to room temperature, diluted with ethyl acetate, washed with water three times and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent in vacuum and purification by column chromatography (ethyl acetate/petroleum ether $=1 / 2$) to gave $(S)-7$ as a white solid ($258 \mathrm{mg}, 84 \%$ yield). Mp 205-207. $[\alpha]_{\mathrm{D}}^{20}=-24.1(c$ $1.05, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.72-7.65$ $(\mathrm{m}, 2 \mathrm{H}), 7.57-7.33(\mathrm{~m}, 8 \mathrm{H}), 7.16(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.63-6.50(\mathrm{~m}, 4 \mathrm{H}), 6.29-6.24(\mathrm{~m}, 2 \mathrm{H}), 3.54-3.48(\mathrm{~m}$, 2H), 3.12-2.74 (m, 6H); ${ }^{31} \mathrm{P}$ NMR ($161.92 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 28.07 ppm . EIMS m / z (relative intensity $\%$): $408\left(\mathrm{M}^{+}\right.$, 38), 304 (100), 225 (12), 178 (16), 99 (14).

4.7. (S)-Diphenyl([2.2]paracyclophan-4-yl)phosphine (S)-8a

Compound (S)-7 ($250 \mathrm{mg}, \quad 0.59 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.6 \mathrm{~mL}$, $4.2 \mathrm{mmol})$, toluene (5 mL) were placed in a sealed tube, and cooled to $0{ }^{\circ} \mathrm{C}$, then added $\mathrm{HSiCl}_{3}(0.6 \mathrm{~mL}, 5.9 \mathrm{mmol})$, and heated to $100^{\circ} \mathrm{C}$. The reaction was kept at $100^{\circ} \mathrm{C}$ for 18 h , then cooled to $0^{\circ} \mathrm{C}$ and quenched with 1 M NaOH , and diluted with ethyl acetate. The aqueous layer was extracted with ethyl acetate $(2 \times 15 \mathrm{~mL})$. The combined organic layer was dried, concentrated, and purified by column chromatography (ethyl acetate/petroleum ether $=1 / 10$) to give (S)-8a as a white solid ($190 \mathrm{mg}, 86 \%$ yield). $[\alpha]_{\mathrm{D}}^{20}=-15.1 \quad\left(c \quad 1.0, \mathrm{CHCl}_{3}\right), \mathrm{mp} \quad 187-188^{\circ} \mathrm{C}$, ee $=99 \%$ by HPLC analysis using Chiralcel OD column, hexane/isopropanol $=95: 5$, flow rate $\quad 0.7 \mathrm{~mL} / \mathrm{min}$, $t_{\mathrm{R} 1}=7.08 \mathrm{~min}$ (minor), $t_{\mathrm{R} 2}=8.47 \mathrm{~min}$ (major). ${ }^{1} \mathrm{H} \mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.20(\mathrm{~m}$, $6 \mathrm{H}), 6.54-6.43(\mathrm{~m}, 4 \mathrm{H}), 6.20(\mathrm{dd}, J=8.1,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.72 (dd, $J=7.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.47(\mathrm{~m}, 2 \mathrm{H}), 3.11-$ $2.70(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 34.2,34.8$, $35.1,35.2,128.3,128.6,129.2,130.6,132.2,132.8,133.1$,
$133.3,133.5,134.3,135.1,135.4,135.8,137.2,139.4,139.6$, 139.8; ${ }^{31} \mathrm{P}$ NMR ($161.92 \mathrm{MHz}, \mathrm{CDCl}_{3}$) -2.46 ppm ; EIMS m / z (relative intensity $\%$): $392\left(\mathrm{M}^{+}, 73\right.$), 304 (47), 288 (100), 178 (34); IR (KBr): 2961, 2924, 2852, 1434, 745, 698, $501 \mathrm{~cm}^{-1}$. HRMS: Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{P}^{+1}: 393.1766$. Found: 393.1765.

