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Abstract

Toll-like receptors (TLRs) are a type of pattern recognition receptors (PRRs), 

which are activated by recognizing pathogen-associated molecular patterns 

(PAMPs). The activation of TLRs initiates innate immune responses and 

subsequently leads to adaptive immune responses. TLR agonists are effective 

immuomodulators in vaccine adjuvants for infectious diseases and cancer 

immunotherapy. In exploring hydrophilic small molecules of TLR7 ligands using 

the cell-targeted property of a vaccine adjuvant, we conjugated 1V209, a small 

TLR7 ligand molecule, with various low or middle molecular weight sugar 

molecules that work as carriers. The sugar-conjugated 1V209 derivatives showed 

increased water solubility and higher immunostimulatory activity in both mouse 

and human cells compared to unmodified 1V209. The improved 

immunostimulatory potency of sugar-conjugates was attenuated by an inhibitor of 

endocytic process, cytochalasin D, suggesting that conjugation of sugar moieties 

may enhance the uptake of TLR7 ligand into the endosomal compartment. 

Collectively our results support that sugar-conjugated TLR7 ligands are applicable 

to novel drugs for cancer and vaccine therapy.
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Introduction

Toll-like receptors (TLRs), which are membrane type 1 proteins, are classified as 

pattern recognition receptors (PRRs), and play significant roles in the innate and 

adaptive immune responses.1-4 In mammals, 13 kinds of TLRs (TLR1 to TLR13) 

have been found to date. Each TLR recognizes specifically microbial components 

called pathogen-associated molecular patterns (PAMPs); for example, lipoproteins 

and lipopeptides interact with TLR1, TLR2, and TLR6,5 lipopolysaccharide with 

TLR4,6 or nucleic acids with TLR3, TLR7, TLR8, and TLR97. Although most 

PAMPs are macromolecules, small molecule TLR ligands have been identified 

among natural or synthetic compounds.8-11 These compounds have attracted much 

attention as new candidates for cancer immunotherapy and as vaccine adjuvants 

because they modulate host immune responses. 

Several TLR7 ligands based on scaffolds of imidazoquinoline,12,13 purine,14-19 or 

guanine analogs20 have been studied intensively, and some of them have already 

been used in clinical treatment. Imiquimod (R837) is approved by the FDA for 

treatment of external genital warts, superficial basal cell carcinoma, and actinic 

keratosis.21,22 However, its clinical use is limited to only topical administration due 

to undesired side effects such as cytokine release syndrome following systemic 

administration.23-25 To improve bioavailability and pharmacokinetic properties of 
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small TLR7 ligand molecules, conjugates to a variety of accessory molecules such 

as proteins, lipids, PEG, or polysaccharides have been performed and showed 

higher immunostimulatory activity in vitro.18,19,26,27 In vivo analysis of these 

conjugates in mice indicated that immune response varied depending on accessory 

molecules. For example, the lipid-PEG conjugate induced Th-2 immune responses 

in mice,19 and the dextran conjugate induced a strong Th-1 biased immune 

response.27 It was suggested that these differences were derived from the uptake 

mechanism and the location of TLR7 conjugates, and different pathway for the 

activation of TLR7 signals. Thus, the accessory molecules may contribute to 

potency and characteristics of immune response in vivo. In this study, we focused 

on sugar molecules, which are involved in cell-selective transport in living 

system,28 and prepared several sugar-conjugated TLR7 ligands and evaluated their 

immunostimulatory activities.

Result and discussion

Synthesis of sugar-conjugated TLR7 ligands

We prepared 13 types of sugar molecules containing amino groups, which are 

commercially available or readily synthesized by amination from commercially 

available sugar molecules (Figure 1). Monosaccharide (glucosamine, 
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galactosamine, glucose, galactose, and mannose) and disaccharide (maltose and 

lactose) components were chosen since they are widely distributed as biomolecules. 

Cyclodextrines (CDs) were chosen since their derivatives are often utilized as 

additives for food and drug. 
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Figure 1. Sugar-conjugated TLR7 ligands.

