

Article

Subscriber access provided by CMU Libraries - http://library.cmich.edu

Palladium-Catalyzed Synthesis of 2-Aryl-2H-Benzotriazoles from Azoarenes and TMSN3

Nilufa Khatun, Anju Modi, Wajid Ali, and Bhisma K. Patel

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.5b01706 • Publication Date (Web): 15 Sep 2015

Downloaded from http://pubs.acs.org on September 20, 2015

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Palladium-Catalyzed Synthesis of 2-Aryl-2H-Benzotriazoles

from Azoarenes and TMSN₃

Nilufa Khatun, Anju Modi, Wajid Ali and Bhisma K. Patel*

Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781 039

Fax: (+91)361-26909762.

E-mail: patel@iitg.ernet.in

RECEIVED DATE (will be automatically inserted after manuscript is accepted)

ABSTRACT: Substrate directed *ortho* C–H amination of azoarenes using TMSN₃ as the source of nitrogen leading to the synthesis of 2-aryl-*2H*-benzotriazoles has been accomplished with the help of Pd/TBHP combinations. An intermolecular *o*-azidation (C–N bond formation) followed by an intramolecular N–N bond formation *via* nucleophilic attack of one of the azo nitrogen onto the *o*-azide nitrogen leads to cyclization with the expulsion of N₂.

INTRODUCTION

Direct C–H bond functionalization by transition metal catalysts has opened a plethora of methods in the construction of C–C, C–N and C–hetero atom bonds.¹⁻⁴ Strategies involving inert C–H bond activation are important and significant due to their step and atom economy which circumvent pre-fuctionalization of starting materials. In particular, directed C–H bond amination strategies have received a great attention recently.⁵⁻⁷ A range of preactivated aminating reagents such as *N*-carboxylates,^{8a} *N*-fluorobenzenesulfonimide (NFSI),^{8b} *N*-tosylates,^{8c} *N*-halides,^{8d} benzoyl hydroxylamines,^{8e} and highly active nitrene precursors, especially azides derivatives^{8f-8h} have been explored as the potential aminating reagents under different metal catalysis.

Organic azides are important building blocks in synthetic chemistry and have found wide applications in medicinal chemistry, material science, polymer and biological science.⁹ Generally, azide moiety is introduced into organic molecules *via* Sandmeyer reaction,^{10a,b} Cucatalyzed coupling of aryl halides/boronic acids with azides (NaN₃ or TMSN₃),^{10c,d} coupling between organometallics and TfN₃,^{10e} and metal free^{10f-h} or metal mediated C–H functionalization.^{10i,j} As a nitrene precursor, *ortho* azido group can participate in intramolecular cyclization after releasing a molecule of N₂. Taking advantage of this, a number of metal catalyzed protocols have been developed for the synthesis of nitrogen containing heterocycles. Prefunctionalized 2-azido substrates or the *in situ* generated *ortho* azido moiety introduced *via* cross coupling reactions or C–H functionalization often undergo intramolecular cyclizations leading to various heterocycles.¹¹

2-Aryl-2*H*-benzotriazoles, are important nitrogen containing heterocycles which are found extensively in pharmaceuticals and are structural components of many UV stabilizers and organic electronic materials.¹² Compounds having 2-aryl-2*H*-benzotriazole scaffold as primary

The Journal of Organic Chemistry

skeleton include a seratonine/dopamine receptor ligand (I), human PPAR- α activator (II), Tinuvin-P (III) an ultraviolet light absorber, PCDTPBt (IV) an electron acceptor in organic solar cell, an ultraviolet light stabilizer (V) and antiviral agent (VI) against ssRNA positive viruses are shown in Figure 1.

Existence of two isomeric benzotriazoles based on N^{l} (N^{3}) and N^{2} substitutions* make the selective synthetic strategies challenging. Because of the thermodynamic stability of N^{l} or 1H isomer, compared to its N² or 2H isomer more synthetic methods have been reported for the former.¹³ Traditional methods for the regioselective and direct synthesis of 2-aryl-2H-benzotriazoles *i.e* N^{2} -isomer include: thermal decomposition of 2-azidoazoarenes^{14a} (Scheme 1, path a), reduction of 2-[2-nitrophenylazo] derivatives by thiourea^{14b} and Zn/NH₄Cl^{14c} or

nucleophilic aromatic (SNAr) substitution reaction with sodium azide^{14d} (Scheme 1, path b), oxidative coupling of *ortho* substituted azoaniline (Scheme 1, path c) by metal catalysts such as SmI_2 ,^{14e} Zn^{14f} or Cu.^{14g} *o*-Functionalized azoarenes are precursors in all the above strategies which often are not easily accessible. Metal-catalyzed arylation of unsubstituted benzotriazoles are associated with the formation of a regio-isomeric mixture of N^{l} - and N^{2} -benzotriazoles (Scheme 1, path d).^{14h,i} Further, a copper catalyzed cross coupling of 2-haloaryltriazenes and NaN₃ leading to *2H*-benzotriazoles has also been documented (Scheme 1, path e).^{14j} A Rh-catalyzed *ortho* C–H activation of azobenzenes utilizing tosyl azide (TsN₃) as the aminating source provides *2H*-benzotriazoles as depicted in Scheme 1, path f.^{14k}

Scheme 1. Reported Strategies for the Synthesis of 2-Aryl-2H-benzotriazole

Aromatic azoarenes constitute an important class of conjugated molecules due to which they exhibit a diverse array of spectral properties. They find applications as industrial dyes, food additives, photochemical molecular switches, host-guest recognition, liquid crystal assemblies, biomedical image analysis, molecular motor design, materials and protein probes.¹⁵ From

The Journal of Organic Chemistry

synthetic point of view, in 1971 azoarenes as the directing group were first introduced by Fahey for the o-halogenation via a C-H activation strategy.¹⁶ However, its synthetic utility was dormant, until very recently a series of transition metals catalyzed reactions involving azoarenes as the directing substrates has been exploited. Examples include Pd-catalyzed *ortho*-aroylation,¹⁷ o-nitration,^{14c,18a} o-alkoxylation,^{18b} and o-halogenation^{18c} Rh-catalyzed alkyne annulations,^{18d} allylation,^{18e} o-acylation and its transformation to indazoles^{18f} and o-amination.^{18g,h} In addition Re and Rh catalyzed syntheses of nitrogenous heterocycles using aldehyde, ^{19a} α -diazo esters^{19b} and diazotized Meldrum's acid^{19c} have been reported. With azo as the directing group, depending upon the azides (as the source of nitrogen) either a six member or a five member heterocycle is formed using Rh catalyst. The use of aryl azide (ArN₃) provided phenazines as the sole product [Scheme 2(a)],²⁰ while tosyl azide gave exclusively 2*H*-benzotriazoles [Scheme (2b)].^{14k} Inorganic azide such as NaN₃ with 2-phenylpyridines as the directing group under a Pd-catalyzed condition gave fused heterocycle pyrido[1,2-b]indazoles as shown in [Scheme 2(c)].^{11d} Although an elegant transformation of azoarenes to 2H-benzotriazoles has been described by Lee group, the use of expensive combinations of catalyst [Cp*RhCl₂]₂, co-catalyst AgNTf₂ and oxidant PhI(OAc)₂ make this method economically unviable.^{14k} Thus, the development of an efficient, cost effective and atom-economic protocol is very much in need. With our continuing efforts to establish newer strategies for the synthesis of heterocycles through C-H activation,²¹ and taking cues from the reports in Scheme 2 our investigation started. The main objective was to check whether other commercially available metal catalyst and cheaper oxidant could be replacement for the synthesis of 2H-benzotriazoles following o-C-H activation of azobenzene.