4.8. General procedure for the preparation of paracyclophanylphosphines

To a solution of racemic 4-bromo[2,2]paracyclophane 2 $(574 \mathrm{mg}, 2 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added $n-\mathrm{BuLi}$ $(2.5 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexane, 4.0 mmol$)$ dropwise at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 2 h at this temperature. $\mathrm{R}_{2} \mathrm{PCl}(4 \mathrm{mmol})$ was added and stirred for 4 h at room temperature. The mixture was quenched with dry methanol (0.5 mL), concentrated in vacuum, purified by column chromatography (ethyl acetate/petroleum ether $=$ $1 / 25-3 / 1$) to give $\mathbf{8}$ as a white solid.
4.8.1. (\pm)-Diphenyl([2.2]paracyclophane-4-yl)phosphine (\pm)8a. ${ }^{4}$ Compound (\pm)-8a was obtained as a white solid (71% yield). Mp $142-144{ }^{\circ} \mathrm{C}$.
4.8.2. (\pm)-Di(4'-methoxyphenyl)([2.2]paracyclophane-4$\mathbf{y l})$ phosphine ($\mathbf{\pm} \mathbf{)} \mathbf{- 8} \mathbf{b}$. Compound (\pm)-8b was obtained as a white solid (75% yield). Mp $122-123{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): \delta 7.33-7.11 \quad(\mathrm{~m}, \quad 5 \mathrm{H}), 6.93$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.51-6.42(\mathrm{~m}$, $4 \mathrm{H}), 6.20(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.47(\mathrm{~m}, 2 \mathrm{H}), 3.05-$ $2.92(\mathrm{~m}, 4 \mathrm{H}), 2.75(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$: $\delta 34.7,34.9$, $35.1,35.2,55.1,55.2,113.8,113.9,114.2$, $114.3,127.5,128.9,130.3,132.1,132.7,133.1,134.2$, $134.5,134.7,135.7,136.3,136.6,138.4,139.4,139.5$, $139.8,143.3,143.6,159.8,160.4 ;{ }^{31} \mathrm{P}$ NMR (161.92 MHz , CDCl_{3}): -10.5 ppm ; EIMS m/z (relative intensity \%): 452 ($\mathrm{M}^{+}, 64$), 346 (100), 315 (23), 239 (34), 104 (35); IR $(\mathrm{KBr}): 2926,1593,1497,1284,1245,1093,1029,830$, $795,723,528 \mathrm{~cm}^{-1}$. HRMS: Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{P}$: 452.1905. Found: 452.1916 .
4.8.3. (\pm)- $\mathrm{Di}\left(4^{\prime}\right.$-trifluoromethyl)phenyl([2.2]paracyclophane-4-yl)phosphine (\pm)-8c. Compound (\pm)-8c was obtained as a white solid (85% yield). Mp $135-138{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~m}$, $4 \mathrm{H}), 7.28(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.60-6.52$ $(\mathrm{m}, 4 \mathrm{H}), 6.19(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~m}, 1 \mathrm{H}), 3.50-$ $3.43(\mathrm{~m}, 2 \mathrm{H}), 3.12-2.96(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}): \delta 34.2,34.3,34.7,34.9,35.0,35.1,125.1,125.5$, $130.5,130.6,132.0,132.9,133.0,133.2,133.3,134.3$, $134.6,134.7,135.5,135.7,139.5,140.2,144.0 ;{ }^{31} \mathrm{P}$ NMR (161.92 MHz, CDCl_{3}) $-7.56 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR (56.4 MHz) -63.1 ppm ; EIMS m / z (relative intensity $\%$): $530(\mathrm{M}+2$, 40), 426 (100), 277 (21), 104 (83), 78 (33); IR (KBr): 2927, 1606, 1396, 1324, 1169, 1128, 1060, 1016, 834, 722, 699, 599, $508 \mathrm{~cm}^{-1}$. HRMS: Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{P}$: 528.1442. Found: 528.1450.
4.8.4. (\pm)- $\mathrm{Di}\left(3^{\prime}, 5^{\prime}\right.$-Dimethylphenyl)([2.2]paracyclophane-4-yl)phosphine ($\mathbf{\pm}$)-8d. Compound (\pm)-8d was obtained as a white solid (78% yield). Mp $173-175{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR
($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.23(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~m}, 3 \mathrm{H}), 6.85$ $(\mathrm{m}, 3 \mathrm{H}), 6.53-6.43(\mathrm{~m}, 4 \mathrm{H}), 6.18(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.71 (dd, $J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 2 \mathrm{H}), 3.05-2.76$ $(\mathrm{m}, 6 \mathrm{H}), 2.31(\mathrm{~s}, 6 \mathrm{H}), 2.19(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}): \delta 21.2,21.4,34.1,34.8,35.1,35.2,130.1,130.4$, $130.7,131.0,132.1,132.6,132.7,133.0,133.1,133.3$, $134.2,135.7,137.4,137.5,137.8,137.9,139.3,139.8 ;{ }^{31} \mathrm{P}$ NMR ($161.92 \mathrm{MHz}, \mathrm{CDCl}_{3}$) -6.70 ppm ; EIMS m / z (relative intensity \%): $448\left(\mathrm{M}^{+}, 67\right), 342$ (42), 327 (32), 240 (34), 104 (34), 84 (28), 44 (100); IR (KBr): 2923, 2853, $1598,1447,1262,1122,1094,900,848,802,725,694$, $645,581,436 \mathrm{~cm}^{-1}$. HRMS: Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{P}$: 448.2320. Found: 448.2328.
4.8.5. (\pm)-Dicyclohexyl([2.2]paracyclophane-4-yl)phosphine $(\pm)-8 e . \quad$ Compound $(\pm)-8 \mathbf{e}$ was obtained as a white solid (82%). Mp $118-120^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $6.60-6.31(\mathrm{~m}, 7 \mathrm{H}), 3.97(\mathrm{~m}, 1 \mathrm{H}), 3.26-2.84(\mathrm{~m}, 7 \mathrm{H})$, 2.04-0.79 (m, 22H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 26.1$, $26.5,26.7,26.9,27.1,27.6,27.8,28.8,30.3,34.3,34.7$, $34.9,35.1,35.3,35.4,131.9,132.2$, 132.5, 133.1, 133.3, 133.6, 134.5, 138.1, 139.1, 139.8, 144.9, 145.3; ${ }^{31} \mathrm{P}$ NMR ($161.92 \mathrm{MHz}, \mathrm{CDCl}_{3}$) -4.76 ppm ; EIMS m/z (relative intensity \%): 403 (M-1, 17), 322 (26), 300 (32), 240 (23), 105 (46), 91 (61), 41 (100); IR (KBr): 2922, 2847, $1578,1477,1263,1175,1112,1000,887,843,793,726$, 635, 577, $508 \mathrm{~cm}^{-1}$. HRMS: Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{P}$: 404.2633. Found: 404.2632.

4.9. General procedure for resolution of paracyclophanylphosphines

A solution of compound $(\pm)-\mathbf{8}(0.5 \mathrm{mmol})$ and $(+)$-dichlorobis $[(R)$-dimethyl(1-(1-naphthyl)ethyl)aminato-C2,N]dipalladium(II) $\mathbf{1 0}$ ($170 \mathrm{mg}, 0.25 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred at room temperature for 15 min . Two diastereomers 12 were isolated by column chromatography (ethyl acetate/ petroleum ether $=5 / 1-2 / 1$). Sodium (S)-prolinate (29.5 $\mathrm{mg}, 0.24 \mathrm{mmol})$ was added to a solution of $\left(S_{\mathrm{p}}, S\right)$-12 (0.24 $\mathrm{mmol})$ in methanol $(10 \mathrm{~mL})$ and the resulting solution stirred for 2 h . The solvent was removed to leave a yellow solid which was purified by column chromatography (ethyl acetate/petroleum ether $=1 / 25$ to dichloromethane/metha$\mathrm{nol}=8 / 1)$ to give $(S)-\mathbf{8}(100 \%$ yield) and compound (S, S)-13. Compound (S, S)-13 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with 1 M HCl under vigorous shaking under TLC control. The combined organic layers were washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give $(S) \mathbf{- 1 0}(92 \%)$.
4.9.1. Resolution of diphenyl([2.2]paracyclophane-4-yl)phosphine ($\mathbf{\pm}$)-8a. Compound $\left(R_{\mathrm{p}}, S\right)$-9a was obtained as yellow crystals $(44 \%$ yield $),>98 \%$ de by ${ }^{31} \mathrm{P}$ NMR; complex $\left(R_{\mathrm{p}}, S\right)-\mathbf{1 2 a}, \quad[\alpha]_{\mathrm{D}}^{20}=-34.0 \quad\left(c \quad 1.10, \quad \mathrm{CHCl}_{3}\right), \quad \mathrm{mp} \quad 147-$ $150{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.79(\mathrm{~m}, 1 \mathrm{H})$, 7.73-7.63 (m, 5H), 7.47-7.35 (m, 2H), 7.26-7.14 (m, 8H), $6.97(\mathrm{dd}, J=11.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.38(\mathrm{~m}, 5 \mathrm{H}), 6.08$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{~m}, 1 \mathrm{H}), 3.31-$ $2.77 \quad(\mathrm{~m}, \quad 12 \mathrm{H}), \quad 2.21 \quad(\mathrm{~d}, \quad J=6.7 \mathrm{~Hz}, \quad 3 \mathrm{H}) ; \quad{ }^{31} \mathrm{P}$ NMR (161.92 MHz, CDCl ${ }_{3}$) 24.04 ppm ; MALDIMS m / z : $696\left(\mathrm{M}^{+}-\mathrm{Cl}\right)$; IR (KBr): 2921, 2851, 1733, 1573, 1435, 1184, 1093, 938, 807, 694, 579, 529, 514, 426 cm ${ }^{-1}$. Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{41} \mathrm{ClNPPd} \cdot 1 / 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{C}, 65.86 ; \mathrm{H}, 5.46$;

N, 1.81. Found: C, $65.27 ; \mathrm{H}, 5.88 ; \mathrm{N}, 1.49$. Compound (R)8a. $[\alpha]_{\mathrm{D}}^{20}=+15.1\left(c 1.0, \mathrm{CHCl}_{3}\right)$, mp $187-188^{\circ} \mathrm{C}$, ee $=99 \%$ by HPLC analysis Chiralcel OD column, hexane/isopropanol $=95: 5$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{R} 1}=7.77 \mathrm{~min}$ (major), $t_{\mathrm{R} 2}=9.39 \mathrm{~min}$ (minor).

Compound (S_{p}, S)-12a (48% yield), $>98 \%$ de by ${ }^{31} \mathrm{P}$ NMR. Complex $\left(S_{\mathrm{p}}, S\right)$-12a, $[\alpha]_{\mathrm{D}}^{20}=-163.9\left(c \quad 0.60, \mathrm{CHCl}_{3}\right)$, mp $167-170{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81-7.63$ $(\mathrm{m}, 6 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.13(\mathrm{~m}, 8 \mathrm{H}), 6.96(\mathrm{dd}$, $J=11.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.56(\mathrm{~m}, 5 \mathrm{H}), 6.08(\mathrm{~m}, 1 \mathrm{H})$, $4.42(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.76(\mathrm{~m}, 12 \mathrm{H}), 2.21(\mathrm{~d}$, $J=6.5 \mathrm{~Hz}, \quad 3 \mathrm{H}) ; \quad{ }^{31} \mathrm{P} \quad \mathrm{NMR} \quad\left(161.92 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right)$ 32.7 ppm ; MALDIMS m/z (relative intensity \%): 696 (M^{+}-Cl); IR (KBr): 2922, 2851, 1735, 1573, 1435, 1184, 1093, 938, 796, 740, 693, 578, 530, 512, $424 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{41} \mathrm{ClNPPd} \cdot 1 / 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 65.86; H, 5.46; N, 1.81. Found: C, $66.01 ; \mathrm{H}, 5.87 ;$ N, 1.52. Compound (S)-8a. $[\alpha]_{\mathrm{D}}^{20}=-15.1 \quad\left(c \quad 1.0, \mathrm{CHCl}_{3}\right), \mathrm{mp} \quad 187-188^{\circ} \mathrm{C}$, ee $=99 \%$ by HPLC analysis Chiralcel OD column, hexane/isopropanol $=95: 5, \quad$ flow rate $\quad 0.7 \mathrm{~mL} / \mathrm{min}$, $t_{\mathrm{R} 1}=7.08 \mathrm{~min}$ (minor), $t_{\mathrm{R} 2}=8.52 \mathrm{~min}$ (major).
4.9.2. Resolution of $\mathbf{d i}\left(4^{\prime}\right.$-methoxyphenyl)([2.2]paracyclo-phane-4-yl)phosphine ($\mathbf{\pm}$)-8b. Compound $\left(R_{\mathrm{p}}, S\right)$-12b was obtained as yellow crystals (44% yield), $>98 \%$ de by ${ }^{31} \mathrm{P}$ NMR; complex $\left(R_{\mathrm{p}}, S\right)$-12b, $[\alpha]_{\mathrm{D}}^{20}=-30.2\left(c 0.78, \mathrm{CHCl}_{3}\right)$, $\mathrm{mp} 191-193{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.84-7.73$ $(\mathrm{m}, 3 \mathrm{H}), 7.64(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 4 \mathrm{H}), 6.99$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.79-6.63$ $(\mathrm{m}, 6 \mathrm{H}), 6.47(\mathrm{~s}, 2 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{~m}, 1 \mathrm{H}), 4.36(\mathrm{~m}$, $1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.94$ $2.70(\mathrm{~m}, \quad 10 \mathrm{H}), \quad 2.16(\mathrm{~d}, \quad J=6.5 \mathrm{~Hz}, \quad 3 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR (161.92 MHz, CDCl_{3}) 26.0 ppm ; MALDIMS m/z: 756.6 $\left(\mathrm{M}^{+}\right), 755.6\left(\mathrm{M}^{+}-\mathrm{H}\right)$; IR (KBr): 2924, 2853, 1683, 1594, 1500, 1458, 1290, 1252, 1179, 1096, 1025, 939, 798, 718, $538,503 \mathrm{~cm}^{-1}$. Compound $(R) \mathbf{- 8 b} .[\alpha]_{\mathrm{D}}^{20}=+37.0(c \quad 0.20$, CHCl_{3}), mp $122-123^{\circ} \mathrm{C}$, ee $=98 \%$ by HPLC analysis Chiralcel OD column, hexane/isopropanol $=95: 5$, flow rate 0.7 $\mathrm{mL} / \mathrm{min}, t_{\mathrm{R} 1}=9.72 \mathrm{~min}$ (major), $t_{\mathrm{R} 2}=11.30 \mathrm{~min}$ (minor).