Scheme 2. Metal Catalyzed ortho Amination of Directed Substrates with Different Azides

RESULTS AND DISCUSSION

With this curiosity in mind and taking cues from the previous report^{11d} as shown in (Scheme 2c), an initial trial experiment was performed by treating azobenzene (**1a**) (0.5 mmol) with NaN₃ (1.0 mmol), in the presence of Pd(OAc)₂ (10 mol%) and oxidant Ce(SO₄)₂ (1.0 mmol) in DMSO at 100 °C. No product formation was observed even after 72 h, only starting material (**1a**) was recovered at the end of the reaction. The use of TMSN₃ in lieu of NaN₃ also failed to produce any positive result. Disappointingly, other common oxidants used mostly in metal catalyzed C–H functionalizations such as CAN, DDQ, Cu(OAc)₂, Ag₂O, K₂S₂O₈, Oxone® and O₂, were completely unproductive (Table 1, entry 3). Interestingly, keeping all other parameters constant the use of TBHP as oxidant (1 equiv) provided 2-phenyl-2*H*-benzotriazole (**2a**) in 42% yield (Table 1, entry 4). Encouraged by this preliminary success a series of reactions were performed by varying other reaction parameters to obtain the best possible yield of (**2a**). At first, the

catalytic efficacy of various Pd-catalysts [Pd(OAc)₂ (39%), PdCl₂ (28%), PdBr₂ (33%), Pd(CH₃CN)₂Cl₂ (21%)] were tested among which Pd(TFA)₂ (49%) was found to be better as shown in Table 1, entries 4-8. Although Pd(TFA)₂ gave superior yield, on couple of occasions the reaction flask exploded even at room temperature which prompted us to avoid its use and we therefore switched to the next best catalyst $Pd(OAc)_2$. The possible explosion may be due to *in situ* generation of highly explosive HN_3 . The azide radical obtained by the reaction of TMSN₃ and TBHP is rapidly converted to HN_3 by the *in situ* generated trifluoroacetic acid from $Pd(TFA)_2$ possibly causing the explosion. When the catalyst $Pd(OAc)_2$ loading was increased to two fold *i.e* 20 mol%, the yield of the expected product improved up to 62% (Table 1, entry 9). No further significant improvement in the yield (65%) was observed even when the catalyst loading was increased up to three fold (30 mol%). Other solvents such as THF (<5%), dioxane (<5%), PhCl (41%) and DMF (48%) (Table 1, entries 11–14) tested under otherwise identical conditions were all found to be inferior to DMSO. The oxidant TBHP (in decane) was superior to other peroxide oxidants such as 70% aqueous TBHP (42%) and 30% aqueous H_2O_2 (00%) (Table 1, entries 15–16) in terms of yield. A further improvement in the product yield (70%) was observed when the oxidant (decane-TBHP) amount was increased from 1 to 2 equiv (Table 1, entry 17). No further significant enhancement in the yield was observed either by increasing the amount of aminating source *i.e* $TMSN_3$ (3 equiv) (71%) or oxidant TBHP (3 equiv) (73%) (Table 1, entries 18–19). Taking cues from previous reports, ^{14k,11d} effect of additives such as O₂, PhI(OAc)₂, FeCl₂ and Cu(OAc)₂ were also examined along with decane-TBHP as illustrated in Table 1, (entries 20-23). Unfortunately, none of the additives had any positive effects on the product yield. Interestingly, when this reaction was carried out in an argon atmosphere, the yield of the product improved up to (78%) as shown in Table 1, entry 24. By

performing the reaction at lower temperature (80 °C) led to a sluggish (36 h) reaction giving a lower yield (65%) of the product (Table 1, entry 25). It is not surprising that the reaction did not proceed either in the absence of Pd(OAc)₂ or TBHP suggesting the essential requirements of both (Table 1, entries 26–27). Optimally, the desired product (**2a**) was obtained in a best possible yield of 78% when the reaction was carried out using azobenzene (**1a**) (0.5 mmol), TMSN₃ (2 equiv), decane-TBHP (2 equiv) in DMSO (1.0 mL) at 100 °C under an atmosphere of argon. It may be mention here that both catalyst Pd(OAc)₂ and oxidant TBHP are not only commercially available but are also cheaper compared to catalyst [Cp*RhCl₂]₂, co-catalyst AgNTf₂ and oxidant PhI(OAc)₂ combinations.

Table 1. Screenin	g of Reaction	n Conditions ^a
-------------------	---------------	---------------------------

		N _N H (1a)	Catalyst, Oxidant Nitrogen source Additive Solvent, 100 °C	N	N	
entry	catalyst (mol%)	azide (equiv)	oxidant (equiv)	solvent	additives	yield (2a) (%) ^b
1	$Pd(OAc)_2$ (10)	NaN ₃ (2)	$Ce(SO_4)_2(1)$	DMSO	-	00
2	$Pd(OAc)_2(10)$	$TMSN_3(2)$	$Ce(SO_4)_2(1)$	DMSO	-	00
3	$Pd(OAc)_2(10)$	$TMSN_3(2)$	$V.O^{c,d}(1)$	DMSO	-	00
4	$Pd(OAc)_2(10)$	$TMSN_3(2)$	TBHP (1)	DMSO	-	42
5	PdCl ₂ (10)	$TMSN_3(2)$	TBHP (1)	DMSO	-	28
6	PdBr ₂ (10)	$TMSN_3(2)$	TBHP (1)	DMSO	-	33
7	$Pd(CH_3CN)_2Cl_2(10)$	$TMSN_3(2)$	TBHP (1)	DMSO	-	21
8	Pd(TFA) ₂ (10)	$TMSN_3(2)$	TBHP (1)	DMSO	-	49
9	$Pd(OAc)_2(20)$	$TMSN_3(2)$	TBHP (1)	DMSO	-	62
10	$Pd(OAc)_2(30)$	$TMSN_3(2)$	TBHP (1)	DMSO	-	65
11	$Pd(OAc)_2(20)$	$TMSN_3(2)$	TBHP (1)	THF	-	< 5
12	$Pd(OAc)_2(20)$	$TMSN_3(2)$	TBHP (1)	Dioxane	-	< 5
13	$Pd(OAc)_2(20)$	$TMSN_3(2)$	TBHP (1)	PhCl	-	41
14	$Pd(OAc)_2(20)$	$TMSN_3(2)$	TBHP (1)	DMF	-	48
15	$Pd(OAc)_2(20)$	$TMSN_3(2)$	Aq.TBHP (1)	DMSO	-	42
16	$Pd(OAc)_2(20)$	$TMSN_3(2)$	$Aq.H_2O_2(1)$	DMSO	-	00
17	$Pd(OAc)_2(20)$	$TMSN_3(2)$	TBHP (2)	DMSO	-	70
18	$Pd(OAc)_2(20)$	$TMSN_3(3)$	TBHP (2)	DMSO	-	71
19	$Pd(OAc)_2(20)$	$TMSN_3(2)$	TBHP (3)	DMSO	-	73
20	$Pd(OAc)_2(20)$	$TMSN_3(2)$	TBHP (2)	DMSO	O ₂	61
21	$Pd(OAc)_2(20)$	$TMSN_3(2)$	TBHP (2)	DMSO	$PhI(OAc)_2^e$	63
22	$Pd(OAc)_2(20)$	$TMSN_3(2)$	TBHP (2)	DMSO	FeCl ₂ ^e	61
23	$Pd(OAc)_2(20)$	$TMSN_3(2)$	TBHP (2)	DMSO	Cu(OAc) ₂ ^e	65
24	Pd(OAc) ₂ (20)	$TMSN_3(2)$	TBHP (2)	DMSO	-	78 ^f
25	$Pd(OAc)_2(20)$	$TMSN_3(2)$	TBHP (2)	DMSO	-	65 ^{<i>g</i>}
26	-	$TMSN_3(2)$	TBHP (2)	DMSO	-	00
27	$Pd(OAc)_2(20)$	$TMSN_3(2)$	-	DMSO	-	00

^{*a*}Reaction condition: azobenzene (0.5 mmol), in solvent (1.0 mL) at 100 °C for 24 h. ^{*b*}Isolated yield. ^{*c*}V.O = CAN (1 equiv), DDQ (1 equiv), Cu(OAc)₂ (1 equiv), Ag₂O (1 equiv), K₂S₂O₈ (1 equiv), Oxone (1 equiv) used under air. ^{*d*}O₂ balloon. ^{*e*}20 mol% under air. ^{*f*}Reaction with argon balloon. ^{*g*}Reaction was carried out for 36 h at 80 °C.

After establishing the optimized parameters, this protocol was subsequently applied to a range of substituted azoarenes to afford their corresponding *2H*-benzotriazoles. This protocol is

found to be compatible with several functional groups such as electron donating alkyl [-Me (1b-1f), -Et (1g and 1h), -ⁱPr (1i) and -Bu (1j)], methoxy (-OMe) (1k), moderately electronwithdrawing halogens [-F(11), -C1 (1m-10) and -Br (1p)] and strongly electron-withdrawing $(-CF_3)$ (1r) substituents in aromatic ring of azoarenes. All the substrates in Scheme 3 (1a-1r) are symmetrically substituted azoarenes. Azoarenes possessing weakly activating substituents such as p-Me (1b), m-Me (1c) and o-Me (1d) underwent o-aminative-heterocyclization smoothly giving their corresponding 2H-benzotriazoles (2b-2d) in moderate to good yields as shown in Scheme 3. Symmetrically substituted di-methylated azoarenes such as 3,4-dimethyl (1e) and 2,4dimethyl (1f) under the optimized reaction conditions furnished their corresponding 2Hbenzotriazoles (2e) and (2f) respectively, in 87% and 65% yields (Scheme 3). Azoarenes possessing other weakly activating substituents such as 4-ethyl (1g) and 2-ethyl (1h) reacted under identical conditions to give (2g) and (2h) respectively, in 79% and 64% yields. Similarly, the reaction of 4-isopropyl (1i) and 4-butyl (1j) substituted symmetrical azoarenes under standard conditions afforded 82% and 76% yields of their corresponding products (2i and 2j) respectively. A moderate yield (72%) of ($2\mathbf{k}$) was obtained when both the aryl rings are electron rich due to the presence of methoxy (-OMe) (1k) substituent as in Scheme 3. However, the azoarenes possessing weakly deactivating substituents, irrespective of their positions in the aryl ring such as p-F (11), p-Cl (1m), m-Cl (1n) and o-Cl (1o), provided their respective 2Hbenzotriazoles (2l-2o) in moderate to poor yields (in the range of 63-35%). Other weakly electron-withdrawing substituents such as p-bromo (1p) under the standard conditions gave only 41% yield of (2p), while p-iodo (1q) failed to react which is mainly because of the electronic effect of substituents and partly due to their insolubility in DMSO. Similarly, strongly electronwithdrawing substituents such as p-CF₃ (1r) furnished only low yield (8%) of (2r) even after 50