Compound $\left(S_{\mathrm{p}}, S\right)$-12b $\left(45 \%\right.$ yield), $>98 \%$ de by ${ }^{31} \mathrm{P}$ NMR. Complex $\quad\left(S_{\mathrm{p}}, S\right) \mathbf{- 1 2 b}, \quad[\alpha]_{\mathrm{D}}^{20}=-238 \quad\left(c \quad 0.97, \quad \mathrm{CHCl}_{3}\right)$, $\mathrm{mp} 215-218{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.78(\mathrm{~m}$, $2 \mathrm{H}), 7.60-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.24(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.40(\mathrm{~m}, 10 \mathrm{H})$, $6.14(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.70$ ($\mathrm{s}, 3 \mathrm{H}), 3.66-2.75(\mathrm{~m}, 13 \mathrm{H}), 2.21(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR ($161.92 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 30.4 ppm ; MALDIMS m / z : $756.6\left(\mathrm{M}^{+}\right), 755.6\left(\mathrm{M}^{+}-\mathrm{H}\right)$; IR (KBr): 2924, 2853, 1686, 1593, 1500, 1290, 1251, 1180, 1090, 938, 798, 720, 539, $495 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{44} \mathrm{H}_{45} \mathrm{ClNO}_{2} \mathrm{PPd}$: $\mathrm{C}, 66.67 ; \mathrm{H}$, 5.72; N, 1.77. Found: C, 66.70; H, 6.06; N, 1.37. Compound $(S)-\mathbf{8 b}:[\alpha]_{\mathrm{D}}^{20}=-37.6\left(c \quad 0.18, \mathrm{CHCl}_{3}\right), \mathrm{mp} 122-123{ }^{\circ} \mathrm{C}$, ee $=98 \%$ by HPLC analysis Chiralcel OD column, hexane/isopropanol $=95: 5$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{R} 1}=$ 10.29 min (minor), $t_{\mathrm{R} 2}=11.30 \mathrm{~min}$ (major).
4.9.3. Resolution of $\mathbf{d i}\left(4^{\prime}\right.$-trifluoromethylphenyl)([2.2]para-cyclophane-4-yl)phosphine (\pm)-8c. Compound (R_{p}, S)-12c was obtained as yellow crystals (45% yield), $>98 \%$ de by ${ }^{31} \mathrm{P}$ NMR; complex $\left(R_{\mathrm{p}}, S\right) \mathbf{- 1 2 c},[\alpha]_{\mathrm{D}}^{20}=-5.1(c 1.00$, CHCl_{3}), mp 138-140 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ
8.03-7.96 (m, 2H), $7.74(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.58$ $(\mathrm{m}, 3 \mathrm{H}), 7.48-7.33(\mathrm{~m}, 7 \mathrm{H}), 6.96(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.88(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 2 \mathrm{H}), 6.59(\mathrm{~m}, 3 \mathrm{H}), 6.45$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{~m}, 1 \mathrm{H}), 3.49-$ $2.82(\mathrm{~m}, \quad 13 \mathrm{H}), \quad 2.16 \mathrm{~d}, \quad J=6.4 \mathrm{~Hz}, \quad 3 \mathrm{H}) ;{ }^{31} \mathrm{P} \quad \mathrm{NMR}$ ($161.92 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 26.3 ppm ; MALDIMS m/z: 832.0 $\left(\mathrm{M}^{+}-\mathrm{Cl}\right)$; IR (KBr): 2924, 1687, 1608, 1502, 1398, 1324, $1169,1128,1061,1016,939,830,700,601,531 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{44} \mathrm{H}_{39} \mathrm{ClF}_{6} \mathrm{NPPd}$: C, $60.84 ; \mathrm{H}, 4.53 ; \mathrm{N}, 1.61$. Found: C, 61.22; H, 4.67; N, 1.53. Compound (R)-8c. $[\alpha]_{\mathrm{D}}^{20}=+11.0\left(c 0.32, \mathrm{CHCl}_{3}\right), \mathrm{mp} 143-145^{\circ} \mathrm{C}$, ee $=98 \%$ by HPLC analysis Chiralcel OD column, hexane/isopropanol $=95: 5$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{R} 1}=9.72 \mathrm{~min}$ (major), $t_{\mathrm{R} 2}=11.30 \mathrm{~min}$ (minor).

Compound (S_{p}, S)-12c (47% yield), $>98 \%$ de by ${ }^{31} \mathrm{P}$ NMR. Complex $\left(S_{\mathrm{p}}, S\right)-12 \mathrm{c},[\alpha]_{\mathrm{D}}^{20}=-141.5\left(c \quad 1.14, \mathrm{CHCl}_{3}\right)$, mp $155-156{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.83-7.62$ $(\mathrm{m}, 6 \mathrm{H}), 7.52-7.24(\mathrm{~m}, 8 \mathrm{H}), 6.86(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{~m}, 3 \mathrm{H})$, $6.56(\mathrm{~m}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.52-4.40(\mathrm{~m}$, $2 \mathrm{H}), 3.71(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.26(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{~d}, J=$ $3.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.03-2.85(\mathrm{~m}, 7 \mathrm{H}), 2.22(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{31} \mathrm{P}$ NMR (161.92 MHz, CDCl_{3}) 30.7 ppm ; MALDIMS $m / z: 832.0\left(\mathrm{M}^{+}-\mathrm{Cl}\right)$; IR (KBr): 2924, 2854, 1687, 1608, 1502, 1398, 1324, 1169, 1128, 1061, 1016, 938, 829, 700, $601,507 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{44} \mathrm{H}_{39} \mathrm{ClF}_{6} \mathrm{NPPd} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 58.66; H, 4.43; N, 1.54. Found: C, $58.38 ; \mathrm{H}, 4.54 ; \mathrm{N}$, 1.58. Compound $(S)-\mathbf{8 c} .[\alpha]_{\mathrm{D}}^{20}=-11.2\left(c \quad 0.27, \mathrm{CHCl}_{3}\right)$, $\mathrm{mp} 143-145^{\circ} \mathrm{C}$, ee $=98 \%$ by HPLC analysis Chiralcel OD column, hexane/isopropanol $=95: 5$, flow rate 0.7 $\mathrm{mL} / \mathrm{min}, t_{\mathrm{R} 1}=10.29 \mathrm{~min}($ minor $), t_{\mathrm{R} 2}=11.30 \mathrm{~min}$ (major).
4.9.4. Resolution of $\operatorname{di}\left(3^{\prime}, 5^{\prime}\right.$-dimethyl)([2.2]paracyclophane-4-yl)phosphine (\pm)-8d. Compound $\left(R_{\mathrm{p}}, S\right)$ - $\mathbf{1 2 d}$ was obtained as yellow crystals (40% yield), $>95 \%$ de by ${ }^{31} \mathrm{P}$ NMR; complex $\left(R_{\mathrm{p}}, S\right)$-12d, $[\alpha]_{\mathrm{D}}^{20}=-30.1\left(c 0.56, \mathrm{CHCl}_{3}\right)$, $\mathrm{mp} 173-175^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.72(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.26(\mathrm{~m}, 3 \mathrm{H})$, $7.18(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.07-6.91(\mathrm{~m}, 3 \mathrm{H}), 6.72(\mathrm{~m}$, $2 \mathrm{H}), 6.62(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{~m}, 2 \mathrm{H}), 6.04-5.99(\mathrm{~m}, 1 \mathrm{H}), 5.30$ $(\mathrm{m}, 1 \mathrm{H}), 4.33(\mathrm{~m}, 1 \mathrm{H}), 3.38-2.66(\mathrm{~m}, 13 \mathrm{H}), 2.23(\mathrm{~s}, 6 \mathrm{H})$, $2.19(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR (161.92 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 25.3 ppm ; MALDIMS m/z: $752.5(\mathrm{M}-\mathrm{Cl})$; IR (KBr): 2923, 2854, 1735, 1573, 1457, 1125, 938, 844, $805,719,692,582,563,488 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{46} \mathrm{H}_{49}-$ ClNPPd $\cdot 1 / 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 67.19; H, 6.06; N, 1.69. Found: C, $67.45 ; \mathrm{H}, 6.36$; N, 1.43. Compound (R)-8d: $[\alpha]_{\mathrm{D}}^{20}=+12.6(c$ $0.45, \mathrm{CHCl}_{3}$), mp $203-205^{\circ} \mathrm{C}$, ee $=96 \%$ by HPLC analysis Chiralcel OD column, hexane/isopropanol $=95: 5$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{R} 1}=3.61 \mathrm{~min}$ (major), $t_{\mathrm{R} 2}=4.01 \mathrm{~min}$ (minor).