The Journal of Organic Chemistry

h which is mainly because of the electronic effect of $-CF_3$ substituent. As can be seen in Scheme 3, barring one exception (1k) azoarenes bearing electron-donating substituents (1b-1j) provided better yields of their products (2b-2j) compared to those bearing electron-withdrawing substituents (1l-1r). The higher yields obtained for electron-donating azoarenes could be attributed to their better chelating ability with electrophilic Pd (II) catalyst. The electronic-effect is dominated by the steric factor when the substituents are present at their *ortho* positions (1d, 1f, 1h and 1o) giving lower yields of products (2d, 2f, 2h and 2o) compared to their *para* and *meta* analogues as shown in Scheme 3. All the *meta* substitued azoarenes (1c), (1e) and (1n) gave single regioisomeric products (2c), (2e) and (2n) respectively. In these cases the less sterically hindered *o*-C-H (*i.e para* to the *meta* substituents) is exclusively functionalized.

Scheme 3. Substrate Scope for Symmetrical Azoarenes^{*a,b*}

^{*a*}Reaction condition: symmetrical azobenzene (0.5 mmol), TMSN₃ (2 equiv), TBHP-decane (2 equiv) in DMSO (1.0 mL) at 100 °C for 19-50 h. ^{*b*}Isolated yields of pure product.

After the successful synthesis of a series of *2H*-benzotriazoles from symmetrical azoarenes (Scheme 3) we then focused our attention on unsymmetrical azoarenes.** A query arises whether this protocol will be applicable for the regioselective *o*-aminative-heterocyclization or it

Page 13 of 30

The Journal of Organic Chemistry

would provide a mixture of –constitutional isomeric products? Keeping the substrate reactivity trends from Scheme 3 in mind, some azoarenes were especially designed for this. These designed azoarenes possess either electron-neutral (-H) or electron-donating (-OMe) substituents in one of the aromatic ring while the other ring contains electron-withdrawing substituents such as o-COPh, o-NO₂, p-CO₂Me. Substrate (1as) bearing electron-withdrawing o-COPh group in one of the aromatic ring and - electron neutral (-H) substituent in the other ring, when subjected to the present reaction conditions, an inseparable constitutional isomeric mixture of 2H-benzotriazoles (2a's) and (2as') were obtained in the ratio of 4 : 3 (as judged from ¹H NMR) in 64% yield [Scheme 4(i)]. (E)-1-(2-Nitrophenyl)-2-phenyldiazene (1at), another unsymmetrical azoarene, under the present reaction conditions gave a product (2a) [(Scheme 4(ii)] having no intact nitro group. This unexpected formation of product (2a) from unsymmetrical azoarene (1at) can be explained by the intermolecular nucleophilic attack (SNAr) of the *in situ* generated o-azido group on to the carbon attached to the nitro group. The product (2a) was obtained in a mere yield of 14% and the rest being unreacted starting material. Nevertheless this reaction supports the intermediacy of o-azido species. The failure to obtain a nitrophenyl-substituted benzotriazole from (1at) is possibly due to the presence of a strong deactivating ortho $-NO_2$ substituent which reduces the chelating ability of the 'azo moiety' towards electrophilic Pd (II). Another unsymmetrical substrate (1au) containing p-CO₂Me substituent in one aromatic ring and electron neutral (-H) in the other ring, furnished a mixture of inseparable constitutional isomeric products (2a'u) and (2au') in the ratio of 2 : 1 in 57% yield (Scheme 4(iii)). Similarly, substrate (1ku) having p-CO₂Me group in one ring and p-OMe group in the other ring underwent o-aminativeheterocyclization giving inseparable products (2k'u and 2ku') in the ratio of 3.5 : 1. From the above reactions [Scheme 4(i), (iii) and (iv)] it is evident that the *o*-aminative-heterocyclization is

preferred at the aromatic rings possessing electron donating substituent (-OMe) followed by electron neutral (–H), and the electron-withdrawing substituents *p*-CO₂Me and *o*-COPh.

Scheme 4. Regioselectivity in unsymmetrical Azoarenes^{*a,b*}

^{*a*}Reaction condition: unsymmetrical azoarene (0.5 mmol), TMSN₃ (2 equiv), TBHP-decane (2 equiv) in DMSO (1 mL) at 100 °C for 26-40h. ^{*b*}Isolated yields of product(s).

Some control reactions were performed to deduce the plausible reaction mechanism for this transformation. When this reaction was carried out in the presence of a radical inhibitor TEMPO (2,2,6,6-tetramethylpiperidinooxy), no product formation (**2a**) was observed as shown in Scheme

5(i). Thus complete suppression of the product formation of (2a) indicates a radical pathway for this process. Formation of product (2a) from unsymmetrical azoarenes bearing *o*-nitro group (1at) [Scheme 4(ii)] can be explained if there is formation of an *o*-azido species which is possibly the intermediate in these reactions. When a pre-synthesized *ortho* azido azobenzene (1aa) was treated under the present reaction conditions, formation of corresponding product 2-phenyl-2H-benzotriazole (2a) was obtained in 86% yield as in Scheme 5(ii). This further supports the intermediacy of *ortho* azido species for these reactions. The thermal decomposition of (1aa) at 100 °C to (2a) in 83% yield suggests the non involvement of Pd-catalyst and oxidant (TBHP) in the final step [Scheme 5(iii)].

Scheme 5. Control Reactions Performed

Based on these experimental results and taking cues from the recent literature precedent,^{17-18,22-23} a plausible mechanism has been proposed as shown in Scheme 6. Presumably, an initial cyclopalladation between 'azo moiety' of azobenzene and Pd(II) catalyst leads to the formation of intermediate complex (**A**). The *in situ* generated azide radical,²⁴ obtained by the reaction of TMSN₃ and TBHP, then reacts with Pd-complex (**A**), which is oxidized to give a Pd(III)²³

intermediate (**B**) (Scheme 6). A further oxidation of intermediate (**B**) by TBHP leads to the formation of a Pd(IV)²² intermediate (**C**). Thus TBHP is playing the dual role of an oxidant as well as a radical generator. Apart from this, the ^tBuO moiety generated from TBHP may act as one of the ligand for Pd^{IV} as in intermediate (**C**). A reductive elimination of intermediate (**C**) leads to the formation of an *ortho* azido azobenzene (**1aa**) and regenerating palladium (II) catalyst for the next cycle. In the final stage, attack of one of the azo nitrogen onto the *o*-azide nitrogen of the *in situ* generated *ortho* azido substrate (**1aa**) leads to cyclization giving (**2a**), with the expulsion of a molecule of N₂.

Scheme 6. Plausible Mechanism for ortho-Aminative Heterocyclyzation

CONCLUSION

In summary, we have developed an efficient and regioselective protocol for the synthesis of 2-aryl-2*H*-benzotriazoles *via* Pd(II)-catalyzed *ortho* sp^2 C–H activation of azoarenes using TMSN₃ as the nitrogen source and TBHP as the oxidant. The ligand directed intermolecular azidation (C–N bond formation) through *ortho* sp^2 C–H functionalization of azobenzenes followed by intramolecular cyclization (N–N bond formation) leads to the construction of 2-aryl-2*H*-benzotriazoles. For unsymmetrical azoarenes the heterocyclization is preferred at the aromatic ring rich in electron compared to electron neutral (–H) or electron-deficient aromatic rings. A wide range of substrates scope with tolerance of various functional groups make this method a suitable alternative to the existing methods for the synthesis of 2-aryl-2*H*-benzotriazoles.

EXPERIMENTAL SECTION

General information:

All the compounds were commercial grade and were used without further purification. Organic extracts were dried over anhydrous sodium sulfate. Solvents were removed in a rotary evaporator under reduced pressure. Silica gel (60–120 mesh size) was used for the column chromatography. Reactions were monitored by TLC on silica gel 60 F254 (0.25 mm). NMR spectra were recorded in CDCl₃ with tetramethylsilane as the internal standard for proton NMR (600 MHz) and for ¹³C NMR (150 MHz). HRMS spectra were recorded using ESI mode (Q-TOF type Mass Analyzer). IR spectra were recorded in KBr or neat.

General Procedure for the Synthesis of 2-Phenyl-2H-benzo[d][1,2,3]triazole (2a). Azobenzene (1a, 91 mg, 0.5 mmol), Pd(OAc)₂ (22 mg, 20 mol%), TMSN₃ (115 mg, 1 mmol), TBHP in decane (5-6 M) (200 μL, 1 mmol) and DMSO (1 mL) were sequentially added to a 25 mL oven

dried round-bottle flask containing a magnetic needle. Through a steady flow of argon gas the flask was sealed with a rubber septum. To maintain a positive pressure of argon, the flask was fitted with an argon balloon and the resultant reaction mixture was stirred in a preheated oil bath at 100 °C. The progress of the reaction was monitored by TLC. After the completion of the reaction as indicated by TLC, the reaction mixture was cooled to room temperature and diluted with ethyl acetate (10 mL). Then the reaction mixture was filtered through a small bed of celite and washed with an additional amount of ethyl acetate (20 mL). This combined organic layer of ethyl acetate (30 mL) then washed with water (2 x 5 mL). The aqueous layer was separated using a separating funnel and organic layer was dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. The crude product was purified over a column of silica gel and eluted with (95.5 : 0.5, hexane/ ethyl acetate) to give 2-phenyl-*2H*-benzo[*d*][1,2,3]triazole (**2a**) in 78%.yield (76 mg) as yellowish solid.

2-Phenyl-2H-benzo[d][*1,2,3*]*triazole* (*2a*). Yellowish solid; yield 76 mg, 78%; mp 98–100 °C (Lit^{14k} mp 101–103 °C); ¹H NMR (CDCl₃, 600 MHz): δ (ppm) 7.42–7.44 (m, 2H), 7.45 (t, 1H, *J* = 7.8 Hz), 7.56 (t, 2H, *J* = 8.4 Hz), 7.93–7.95 (m, 2H), 8.36 (d, 2H, *J* = 7.8 Hz); ¹³C NMR (CDCl₃, 150 MHz): δ (ppm) 118.5, 120.8, 127.3, 129.1, 129.6, 140.5, 145.2; IR (KBr): 3063, 2924, 2854, 1643, 1594, 1564, 1488, 1460, 1445, 1412, 1339, 1318, 1288, 1221, 1070, 1020, 963, 917, 809, 760 cm⁻¹; HRMS (ESI): calcd. for C₁₂H₁₀N₃⁺ [M + H⁺] 196.0869; found 196.0871.

5-*Methyl-2-(p-tolyl)-2H-benzo[d][1,2,3]triazole (2b)*. Yellowish solid; yield 94 mg, 84%; mp 113–115 °C (Lit^{14k} 121–124 °C); ¹H NMR (CDCl₃, 600 MHz): δ (ppm) 2.43 (s, 3H), 2.51 (s, 3H), 7.23–7.26 (m, 1H), 7.33 (d, 2H, J = 8.4 Hz), 7.66 (s, 1H), 7.80 (d, 1H, J = 9 Hz), 8.20 (d, 2H, J = 8.4 Hz); ¹³C NMR (CDCl₃, 150 MHz): δ (ppm) 21.3, 22.4, 116.7, 117.8, 120.5, 130.1, 137.3, 138.4, 139.0, 143.8, 145.6; IR (KBr): 3059, 2922, 2852, 1627, 1562, 1508, 1449, 1351, 1311, 1275, 1220, 1175, 1166, 1115, 1104, 1040, 973, 841, 764 cm⁻¹; HRMS (ESI): calcd. for C₁₄H₁₄N₃⁺ (M + H⁺) 224.1182; found 224.1179.

The Journal of Organic Chemistry

5-Methyl-2-(m-tolyl)-2H-benzo[d][*1,2,3*]*triazole* (*2c*). Yellowish solid; yield 89 mg, 80%; mp 77–79 °C (Lit^{14k} 77–80 °C); ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 2.48 (s, 3H), 2.51 (s, 3H), 7.24–7.26 (m, 2H), 7.42 (t, 1H, *J* = 8.0 Hz), 7.66 (s, 1H), 7.82 (d, 1H, *J* = 8.8 Hz), 8.12 (d, 1H, *J* = 8.4 Hz), 8.16 (s, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ (ppm) 21.6, 22.4, 116.7, 117.8, 117.9, 121.2, 129.4, 129.7, 130.3, 137.5, 139.7, 140.6, 143.9, 145.7; IR (KBr): 3027, 2922, 2852, 1625, 1613, 1590, 1562, 1554, 1491, 1466, 1422, 1352, 1299, 1275, 1222, 1156, 1144, 1090, 1011, 972, 901, 879, 798, 780 cm⁻¹; HRMS (ESI): calcd. for C₁₄H₁₄N₃⁺ (M + H⁺) 224.1182; found 224.1185.

4-*Methyl-2-(o-tolyl)-2H-benzo[d]*[1,2,3]*triazole* (2*d*). Red liquid; yield 65 mg, 58%; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 2.41 (s, 3H), 2.73 (s, 3H), 7.19 (d, 1H, *J* = 6.8 Hz), 7.33–7.43 (m, 4H), 7.69 (d, 1H, *J* = 7.2 Hz), 7.79 (d, 1H, *J* = 8.4 Hz); ¹³C NMR (CDCl₃, 150 MHz): δ (ppm) 17.4, 18.9, 115.8, 126.0, 126.3, 126.8, 127.3, 129.3, 129.7, 131.8, 133.7, 140.6, 144.9, 145.5; IR (KBr): 3058, 2924, 2852, 1608, 1583, 1512, 1497, 1463, 1433, 1382, 1337, 1289, 1281, 1264, 1156, 1131, 1095, 1038, 969, 874, 792, 753, 711 cm⁻¹; HRMS (ESI): calcd. for C₁₄H₁₄N₃⁺ (M + H⁺) 224.1182; found 224.1187.

2-(3,4-Dimethylphenyl)-5,6-dimethyl-2H-benzo[d][1,2,3]triazole (2e). Yellow solid; yield 109 mg, 87%; mp 193–195 °C; ¹H NMR (CDCl₃, 600 MHz): δ (ppm) 2.33 (s, 3H), 2.38 (s, 3H), 2.41 (s, 6H), 7.26–7.28 (m, 1H), 7.64 (s, 2H), 8.01 (d, 1H, J = 5.4 Hz), 8.09 (s, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ (ppm) 19.7, 20.1, 21.2, 116.8, 117.9, 121.5, 130.6, 137.5, 137.7, 138.1, 138.6, 144.5; IR (KBr): 3034, 2921, 2852, 1610, 1552, 1499, 1447, 1416, 1376, 1358, 1280, 1219, 1167, 1125, 1081, 1026, 1003, 971, 901, 880, 818, 720 cm⁻¹; HRMS (ESI): calcd. for C₁₆H₁₈N₃⁺ (M + H⁺) 252.1495; found 252.1497.

2-(2,4-Dimethylphenyl)-4,6-dimethyl-2H-benzo[d][1,2,3]triazole (**2***f*). Red Solid; yield 81 mg, 64%; mp 49–51 °C; ¹H NMR (CDCl₃, 600 MHz): δ (ppm) 2.35 (s, 3H), 2.41 (s, 3H), 2.48 (s, 3H), 2.68 (s, 3H), 7.02 (s, 1H), 7.15 (d, 1H, *J* = 7.8 Hz), 7.18 (s, 1H), 7.52 (s, 1H), 7.55 (d, 1H, *J* = 8.4 Hz); ¹³C NMR (CDCl₃, 150 MHz): δ (ppm) 17.3, 18.8, 21.3, 22.3, 113.9, 126.0, 127.4, 128.5, 128.9, 132.3, 133.2, 137.2, 138.3, 139.5, 144.1, 145.3; IR (KBr): 2947, 2921, 2854, 1697, 1623, 1579, 1510, 1498, 1447, 1380, 1335,

1286, 1264, 1248, 1237, 1158, 1141, 1041, 972, 876, 838, 775 cm⁻¹; HRMS (ESI): calcd. for $C_{16}H_{18}N_3^+$ (M + H⁺) 252.1495; found 252.1492.