Compound $\left(S_{\mathrm{p}}, S\right)$-12d (41% yield), $>95 \%$ de by ${ }^{31} \mathrm{P}$ NMR. Complex $\left(S_{\mathrm{p}}, S\right)$-12d, $[\alpha]_{\mathrm{D}}^{20}=-231.2\left(c 0.82, \mathrm{CHCl}_{3}\right), \mathrm{mp}$ $185-186^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.75$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.29(\mathrm{~m}$, $6 \mathrm{H}), 7.08(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.93(\mathrm{~m}, 4 \mathrm{H}), 6.63-6.49(\mathrm{~m}, 3 \mathrm{H})$, $6.24(\mathrm{~m}, 2 \mathrm{H}), 6.00-5.88(\mathrm{~m}, 2 \mathrm{H}), 4.40-4.24(\mathrm{~m}, 2 \mathrm{H})$, 3.32-2.61 (m, 13H), 2.24-2.15 (m, 15 H$) ;{ }^{31} \mathrm{P} \quad \mathrm{NMR}$ (161.92 MHz, CDCl_{3}) 27.0 ppm ; MALDIMS m/z: 752.5 (M-Cl); IR (KBr): 2921, 2853, 1573, 1458, 1255, 1125, 1075, 938, 844, 805, 719, 692, 582, $488 \mathrm{~cm}^{-1}$. Compound (S)-8d $[\alpha]_{\mathrm{D}}^{20}=-12.6$ (c $\left.0.40, \mathrm{CHCl}_{3}\right), \mathrm{mp} \quad 203-205^{\circ} \mathrm{C}$,
ee $=95 \%$ by HPLC analysis Chiralcel OD column, hexane/ isopropanol $=95: 5$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{R} 1}=3.65 \mathrm{~min}$ (minor), $t_{\mathrm{R} 2}=4.00 \mathrm{~min}$ (major).
4.9.5. Resolution of dicyclohexyl([2.2]paracyclophane-4$\mathbf{y})$ phosphine (\pm)-8e. Compound (R_{p}, S)-12e was obtained as yellow crystals (41% yield), $>98 \%$ de by ${ }^{31}$ P NMR; complex $\left(R_{\mathrm{p}}, S\right)-12 \mathrm{e},[\alpha]_{\mathrm{D}}^{20}=+18.9\left(c 0.80, \mathrm{CHCl}_{3}\right)$, mp 225$227^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.70(\mathrm{~m}, 2 \mathrm{H})$, $7.38-6.78(\mathrm{~m}, 6 \mathrm{H}), 6.71(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{~m}, 2 \mathrm{H}), 4.28(\mathrm{~m}$, $2 \mathrm{H}), 3.30(\mathrm{~m}, 1 \mathrm{H}), 3.26-2.93(\mathrm{~m}, 11 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H})$, $2.05-1.98(\mathrm{~m}, 4 \mathrm{H}), \quad 1.90-1.25(\mathrm{~m}, 19 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR ($161.92 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 24.5 ppm ; MALDIMS $\mathrm{m} / \mathrm{z}: 708.5$ (M-Cl); IR (KBr): 2920, 2849, 1573, 1443, 1365, 1174, $1073,1010,937,808,780,740,717,580,512,494 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{53}$ ClNPPd: C, 67.74 ; H, 7.17; N, 1.88. Found: C, $67.28 ; \mathrm{H}, 7.24 ; \mathrm{N}, 1.69$. Compound (R)8e. $[\alpha]_{\mathrm{D}}^{20}=+45.0 \quad\left(c \quad 0.20, \quad \mathrm{CHCl}_{3}\right)$, $\mathrm{mp} \quad 130-132^{\circ} \mathrm{C}$, ee $=99 \%$ by HPLC analysis Chiralcel OD-H column, hexane/isopropanol $=95: 5$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}$, $t_{\mathrm{R} 1}=12.58 \mathrm{~min}$ (major), $t_{\mathrm{R} 2}=13.32 \mathrm{~min}$ (minor).

Compound (S_{p}, S)-12e (43% yield), $>98 \%$ de by ${ }^{31} \mathrm{P}$ NMR. Complex $\left(S_{\mathrm{p}}, S\right)-12 \mathrm{e},[\alpha]_{\mathrm{D}}^{20}=-22.5\left(c \quad 0.82, \mathrm{CHCl}_{3}\right)$, mp $236-239{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.84-7.37$ $(\mathrm{m}, 6 \mathrm{H}), 7.01(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.74(\mathrm{~m}, 2 \mathrm{H}), 6.53-6.43(\mathrm{~m}, 3 \mathrm{H}), 4.82(\mathrm{~m}, 1 \mathrm{H}), 4.33$ $(\mathrm{m}, 1 \mathrm{H}), 3.79(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.36(\mathrm{~m}, 3 \mathrm{H}), 3.00(\mathrm{~m}, 7 \mathrm{H})$, $2.73-2.53(\mathrm{~m}, 5 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}), 1.81-1.12(\mathrm{~m}, 17 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR ($161.92 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 30.6 ppm ; MALDIMS $m / z: 708.5$ (M-Cl); IR (KBr): 2932, $2848,1571,1073,941,825,744,719,579,491 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{53} \mathrm{ClNPPd}$. $\mathrm{C}, 67.74 ; \mathrm{H}, 7.17 ; \mathrm{N}, 1.88$. Found: C, $67.28 ;$ H, 7.22; N, 1.48. Compound (S)-8e: $[\alpha]_{\mathrm{D}}^{20}=-44.6\left(\begin{array}{c}\text { c }\end{array} 0.20, \mathrm{CHCl}_{3}\right.$), $\mathrm{mp} 130-132^{\circ} \mathrm{C}$, ee $=99 \%$ by HPLC analysis Chiralcel OD-H column, hexane/isopropanol $=95: 5$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{R} 1}=12.43 \mathrm{~min}$ (minor), $t_{\mathrm{R} 2}=13.39 \mathrm{~min}$ (major).

4.10. Recovery of palladacycle $10^{9 h}$

Compound $(S, S)-\mathbf{1 3}(560 \mathrm{mg}, 1.34 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 mL) was treated with $1 \mathrm{M} \mathrm{HCl}(30 \mathrm{~mL})$ under vigorous shaking under TLC control. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$. The combined organic layers were washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give $(S)-10(418 \mathrm{mg}, 92 \%)$. ${ }^{\mathrm{T}} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.78(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~m}, 2 \mathrm{H}), 7.48-$ $7.34(\mathrm{~m}, 5 \mathrm{H}), 4.18(\mathrm{~m}, 2 \mathrm{H}), 3.00(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 6 \mathrm{H})$, 2.77 (d, $J=14.3 \mathrm{~Hz}, 6 \mathrm{H}$), 1.94-1.90 (m, 6H).

4.11. General procedure for asymmetric allylation of aldehydes

In a Schlenk tube, $\left[\operatorname{Pd}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2}(2.7 \mathrm{mg}, 7.5 \mu \mathrm{~mol}),(R)-5$ or $(S)-\mathbf{8}(30 \mu \mathrm{~mol})$ and THF (1.0 mL) were added under nitrogen. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min , then the fresh distilled benzaldehyde ($31 \mu \mathrm{~L}$, 0.3 mmol), cyclohexenyl acetate ($50.4 \mathrm{mg}, 0.36 \mathrm{mmol}$), and $\mathrm{Et}_{2} \mathrm{Zn}(0.7 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexane, 0.7 mmol) were added sequentially. The mixture was allowed to warm to room temperature over 12 h before quenching with satu-
rated $\mathrm{NH}_{4} \mathrm{Cl}$ (aq). After stirring for $30 \mathrm{~min}, \mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added and the organic phase separated, washed with brine ($2 \times 10 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to give a crude homoallylic alcohol, purified by flash column chromatography (hexane/EtOAc $=10: 1$).
4.11.1. ($1 S, 1 R^{\prime}$)-(Cyclohex-2-enyl)(phenyl)methanol 16a. ${ }^{13}$ Obtained as an oil (90% yield); absolute stereochemistry assigned by optical rotation $[\alpha]_{\mathrm{D}}^{20}=+10.1\left(c 1.0, \mathrm{C}_{6} \mathrm{H}_{6}\right)$ (Ref. $12+14.8$); 56% ee by HPLC Chiralcel OD column, hexane/isopropanol $=95: 5$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}$, $t_{\mathrm{R} 1}=13.41 \mathrm{~min}$ (major), $t_{\mathrm{R} 2}=14.56 \mathrm{~min}$ (minor). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25-7.16(\mathrm{~m}, 5 \mathrm{H}), 5.74-5.69$ $(\mathrm{m}, 1 \mathrm{H}), 5.30-5.26(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=6.7,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.39(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.60$ (m, 2H), 1.46-1.40 (m, 2H); EIMS m / z (relative intensity $\%$): 216 ($\mathrm{M}^{+}<1$), 134 (45), 91 (100).
4.11.2. ($1 S, 1 R^{\prime}$)-(Cyclohex-2-enyl)(1-naphthyl)methanol 16b. Obtained as a clear oil (95% yield); absolute stereochemistry assigned by analogy to compound 16a; 60% ee by HPLC Chiralpak AD-H column, hexane/isopropanol $=95: 5$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{R} 1}=22.23 \mathrm{~min}$ (minor), $t_{\mathrm{R} 2}=27.91 \mathrm{~min}$ (major). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.05(\mathrm{~m}, 1 \mathrm{H}), 7.87(\mathrm{~m}, 1 \mathrm{H}), 7.78(\mathrm{~m}, 1 \mathrm{H}), 7.68(\mathrm{~m}, 1 \mathrm{H})$, $7.52-7.46(\mathrm{~m}, 3 \mathrm{H}), 5.89-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.53-5.44(\mathrm{~m}, 1 \mathrm{H})$, $2.78(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~m}, 3 \mathrm{H}), 2.04-1.42(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 21.2,23.3,25.1,41.8,73.4,123.1$, $123.8,125.2,125.3,125.7,127.6,128.5,128.8,130.4$, 130.5, 133.6, 138.2; EIMS m / z (relative intensity \%): 238 ($\mathrm{M}^{+}<1$), 157 (100), 129 (81). IR (Neat): 2928, 1511, 1090, 908, 779, 732, $677 \mathrm{~cm}^{-1}$. HRMS: Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}: 238.1358$. Found: 238.1354.
4.11.3. ($1 S, 1 R^{\prime}$)-(Cyclohex-2-enyl)(4-nitro-phenyl)methanol 16c. ${ }^{19}$ Obtained as a clear oil (54% yield); absolute stereochemistry assigned by analogy to compound 16a; 7\% ee by HPLC Chiralpak AS column, hexane/isopropanol $=93: 7$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{R} 1}=12.54 \mathrm{~min}$ (minor), $t_{\mathrm{R} 2}=14.17 \mathrm{~min}$ (major). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.92$ $(\mathrm{m}, 1 \mathrm{H}), 5.45(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~s}$, $1 \mathrm{H}), 2.04-1.72(\mathrm{~m}, 5 \mathrm{H}), 1.54-1.46(\mathrm{~m}, 2 \mathrm{H})$; EIMS $m / z(\mathrm{rel}-$ ative intensity \%): $233\left(\mathrm{M}^{+}<1\right), 111(100)$.
4.11.4. ($\left.1 S, 1 R^{\prime}\right)$-(Cyclohex-2-enyl)(4-methoxy-phenyl)methanol 16d. ${ }^{13}$ Obtained as a clear oil (85% yield); absolute stereochemistry assigned by analogy to compound 16a; 57% ee by HPLC Chiralpak AS column, hexane/isopropanol $=90: 10$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{R} 1}=11.46 \mathrm{~min}$ (major), $t_{\mathrm{R} 2}=15.71 \mathrm{~min}$ (minor). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.86(\mathrm{~m}, 2 \mathrm{H}), 5.81-$ $5.76(\mathrm{~m}, 1 \mathrm{H}), 5.37-5.33(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~m}, 2 \mathrm{H}) ; 1.87(\mathrm{~m}$, $1 \mathrm{H}), 1.78-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.48(\mathrm{~m}, 2 \mathrm{H})$; EIMS m / z (relative intensity \%): $218\left(\mathrm{M}^{+}<1\right), 137$ (100), 107 (50).
4.11.5. ($1 S, 1 R^{\prime}$)-(Cyclohex-2-enyl)(2-methoxy-phenyl)methanol 16e. Obtained as a clear oil (89% yield); absolute stereochemistry assigned by analogy to compound 16a; 42\% ee by HPLC Chiralpak AS column, hexane/isopropanol $=90: 10$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{R} 1}=8.52 \mathrm{~min}$ (minor),
$t_{\mathrm{R} 2}=9.23 \mathrm{~min}$ (major). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 7.32-7.21 (m, 2H), 6.98-6.86 (m, 2H), $5.76(\mathrm{~m}, 1 \mathrm{H})$, $5.38-5.35(\mathrm{~m}, 1 \mathrm{H}), 4.74(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 1 \mathrm{H}), 2.63(\mathrm{~m}$, $1 \mathrm{H}), 2.53(\mathrm{~m}, 1 \mathrm{H}) ; 1.99(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.69(\mathrm{~m}, 2 \mathrm{H})$, $1.60-1.53(\mathrm{~m}, 2 \mathrm{H}) ;$ EIMS m / z (relative intensity $\%$): 218 $\left(\mathrm{M}^{+}<1\right), 137$ (100), 107 (50).
4.11.6. (1S,1 R^{\prime})-(Cyclohex-2-enyl)(3-phenyl)propan-1-ol 16f. ${ }^{\mathbf{2 0}}$ Obtained as a clear oil (36% yield); absolute stereochemistry assigned by specific rotation $[\alpha]_{\mathrm{D}}^{20}=+12.6$ (c $0.85, \mathrm{C}_{6} \mathrm{H}_{6}$); 72% ee by HPLC Chiralpak AD-H column, hexane/isopropanol $=95: 5$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{R} 1}=$ 13.47 min (minor), $t_{\mathrm{R} 2}=14.76 \mathrm{~min}$ (major). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.31-7.16(\mathrm{~m}, 5 \mathrm{H}), 5.85-5.89(\mathrm{~m}$, $1 \mathrm{H}), 5.54(\mathrm{dd}, J=10.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~m}, 1 \mathrm{H}), 2.87-$ $2.80(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.61(\mathrm{~m}, 1 \mathrm{H}) ; 2.24(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~m}$, $1 \mathrm{H}), 1.84-1.71(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.44(\mathrm{~m}, 3 \mathrm{H})$; EIMS m / z (relative intensity $\%$): $216\left(\mathrm{M}^{+}<1\right), 134(36), 117$ (22), 91 (100).