5-*Ethyl-2-(4-ethylphenyl)-2H-benzo[d]*[1,2,3]*triazole* (**2g**). Red liquid; yield 99 mg, 79%; ¹H NMR (CDCl₃, 600 MHz): δ (ppm) 1.30 (t, 3H, J = 7.2 Hz), 1.33 (t, 3H, J = 7.8 Hz), 2.74 (q, 2H, J = 7.2 Hz), 2.81 (q, 2H, J = 7.8 Hz), 7.28 (dd, 1H, $J_I = 1.2$ Hz, $J_2 = 9.0$ Hz), 7.36 (d, 2H, J = 8.4 Hz), 7.68 (s, 1H), 7.83 (d, 1H, J = 9.0 Hz), 8.23 (d, 2H, J = 8.4 Hz); ¹³C NMR (CDCl₃, 150 MHz): δ (ppm) 15.5, 15.6, 28.7, 29.6, 115.3, 118.0, 120.6, 128.9, 129.3, 138.6, 143.7, 144.0, 145.4, 145.7; IR (KBr): 2964, 2925, 2853, 1629, 1561, 1512, 1455, 1376, 1310, 1284, 1266, 1241, 1218, 1175, 1113, 1052, 975, 965, 863, 838 cm⁻¹; HRMS (ESI): calcd. for C₁₆H₁₈N₃⁺ (M + H⁺) 252.1495; found 252.1498.

4-Ethyl-2-(2-ethylphenyl)-2H-benzo[d][*1,2,3*]*triazole* (*2h*). Pale Yellow liquid; yield 80 mg, 64%; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 1.11 (t, 3H, *J* = 7.6 Hz), 1.42 (t, 3H, *J* = 7.6 Hz), 2.71 (q, 2H, *J* = 7.2 Hz), 3.12 (q, 2H, *J* = 7.6 Hz), 7.20 (d, 1H, *J* = 7.2 Hz), 7.36 (t, 2H, *J* = 8.0 Hz), 7.41–7.47 (m, 2H), 7.63 (d, 1H, *J* = 8.4 Hz), 7.77 (d, 1H, *J* = 8.8 Hz); ¹³C NMR (CDCl₃, 150 MHz): δ (ppm) 14.3, 15.1, 25.2, 115.9, 124.1, 126.6, 126.8, 127.3, 130.0, 130.3, 135.4, 139.8, 140.2, 144.8, 145.1; IR (KBr): 3056, 2968, 2933, 2874, 1607, 1583, 1494, 1457, 1372, 1345, 1286, 1264, 1221, 1157, 1134, 1054, 971, 948, 872, 805, 754 cm⁻¹; HRMS (ESI): calcd. for C₁₆H₁₈N₃⁺ (M + H⁺) 252.1495; found 252.1491.

5-*Isopropyl-2-(4- isopropylphenyl)-2H-benzo[d]*[1,2,3]*triazole (2i)*. Light red Solid; yield 114 mg, 81%; mp 58–60 °C; ¹H NMR (CDCl₃, 600 MHz): δ (ppm) 1.30 (s, 3H), 1.31 (s, 3H), 1.34 (s, 3H), 1.35 (s, 3H), 2.96–3.02 (m, 1H), 3.03-3.09 (m, 1H), 7.33(d, 1H, *J* = 8.4 Hz), 7.40 (d, 2H, *J* = 8.4 Hz), 7.73 (s, 1H), 7.85 (d, 1H, *J* = 9.0 Hz), 8.25 (d, 2H, *J* = 8.4 Hz); ¹³C NMR (CDCl₃, 150 MHz): δ (ppm) 23.9, 24.1, 34.0, 34.7, 113.8, 118.1, 120.6, 127.5, 128.1, 138.6, 144.1, 145.6, 148.3, 149.9; IR (KBr): 2956, 2925, 2866, 1562, 1513, 1463, 1453, 1430, 1383, 1362, 1354, 1307, 1276, 1253, 1216, 1146, 1106, 1052, 1032, 969, 947, 864, 840, 818, 731 cm⁻¹; HRMS (ESI): calcd. for C₁₈H₂₂N₃⁺ (M + H⁺) 280.1808; found 280.1812.

The Journal of Organic Chemistry

5-Butyl-2-(4- butylphenyl)-2H-benzo[d][1,2,3]triazole (2j). Reddish liquid; yield 117 mg, 76%; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 0.93–0.97 (m, 6H), 1.32-1.44 (m, 4H), 1.61–1.72 (m, 4H), 2.69 (t, 2H, J = 8.0 Hz), 2.76 (t, 2H, J = 8.0 Hz), 7.25–7.27 (m, 1H), 7.34 (d, 2H, J = 8.4 Hz), 7.66 (s, 1H), 7.82 (d, 1H, J = 8.8 Hz), 8.21 (d, 2H, J = 8.4 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 14.14, 14.16, 22.49, 22.52, 33.4, 33.7, 35.5, 36.3, 116.1, 117.9, 120.5, 129.5, 129.6, 138.6, 142.3, 144.0, 144.1, 145.6; IR (KBr): 2955, 2932, 2857, 1629, 1608, 1561, 1512, 1465, 1427, 1378, 1352, 1277, 1257, 1234, 1141, 1114, 1081, 1017, 970, 953, 930, 836, 808 cm⁻¹; HRMS (ESI): calcd. for C₂₀H₂₆N₃⁺ (M + H⁺) 308.2121; found 308.2125.

5-*Methoxy*-2-(4- *methoxyphenyl*)-2*H*-*benzo*[*d*][1,2,3]*triazole* (2*k*). Yellowish solid; yield 92 mg, 72%; mp 140–142 °C (Lit^{14k} 147–150 °C); ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 3.89 (s, 3H), 3.91 (s, 3H), 7.04 (d, 2H, *J* = 9.6 Hz), 7.09 (dd, 1H, *J*₁ = 2.4 Hz, *J*₂ = 9.2 Hz), 7.12–7.13 (m, 1H), 7.78 (d, 1H, *J* = 9.2 Hz), 8.21 (d, 2H, *J* = 9.2 Hz); ¹³C NMR (CDCl₃, 150 MHz): δ (ppm) 55.7, 55.8, 94.9, 114.7, 119.1, 121.7, 122.1, 134.3, 141.2, 146.0, 159.3, 159.9; IR (KBr): 3002, 2972, 2924, 2840, 1630, 1610, 1566, 1453, 1439, 1405, 1359, 1289, 1256, 1225, 1207, 1190, 1169, 1133, 1108, 1087, 1025, 970, 852, 837, 827 cm⁻¹; HRMS (ESI): calcd. for C₁₄H₁₄N₃O₂⁺ (M + H⁺) 256.1081; found 256.1080.

5-*Fluoro-2-(4- fluorophenyl)-2H-benzo[d]*[1,2,3]*triazole (2l)*. Brownish solid; yield 73 mg, 63%; mp 169–171 °C; ¹H NMR (CDCl₃, 600 MHz): δ (ppm) 7.26–7.29 (m, 3H), 7.55 (d, 1H, $J_1 = 2.4$ Hz, $J_2 = 9.0$ Hz), 7.94–7.96 (m, 1H), 8.34–8.36 (m, 2H); ¹³C NMR (CDCl₃, 150 MHz): δ (ppm) 116.6 (d, J = 24 Hz), 119.1 (d, J = 28.5 Hz), 120.3 (d, J = 10.5 Hz), 122.6 (d, J = 9 Hz), 136.7, 142.5, 145.2 (d, J = 15 Hz), 161.1, 162.7, 163.1 (d, J = 249 Hz); ¹⁹F NMR (CDCl₃, 564.7 MHz): δ –111.9, –112.4; IR (KBr): 2958, 2923, 2853, 1663, 1614, 1603, 1568, 1509, 1429, 1409, 1353, 1303, 1279, 1222, 1158, 1121, 1096, 1085, 972, 956, 832, 803 cm⁻¹; HRMS (ESI): calcd. for C₁₂H₈F₂N₃⁺ (M + H⁺) 232.0681; found 232.0682. *5-Chloro-2-(4- chlorophenyl)-2H-benzo[d]*[1,2,3]*triazole (2m)*. White solid; yield 75 mg, 57%; mp 177–179 °C (Lit^{14k} 185–187 °C); ¹H NMR (CDCl₃, 600 MHz): δ (ppm) 7.38 (dd, 1H, $J_1 = 1.8$ Hz, $J_2 = 10.74$ Hz, $J_2 = 10.74$, $J_2 = 1.8$ Hz, $J_2 = 1.54$ Hz, $J_2 = 1.54$ Hz, $J_2 = 1.54$ Hz, $J_2 = 1.54$ Hz), $J_2 = 1.54$ Hz, $J_3 = 1.54$ Hz, $J_4 = 1.54$ Hz, $J_5 = 1.54$

9.0 Hz), 7.53 (d, 2H, J = 9.0 Hz), 7.86 (d, 1H, J = 9.0 Hz), 7.91 (s, 1H), 8.28 (d, 2H, J = 9.0 Hz); ¹³C

NMR (CDCl₃, 150 MHz): δ (ppm) 117.6, 119.8, 122.0, 129.3, 129.9, 133.5, 135.4, 138.8, 143.9, 145.6; IR (KBr): 3062, 2922, 2851, 1617, 1589, 1557, 1491, 1482, 1415, 1397, 1319, 1304, 1267, 1244, 1218, 1171, 1139, 1112, 1092, 965, 938, 861, 828, 754 cm⁻¹; HRMS (ESI): calcd. for C₁₂H₈³⁵Cl₂N₃⁺ (M + H⁺) 264.0090; found 264.0092.