Acknowledgements

Financially supported by National Natural Science Foundation of China, Major Basic Research Development Program (2006CB806100), Chinese Academy of Sciences and Science. Technology Commission of Shanghai Municipality and Croucher Foundation of Hong Kong.

References

1. (a) Modern Cyclophane Chemistry; Gleiter, G., Hopf, H., Eds.; Wiley-VCH: Weinheim, 2004; (b) Diederich, F. Cyclophanes; Royal Society of Chemistry: Cambridge, 1991.
2. For review, see: (a) Gibson, S. E.; Knight, J. D. Org. Biomol. Chem. 2003, 1, 1256; (b) Wu, X. W.; Sun, W.; Hou, X. L. Chinese J. Org. Chem. 2003, 23, 906, in Chinese; For some examples: (c) Pye, P. J.; Rossen, K.; Reamer, R. A.; Tsou, N. N.; Volante, R. P.; Reider, P. J. J. Am. Chem. Soc. 1997, 119, 6207; (d) Belokon, Y.; Moscalenko, M.; Ionnikov, N.; Yashkina, L.; Antonov, D.; Vorontsov, E.; Rozenberg, V. Tetrahedron: Asymmetry 1997, 19, 3245; (e) Vettte, A. H.; Berkessel, A. Tetrahedron Lett. 1998, 39, 1741; (f) Wörsdörfer, U.; Vögtle, F.; Glorius, F.; Pfaltz, A. J. Prakt. Chem. 1999, 341, 445; (g) Bolm, C.; Kühn, T. Synlett 2000, 6, 899; (h) Rozenberg, V. I.; Antonov, D. Y.; Zhuravsky, R. P.; Vorontsv, E. V.; Khrustalev, V. N.; Ikonnikov, N. S.; Belokon, Y. N. Tetrahedron: Asymmetry 2000, 11, 2683; (i) Burk, M. J.; Hems, W.; Herzberg, D.; Malan, C.; ZanottiGerosa, A. Org. Lett. 2000, 2, 4173; (j) Tanji, S.; Ohno, A.; Sato, I.; Soai, K. Org. Lett. 2001, 3, 287; (k) Zanotti-Gerosa, A.; Malan, C.; Herzberg, D. Org. Lett. 2001, 3, 3687; (1) Dahmen, S.; Bräse, S. Chem. Commun. 2002, 26; (m) Dahmen, S.; Bräse, S. J. Am. Chem. Soc. 2002, 124, 5940; (n) Hermanns, N.; Dahmen, S.; Bolm, C.; Bräse, S. Angew. Chem., Int. Ed. 2002, 41, 3692; (o) Bolm, C.; Wenz, K.; Raabe, G. J. Organomet. Chem. 2002, 662, 23; (p) Jiang, B.; Zhao, X. L. Tetrahedron: Asymmetry 2004, 15, 1141; (q) Hitchcocl, P. B.; Rowlands, G. J.; Parmar, R. Chem. Commun. 2005, 4219; (r) Jiang, B.; Zhao, X. L.; Xu, X. Y. Tetrahedron: Asymmetry 2005, 16, 1071; (s) Whelligan, D. K.; Bolm, C. J. Org. Chem. 2006, 71, 4609; (t) Lauterwasser, F.; Vanderheiden, S.; Bräse, S. Adv. Synth. Cat. 2006, 348, 443; (u) Chai, Q.; Song, C.; Sun, Z. J.; Ma, Y. D.; Ma, C. Q.; Dai, Y.; Andrus, M. B. Tetrahedron Lett. 2006, 47, 8611; (v)

Sugiyama, S.; Aoki, Y.; Ishii, K. Tetrahedron: Asymmetry 2006, 17, 2847.
3. (a) Hou, X.-L.; Wu, X.-W.; Dai, L.-X.; Cao, B.-X.; Sun, J. Chem. Commun. 2000, 1195; (b) Wu, X.-W.; Hou, X.-L.; Dai, L.-X.; Tao, J.; Cao, B.-X.; Sun, J. Tetrahedron: Asymmetry 2001, 12, 529; (c) Wu, X.-W.; Yuan, K.; Sun, W.; Zhang, M.-J.; Hou, X.-L. Tetrahedron: Asymmetry 2003, 14, 107; (d) Wu, X.-W.; Zhang, T.-Z.; Yuan, K.; Hou, X.-L. Tetrahedron: Asymmetry 2004, 15, 2357.
4. The synthesis of racemic diphenylphosphino[2.2]paracyclophane was reported: Dyer, P. W.; Dyson, P. J.; James, S. L.; Suman, P.; Davies, J. E.; Martin, C. M. Chem. Commun. 1998, 1375.
5. Some reviews: (a) Kagan, H. B.; Lagasse, F. Chem. Pharm. Bull. 2000, 315; (b) Komarov, I. V.; Borner, A. Angew. Chem., Int. Ed. 2001, 1198; (c) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029; (d) Guo, H.-C.; Ding, K.-L.; Dai, L.-X. Chinese Sci. Bull. 2004, 1575, in Chinese.
6. (a) Hayashi, T.; Konoshi, M.; Fukushima, M.; Mise, T.; Kagotani, M.; Tajika, M.; Kumada, M. J. Am. Chem. Soc. 1982, 104, 180; (b) Bolm, C.; Muñiz-Fernández, K.; Seger, A.; Raabe, G.; Gunther, K. J. Org. Chem. 1998, 63, 7860; (c) Muñiz-Fernández, K.; Bolm, C. Chem. Eur. J. 2000, 6, 2309; (d) Fu, G. C. Acc. Chem. Res. 2000, 33, 412; (e) Deng, W.-P.; You, S.-L.; Hou, X.-L.; Dai, L.-X.; Yu, Y.-H.; Xia, W. J. Am. Chem. Soc. 2001, 123, 6508; (f) You, S.-L.; Hou, X.-L.; Dai, L.-X.; Yu, Y.-H.; Xia, W. J. Org. Chem. 2002, 67, 4684; (g) Dai, L.-X.; Tu, T.; You, S.-L.; Deng, W.-P.; Hou, X.-L. Acc. Chem. Res. 2003, 36, 659.
7. Cram, D. J.; Day, A. C. J. Org. Chem. 1966, 31, 1227.
8. Rozenberg, V.; Danilova, T.; Sergeeva, E.; Vorontsov, E.; Starilova, Z.; Korlyukov, A.; Hopf, H. Eur. J. Org. Chem. 2002, 468.
9. For reviews: (a) Wild, S. B. Coord. Chem. Rev. 1997, 166, 291; (b) Dupont, J.; Consorti, C. S.; Spencer, J. Chem. Rev. 2005, 105, 2527; For some examples: (c) Kerr, P. G.; Leung, P.-H.; Wild, S. B. J. Am. Chem. Soc. 1987, 109, 4321; (d) Pabel, M.; Willis, A. C.; Wild, S. B. Inorg. Chem. 1996, 35, 1244; (e) Dunina, V. V.; Goloven, E. B. Tetrahedron: Asymmetry 1995, 6, 2747; (f) Valk, J.-M.; Claridge, T. D. W.; Brown, J. M.; Hibbs, D.; Hursthouse, M. B. Tetrahedron: Asymmetry 1995, 6, 2597; (g) McCarthy, M.; Goddard, R.; Guiry, P. J. Tetrahedron: Asymmetry 1999, 10, 2797; (h) Dunina, V. V.; Razmyslova, E. D.; Gorunova, O. N.; Livantsov, M. V.; Grishin, Y. K. Tetrahedron: Asymmetry 2005, 16, 817.
10. Leung, P.-H.; McLaughlin, G. M.; Martin, J. W. L.; Wild, S. B. Inorg. Chem. 1986, 25, 3392.
11. Yanagisawa, A. In Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Heidelberg, 1999, Chapter 27.
12. Zanoni, G.; Gladiali, S.; Marchetti, A.; Piccinini, P.; Tredicil, I.; Vidari, G. Angew. Chem., Int. Ed. 2004, 43, 846.
13. (a) Zhu, S.-F.; Yang, Y.; Wang, L.-X.; Liu, B.; Zhou, Q.-L. Org. Lett. 2005, 7, 2333; (b) Howell, G. P.; Minnaard, A. J.; Feringa, B. L. Org. Biomol. Chem. 2006, 4, 1278.
14. Roberts, N. K.; Wild, S. B. J. Chem. Soc., Dalton Trans. 1979, 2015.
15. Yuan, K.; Zhang, T.-K.; Hou, X. L. J. Org. Chem. 2005, 70, 6085.
16. Fehring, V.; Kadyrov, R.; Ludwig, M.; Holz, J.; Selke, K.; Haage, R. J. Organomet. Chem. 2001, 621, 120.
17. Kreis, M.; Friedmann, C. J.; Bräse, S. Chem. Eur. J. 2005, 7387.
18. Hitchcock, P. B.; Rowlands, G. J.; Parmar, R. Chem. Commun. 2005, 4219.
19. Weidmann, B.; Maycock, C. D.; Seebach, D. Helv. Chimi. Acta 1981, 1552.
20. Fürstner, A.; Voigtlander, D. Synthesis 2000, 959.

[^0]: * Corresponding author. E-mail: xlhou@mail.sioc.ac.cn