5-*Chloro-2-(3- chlorophenyl)-2H-benzo[d]*[1,2,3]*triazole* (**2n**). White solid; yield 68 mg, 52%; mp 157–159 °C; ¹H NMR (CDCl₃, 600 MHz): δ (ppm) 7.38 (dd, 1H, $J_1 = 1.2$ Hz, $J_2 = 9.0$ Hz), 7.45 (d, 1H, J = 7.8 Hz), 7.49 (t, 1H, J = 7.8 Hz), 7.87 (d, 1H, J = 9.0 Hz), 7.92 (s, 1H), 8.24 (d, 1H, J = 7.8 Hz), 8.38 (s, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ (ppm) 117.6, 118.8, 119.9, 121.1, 129.4, 129.5, 130.8, 133.6, 135.6, 141.1, 143.8, 145.6; IR (KBr): 2955, 2923, 2852, 1594, 1586, 1556, 1483, 1453, 1437, 1280, 1266, 1243, 1218, 1109, 1071, 1049, 962, 938, 880, 862, 783, 762 cm⁻¹; HRMS (ESI): calcd. for C₁₂H₈³⁵Cl₂N₃⁺ (M + H⁺) 264.0090; found 264.0092.

4-Chloro-2-(2- chlorophenyl)-2H-benzo[d][*1,2,3*]*triazole (20)*. Colourless Gummy; yield 46 mg, 35%; ¹H NMR (CDCl₃, 600 MHz): δ (ppm) 7.41 (t, 1H, *J* = 7.8 Hz), 7.47–7.54 (m, 3H), 7.64 (d, 1H, *J* = 8.4 Hz), 7.75 (d, 1H, *J* = 6.6 Hz), 7.91 (d, 1H, *J* = 8.4 Hz); ¹³C NMR (CDCl₃, 150 MHz): δ (ppm) 117.5, 118.8, 123.7, 126.9, 127.7, 127.8, 128.6, 131.2, 131.4, 138.7, 143.6, 145.8; IR (KBr): 2958, 2924, 2852, 1735, 1582, 1555, 1485, 1448, 1346, 1293, 1261, 1203, 1144, 1113, 1050, 1032, 979, 962, 870, 793, 704 cm⁻¹; HRMS (ESI): calcd. for C₁₂H₈³⁵Cl₂N₃⁺ (M + H⁺) 264.0090; found 264.0095.

5-Bromo-2-(4- bromophenyl)-2H-benzo[d][1,2,3]triazole (2p). Brown Solid; yield 72 mg, 41%; mp 160–162 °C; ¹H NMR (CDCl₃, 600 MHz): δ (ppm) 7.50 (dd, 1H, $J_I = 1.2$ Hz, $J_2 = 9.0$ Hz), 7.68 (d, 2H, J = 8.4 Hz), 7.80 (d, 1H, J = 9.0 Hz), 8.10 (s, 1H), 8.22 (d, 2H, J = 9.0 Hz); ¹³C NMR (CDCl₃, 150 MHz): δ (ppm) 119.9, 120.9, 121.4, 122.2, 123.4, 131.6, 132.8, 139.2, 143.9, 146.1; IR (KBr): 2953, 2852, 1614, 1554, 1487, 1477, 1411, 1348, 1318, 1302, 1264, 1240, 1215, 1141, 1095, 1070, 1032, 1008, 964, 927, 824, 800 cm⁻¹; HRMS (ESI): calcd. for C₁₂H₈⁷⁹Br₂N₃⁺ (M + H⁺) 351.9079; found 351.9083.

The Journal of Organic Chemistry

5-(*Trifluoromethyl*)-2-(4-(*trifluoromethyl*)phenyl)-2H-benzo[d][1,2,3]triazole (2r). Gummy; yield 13 mg, 8%; ¹H NMR (CDCl₃, 600 MHz): δ (ppm) 7.63 (d, 1H, J = 8.4 Hz), 7.86 (d, 2H, J = 9.0 Hz), 8.07 (d, 1H, J = 9.0 Hz), 8.30 (s, 1H), 8.53 (d, 2H, J = 8.4 Hz); ¹³C NMR (CDCl₃, 150 MHz): δ (ppm) 117.6 (t, J = 4.5 Hz), 120.2, 121.3, 123.3, 124.0, 125.9, 127.1 (t, J = 4.5 Hz), 130.1 (q, J = 33 Hz), 131.8 (q, J = 33 Hz), 142.5, 144.3, 146.2; ¹⁹F NMR (CDCl₃, 564.7 MHz): δ -63.5, -63.3; IR (KBr): 2956, 2924, 2853, 1639, 1614, 1569, 1510, 1471, 1429, 1360, 1321, 1265, 1244, 1168, 1134, 1107, 1065, 1045, 967, 945, 886, 847 cm⁻¹; HRMS (ESI): calcd. for C₁₄H₈N₃F₆⁺ (M + H⁺) 332.0617; found 332.0620.

Phenyl (2-phenyl-2H-benzo[d][1,2,3]triazol-4-yl)methanone + (2-(2H-benzo[d][1,2,3]triazol-2yl)phenyl)(phenyl)methanone (**2a's** + **2as'**). Yellowish solid; yield 96 mg, 64%; ¹H NMR (CDCl₃, 600 MHz): δ (ppm) 7.18 (t, 2H, J = 7.8 Hz), 7.26–7.27 (m, 3H), 7.37 (t, 1H, J = 3.6 Hz), 7.43–7.52 (m, 5H), 7.61–7.67 (m, 6H), 7.69–7.72 (m, 2H), 7.75 (d, 1H, J = 7.2 Hz), 7.92 (d, 2H, J = 7.8 Hz), 8.16 (d, 1H, J = 8.4 Hz), 8.20 (d, 1H, J = 7.8 Hz), 8.32 (d, 2H, J = 7.8 Hz); ¹³C NMR (CDCl₃, 150 MHz): δ (ppm) 118.4, 121.0, 122.7, 123.0, 123.6, 126.4, 127.3, 128.2, 128.4, 128.7, 128.9, 129.47, 129.55, 130.0, 130.2, 130.5, 131.3, 132.8, 133.1, 134.2, 137.2, 137.9, 138.5, 140.2, 143.2, 145.2, 145.8, 194.3, 195.2; IR (KBr): 3038, 2923, 2852, 1668, 1654, 1596, 1578, 1566, 1489, 1462, 1448, 1440, 1428, 1347, 1331, 1321, 1308, 1288, 1233, 1218, 1181, 1156, 1061, 998, 962, 937, 849, 773 cm⁻¹; HRMS (ESI): calcd. for C₁₉H₁₄N₃O⁺ (M + H⁺) 300.1131; found 300.1130.

Methyl 2-phenyl-2H-benzo[d][1,2,3]triazole-5-carboxylate + *Methyl* 4-(2Hbenzo[d][1,2,3]triazol-2-yl)benzoate (**2a'u** + **2au'**). Light red solid; yield 72 mg, 57%; ¹H NMR (CDCl₃, 600 MHz): δ (ppm) 3.95 (s, 3H), 3.99 (s, 3H), 7.44 (dd, 2H, J_1 = 3.0 Hz, J_2 = 6.6 Hz), 7.48-7.50 (m, 1H), 7.57 (t, 2H, J = 7.8 Hz), 7.93 (dd, 2H, J_1 = 3.0 Hz, J_2 = 6.6 Hz), 7.96 (d, 1H, J = 9.0 Hz), 8.06 (d, 1H, J = 9.0 Hz), 8.23 (d, 2H, J = 8.4 Hz), 8.37 (d, 2H, J = 7.8 Hz), 8.44 (d, 2H, J = 8.4 Hz), 8.72 (s, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ (ppm) 52.6, 52.7, 118.5, 118.7, 120.5, 121.0, 122.3, 122.8, 123.3, 127.3, 127.9, 129.2, 129.7, 129.8, 130.5, 130.8, 131.2, 140.3, 143.5, 144.6, 145.5, 146.9, 166.4, 166.9; IR (KBr):, 2949, 2916, 2842, 1718, 1605, 1560, 1504, 1441, 1422, 1345, 1381, 1279, 1219, 1194, 1150, 1136, 1011, 962, 855, 831, 807, 767, 747 cm⁻¹; HRMS (ESI): calcd. for $C_{14}H_{12}N_3O_2^+$ (M + H⁺) 254.0924; found 254.0923.

Methyl 2-(4-methoxyphenyl)-2H-benzo[d][*1,2,3*]*triazole-5-carboxylate* + *Methyl 4-(5-methoxy-2H-benzo[d]*[*1,2,3*]*triazol-2-yl*)*benzoate* (*2k'u* + *2ku'*). Yellowish solid; yield 96 mg, 68%; ¹H NMR (CDCl₃, 600 MHz): δ (ppm) 3.89 (s, 3H), 3.91 (s, 3H), 3.96 (s, 3H), 3.98 (s, 3H), 7.06 (d, 2H, *J* = 9.0 Hz), 7.09–7.12 (m, 2H), 7.78 (d, 1H, *J* = 9.6 Hz), 8.01–8.04 (m, 2H), 8.20 (d, 2H, *J* = 9.0 Hz), 8.29 (d, 2H, *J* = 9.0 Hz), 8.37 (d, 2H, *J* = 9.0 Hz), 8.69 (s, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ (ppm) 52.5, 55.8, 94.7, 114.5, 114.7, 118.2, 119.4, 119.9, 122.0, 122.4, 122.5, 123.6, 125.4, 127.0, 129.9, 130.8, 131.2, 141.9, 143.5, 146.6, 159.9, 160.8, 166.4, 166.9; IR (KBr):, 2954, 2924, 2852, 1715, 1630, 1606, 1563, 1509, 1455, 1439, 1299, 1282, 1251, 1228, 1184, 1171, 1143, 1129, 1108, 1082, 1022, 967, 950, 855, 828, 802, 766 cm⁻¹; HRMS (ESI): calcd. for C₁₅H₁₄N₃O₃⁺ (M + H⁺) 284.1030; found 284.1030.

AUTHOR INFORMATION

Corresponding Author

*E mail: patel@iitg.ernet.in.

ACKNOWLEDGMENT

B. K. P acknowledges the support of this research by the Department of Science and Technology (DST) (SB/S1/OC-53/2013), New Delhi, and the Council of Scientific and Industrial Research (CSIR) (02(0096)/12/EMR-II). NK, AM and WA thank CSIR for fellowship.

Supporting Information

Spectral data (¹H, ¹³C and ¹⁹F) for synthesized compounds. This Supporting Information is available free of charge *via* the Internet at <u>http://pubs.acs.org</u>

REFERENCES

- (1) (a) Goldberg, K. I.; Goldman, A. S. Eds. Activation and Functionalization of C-H Bond, ACS Symposium Series 885, American Chemical Society, Washington, DC, 2004. (b) Chatani, N. Directed Metallation; Springer: Berlin, Germany, 2008. (c) Daugulis, O.; Do, H. Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074. (d) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624.
- (2) (a) Evans, P. A. Modern Rhodium-Catalyzed Organic Reactions; Wiley-VCH: Weinheim, Germany, 2005. (b) Dyker, G. Handbook of C-H Transformations: Applications in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2005. (c) Li, C. -J. Acc. Chem. Res. 2009, 42, 335. (d) Ashenhurst, J. A. Chem. Soc. Rev. 2010, 39, 540.
- (3) Yu, J.-Q.; Shi, Z.-J. *C*-*H* Activation; Springer: Berlin, **2010**.
- (4) (a) (a) Santra, S. K.; Banerjee, A.; Khatun, N.; Patel, B. K. *Eur. J. Org. Chem.* 2015, 350.
 (b) Khatun, N.; Banerjee, A.; Santra, S. K.; Behera, A.; Patel, B. K. *RSC Adv.* 2014, *4*, 54532. 1307. (c) Khatun, N.; Santra, S. K.; Banerjee, A.; Patel, B. K. *Eur. J. Org. Chem.* 2015, (d) Khatun, N.; Banerjee, A.; Santra, S. K.; Ali, W.; Patel, B. K. *RSC Adv.* 2015, *5*, 36461 and references cited therein.
- (5) Monnier, F.; Taillefer, M. Angew. Chem. Int. Ed. 2009, 48, 6954.
- (6) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651.
- (7) Louillat, M.-L.; Patureau, F. W. Chem. Soc. Rev. 2014, 43, 901.
- (8) (a) Ng, K.-H.; Chan, A. S. C.; Yu, W.-Y. J. Am. Chem. Soc. 2010, 132, 12862. (b) Sun, K.; Li, Y.; Xiong, T.; Zhang, J.; Zhang, Q. J. Am. Chem. Soc. 2011, 133, 1694. (c) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790. (d) Kawano, T.; Hirano, K.; Satoh, T.; Miura, M. J. Am. Chem. Soc. 2010, 132, 6900. (e)

Yoo, E. J.; Ma, S.; Mei, T.-S.; Chan, K. S. L.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 7652. (f) Kim, J. Y.; Park, S. H.; Ryu, J.; Cho, S. H.; Kim, S. H.; Chang, S. J. Am. Chem. Soc. 2012, 134, 9110. (g) Yadav, M. R.; Rit, R. K.; Sahoo, A. K. Org. Lett. 2013, 15, 1638. (h) Kim, J.; Kim, J.; Chang, S. Chem.-Eur. J. 2013, 19, 7328 and references cited therein.

- (9) (a) Bräse, S.; Banert, K. Organic Azides, Wiley-VCH, Weinheim, 2010. (b) Voskresenska, V.; Wilson, R. M.; Panov, M.; Tarnovsky, A. N.; Krause, J. A.; Vyas, S.; Winter, A. H.; Hadad, C. M. J. Am. Chem. Soc. 2009, 131, 11535. (c) Nilov, D. I.; Komarov, D. Y.; Panov, M. S.; Karabaeva, K. E.; Mereshchenko, A. S.; Tarnovsky, A. N.; Wilson, R. M. J. Am. Chem. Soc. 2013, 135, 3423.
- (10) (a) Kauer, J. C.; Carboni, R. A. J. Am. Chem. Soc. 1967, 89, 2633. (b) Ritchie, C. D.; Wright, D. J. J. Am. Chem. Soc. 1971, 93, 2429. (c) Li, Y.; Gao, L.-X.; Han, F.-S. Chem. Eur. J. 2010, 16, 7969. (d) Niu, L.; Yang, H.; Yang, D.; Fu, H. Adv. Synth. Catal. 2012, 354, 2211 and references therein. (e) Gavenonis, J.; Tilley, T. D. Organometallics 2002, 21, 5549 and references therein. (f) Deng, Q.-H.; Bleith, T.; Wadepohl, H.; Gade, L. H. J. Am. Chem. Soc. 2013, 135, 5356. (g) Kita, Y.; Tohma, H.; Inagaki, M.; Hatanaka, K.; Yakura. T. Tetrahedron Lett. 1991, 32, 4321. (h) Lubriks, D.; Sokolovs, I.; Suna, E. J. Am. Chem. Soc. 2012, 134, 15436. (i) Tang, C.; Jiao, N. J. Am. Chem. Soc. 2012, 134, 18924. (j) Xie, F.; Qi, Z.; Li, X. Angew. Chem. Int. Ed. 2013, 52, 11862.
- (11) (a) Stokes, B. J.; Liu, S.; Driver, T. G. J. Am. Chem. Soc. 2011, 133, 4702 and references cited therein. (b) Lu, B.; Luo, Y.; Liu, L.; Ye, L.; Wang, Y.; Zhang, L. Angew. Chem. Int. Ed. 2011, 50, 8358. (c) Kumar, M. R.; Park, A.; Park, N.; Lee, S. Org. Lett. 2011, 13, 3542. (d) Zheng, Q.-Z.; Feng, P.; Liang, Y.-F.; Jiao, N. Org. Lett. 2013, 15, 4262. (e)

The Journal of Organic Chemistry

Khatun, N.; Gogoi, A.; Basu, P.; Das, P.; Patel, B. K. RSC Adv. 2014, 4, 4080 and references cited therein

- (12) (a) Catalán, J.; De Paz, J. L. G.; Torres, M. R.; Tornero, J. D. J. Chem. Soc. Faraday Trans. 1997, 93, 1691. (b) Kuila, D.; Kvakovszky, G.; Murphy, M. A.; Vicari, R.; Rood, M. H.; Fritch, K. A.; Fritch, J. R.; Wellinghoff, S. T.; Timmons, S. F. Chem. Mater. 1999, 11, 109. (c) Klein, M. F. G.; Pasker, F. M.; Kowarik, S.; Landerer, D.; Pfaff, M.; Isen, M.; Gerthsenm, D.; Lemmer, U.; Hoger, S.; Colsmann, A. Macromolecules 2013, 46, 3870. (d) Moor, O. D.; Dorgan, C. R.; Johnson, P. D.; Lambert, A. G.; Lecci, C.; Maillol, C.; Nugent, G.; Poignant, S. D.; Price, P. D.; Pye, R. J.; Storer, R.; Tinsley, J. M.; Vickers, R.; van Well, R.; Wilkes, F. J.; Wilson, F. X.; Wren, S.; Wynne, G. M. Bioorg. Med. Chem. Lett. 2011, 21, 4828. (e) Briguglio, I.; Piras, S.; Corona, P.; Gavini, E.; Nieddu, M.; Boatto, G.; Carta, A. Eur. J. Med. Chem. 2015, 97, 612 and references cited therein.
- (13) (a) Zhang, F.; Moses, J. E. Org. Lett. 2009, 11, 1587. (b) Kale, R. R.; Prasad, V.; Hussain, H. A.; Tiwari, V. K. Tetrahedron Lett. 2010, 51, 5740. (c) Liu, Q.-L.; Wen, D.-D.; Hang, C.-C.; Li, Q.-L.; Zhu, Y.-M. Helv. Chim. Acta 2010, 93, 1350. (d) Zhou, J.; He, J.; Wang, B.; Yang, W.; Ren, H. J. Am. Chem. Soc. 2011, 133, 6868.
- (14) (a) Hall, J. H. J. Org. Chem. 1968, 33, 2954. (b) Kamano, T.; Tanimoto, S. Synthesis
 1986, 647. (c) Dong, J.; Jin, B.; Sun, P. Org. Lett. 2014, 16, 4540. (d) Fischer, W.;
 Fritzsche, K.; Wolf, W.; Bore, L. 2002, WO 2002024668 A1. (e) Kim, B. H.; Kim, S. K.;
 Lee, Y. S.; Jun, Y. M.; Baik, W.; Lee, B. M. Tetrahedron Lett. 1997, 38, 8303. (f) Liu,
 G.-B.; Zhao, H.-Y.; Yang, H.-J.; Gao, X.; Li, M.-K.; Thiemann, T. Adv. Synth. Catal.
 2007, 349, 1637. (g) Jo, J.; Lee, H. Y.; Liu, W.; Olasz, A.; Chen, C.-H.; Lee, D. J. Am.

Chem. Soc. 2012, 134, 16000. (h) Ueda, S.; Su, M.; Buchwald, S. L. Angew. Chem. Int.
Ed. 2011, 50, 8944. (i) Liu, Z.; Larock, R. C. J. Org. Chem. 2006, 71, 3198. (j) Shang,
X.; Zhao, S.; Chen, W.; Chen, C.; Qiu, H. Chem.-Eur. J. 2014, 20, 1825. (k) Ryu, T.;
Min, J.; Choi, W.; Jeon, W. H.; Lee, P. H. Org. Lett. 2014, 16, 2810.

- (15) (a) Beharry, A. A.; Woolley, G. A. Chem. Soc. Rev. 2011, 40, 4422. (b) Lee, S.; Kang, H. S.; Park, J. K. Adv. Mater. 2012, 24, 2069. (c) García-Amorós, J.; Velasco, D. Beilstein J. Org. Chem. 2012, 8, 1003. (d) Ferri, V.; Elbing, M.; Pace, G.; Dickey, M. D.; Zharnikov, M.; Samorì, P.; Mayor, M.; Rampi, M. A. Angew. Chem. Int. Ed. 2008, 47, 3290.
- (16) Fahey, D. R. J. Organomet. Chem. 1971, 27, 283.
- (17) (a) Li, H. J.; Li, P. H.; Wang, L. Org. Lett. 2013, 15, 620. (b) Li, H. J.; Li, P. H.; Tan, H.; Wang, L. Chem.-Eur. J. 2013, 19, 14432. (c) Xiong, F.; Qian, C.; Lin, D.; Zeng, W.; Lu, X. Org. Lett. 2013, 15, 5444. (d) Song, H. Y.; Chen, D.; Pi, C.; Cui, X. L.; Wu, Y. J. J. Org. Chem. 2014, 79, 2955 and references cited therein
- (18) (a) Majhi, B.; Kundu, D.; Ahammed, S.; Ranu, B. C. Chem.-Eur. J. 2014, 20, 9862. (b)
 Yin, Z.; Jiang, X.; Sun, P. J. Org. Chem. 2013, 78, 10002. (c) Ma, X.-T.; Tian, S.-K. Adv.
 Synth. Catal. 2013, 355, 337. (d) Muralirajan, K.; Cheng, C. H. Chem.-Eur. J. 2013, 19,
 6198. (e) Deng, H.; Li, H.; Wang, L. Org. Lett. 2015, 17, 2450. (f) Lian, Y.; Bergman, R.
 G.; Lavis, L. D.; Ellman, J. A. J. Am. Chem. Soc. 2013, 135, 7122. (g) Wang, H.; Yu, Y.;
 Hong, X.; Tan, Q.; Xu, B. J. Org. Chem. 2014, 79, 3279. (h) Jia, X.; Han, J. J. Org.
 Chem. 2014, 79, 4180.
- (19) (a) Geng, X.; Wang, C. Org. Lett., 2015, 17, 2434. (b) Sharma, S.; Han, S. H.; Han, S.; Ji, W.; Oh, J.; Lee, S.-Y.; Oh, J. S.; Jung, Y. H.; Kim, I. S. Org. Lett. 2015, 17, 2852. (c) Son, J.-Y.; Kim, S.; Jeon, W. H.; Lee, P. H. Org. Lett. 2015, 17, 2518.

2
З
4
4
5
6
7
0
0
9
10
11
12
12
13
14
15
16
17
17
18
19
20
21
Z I
22
23
24
25
20
26
27
28
20
29
30
31
32
33
24
34
35
36
37
20
30
39
40
41
12
42
43
44
45
46
40
47
48
49
50
50 51
51
52
53
54
55
55
56
57
58
50
09
60

- (20) Lian, Y.; Hummel, J. R.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2013, 135, 12548.
- (21) (a) Guin, S.; Ghosh, T.; Rout, S. K.; Banerjee, A.; Patel, B. K. Org. Lett., 2011, 13, 5976.
 (b) Gogoi, A.; Guin, S.; Rout, S. K.; Patel, B. K. Org. Lett., 2013, 15, 1802.
- (22) (a) Deprez, N. R.; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 11234. (b) Racowski, J. M.; Dick, A. R.; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 10974. (c) Rosewall, C. F.; Sibbald, P. A.; Liskin, D. V.; Michael, F. E. J. Am. Chem. Soc. 2009, 131, 9488. 15945. (d) Whitfield, S. R.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 15142.
- (23) (a) Powers, D. C.; Geibel, M. A. L.; Klein, J. E. M. N.; Ritter, T. J. Am. Chem. Soc. 2009, 131, 17050. (b) Powers, D. C.; Lee, E.; Ariafard, A.; Sanford, M. S.; Yates, B. F.; Canty, A. J.; Ritter, T. J. Am. Chem. Soc. 2012, 134, 12002 and references cited therein.
- (24) (a) Sun, X.; Li, X.; Song, S.; Zhu, Y.; Liang, Y.-F.; Jiao, N. J. Am. Chem. Soc. 2015, 137, 6059. (b) Liang, Y.; Liang, Y.-F.; Jiao, N. Org. Chem. Front. 2015, 2, 403.
- * **Benzotriazole notation**: Benzotriazole is a fused heterocyclic compound having three vicinal nitrogen atoms in its five member ring. This ring can exist in two tautomeric forms *viz*. N^1 (N^3) or 1*H* isomer and N^2 or 2*H*-isomer due to the presence of one labile proton as shown below:

The N^1 and N^3 isomers are identical due to their structural similarity. The N^1 (1*H*) isomer is predominantly present in equilibrium with N^2 (2*H*) isomer at room temperature. The greater aromaticity of benzoid structure in N^1 (1*H*) isomer is the source of thermodynamical stability compared to the quinoid-like structure in N^2 (2*H*) isomer.

** A general note for compounds designation: A typical symmetrical azoarene (starting material) is designated as (1a) while its product is referred as (2a). The numerical number (1) stands for starting material while (2) is for product and (a) for a particular substituent. For unsymmetrical azoarenes, both a numbering and two letters have been used. For instance, in (1as) the number (1) is for the starting material while the double letter (as) indicates the presence of two different aryl rings. The alphabet (a) signifies simple phenyl ring while (s) signifies an aryl ring having *o*-COPh substituent. The numbering (2a's) suggests that the *ortho*-aminative heterocyclization is taking place at the phenyl ring, while (2as') indicates the *ortho*-aminative heterocyclization is at the aryl ring having *o*-COPh substituent. Similar nomenclature is followed for other symmetrical and unsymmetrical azoarenes and their products.