The carboxylic acid functionalized TLR7 ligand, 1V209 

(2-methoxyethoxy-8-oxo-9-(4-carboxybenzyl)adenine), is easily coupled to the 

amino containing molecules with the coupling reagent, HATU 
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(1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide 

hexafluorophosphate). Coupling of commercially available hexosamines 

(glucosamine: GlcN, galactosamine: GalN) and 3A-aminocyclodextrins 

(3A-NH2--CD, 3A-NH2--CD, and 3A-NH2--CD) with 1V209 afforded 

sugar-conjugates 1, 2, 11, 12, and 13, respectively. The additional sugar amine 

derivatives were prepared according to two routes (Figure 2, Route A or B) and 

then conjugated to 1V209. In Route A, sugars were treated with 7 M methanolic 

ammonia in autoclave reactor according to the method reported by Zhang et al.29 

with modifications, and the resulting sugar amines were reacted with 1V209 to 

produce conjugates. In Route B, the transformation via azide groups was applied;30 

sugar molecules were peracetylated, brominated at the one position using HBr in 

AcOH, and azidated using NaN3. Reduction of the azide group, subsequent 

coupling with 1V209 using HATU, and then the successive deacetylation afforded 

the sugar conjugates. The conjugates 3, 5, and 6 were synthesized by Route A, 

whereas 4 and 7 were synthesized by Route B to avoid Amadori byproducts31 and 

other side products produced in Route A. The monosaccharide and disaccharide 

conjugates were used without isolation of anomers for the immunomodulating 

experiments. On the other hand, cyclodextrin conjugates were prepared via 

6A-azido-cyclodextrins using a method previously reported32 (Route C), and were 
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purified by reversed phase (ODS) column chromatography with MeOH-H2O 

eluents. As expected, the water solubility of the obtained sugar conjugates was 

higher than that of 1V209 (see supporting information, Table 1S).
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Figure 2. Synthesis of glycosyl amine (Route A or B) and 6A-amino-CD (Route 

C) derivatives. a) 7 M NH3 in MeOH, 60 ˚C, b) HATU in DMF, c) Ac2O, Pyr., d) 

HBr in AcOH, e) NaN3 in DMF, 60 ˚C, f) H2, Pd/C in MeOH, g) K2CO3 in MeOH, 

h) TsCl, Pyr. in DMF, i) NaN3 in DMF.

Immunostimulatory activity of sugar-conjugated TLR7 ligands
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Immunostimulatory activity of the sugar-conjugated TLR7 ligands was evaluated 

in two types of murine cells: macrophage cell line (RAW264.7) and primary bone 

marrow-derived dendritic cells (mBMDC). The levels of tumor necrosis factor- 

(TNF-) and interleukin-6 (IL-6) from those cells into the culture supernatants 

were evaluated by ELISA. The results are shown in Figure 3 (A, B, C, D, E, and F) 

and summary of half maximal effective concentrations (EC50) and the 

concentration of maximum induction (Emax) is shown in Table 1. Sugar-conjugated 

TLR7 ligands showed higher or equal cytokine release potency compared to 

unconjugated TLR7 ligand, 1V209. The potency of IL-6 production in mBMDC 

with sugar conjugates varied with size and structure of sugar moiety, and tended to 

be higher as the size of sugar molecule increased. Cyclodextrin conjugates linked 

at 3A position showed 10-fold higher potency than 1V209 in mBMDC. 

The conjugates showing favorable potencies in murine cells (sugar-conjugates 1, 6, 

and 11) were also tested using human peripheral blood mononuclear cells (PBMC) 

to assess whether the conjugates with different sugar size have activity in human 

cells. It was found that the sugar-conjugates showed higher potencies compared to 

1V209 (conjugates 1 and 6: 2-fold, conjugate 11: 3-fold, Figure 3G).

Immune cells contain receptors or transporters that can facilitate uptake of sugar 

molecules. On antigen presenting cells (APC), various types of lectins are 
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expressed as scavenger receptors such as C-type lectins.33,34 Thus, we hypothesized 

that enhancement of the immunostimulatory potencies of sugar-conjugated TLR7 

ligands may be attributed to receptor-mediated cellular uptake facilitated by the 

receptors and/or transporters on the cell surface. To test this hypothesis, we treated 

RAW264.7 cells with the sugar-conjugated TLR7 ligands (3, 6, and 11) in the 

presence or absence of cytochalasin D, an inhibitor of actin polymerization 

preventing the endocytic process (Table 2, Figure 3H, I). In the presence of 

cytochalasin D, the sugar conjugates showed decreased potencies. Especially, the 

potency of the conjugate 11 with cyclodextrin was significantly decreased by 

cytochalasin D. On the other hand, the unconjugated TLR7 ligand, 1V209, were 

not inhibited by cytochalasin D, suggesting that 1V209 was incorporated by 

passive diffusion. These results indicate that enhanced immunostimulatory 

potencies of sugar conjugates are due to enhanced endocytic uptake via sugar 

transporter and/or lectins on the cell surface. 
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Figure 3. In vitro cytokine induction by sugar-conjugated TLR7 ligands in murine 

and human cells. (A−D) RAW264.7 cells (1 × 104 cells/well) were plated and 

incubated with serially diluted sugar-conjugated TLR7 ligands (1−13) or 

unconjugated TLR7 ligand (1V209) for 18 h. The levels of TNF- were measured 

by ELISA. (E, F) The compounds were also tested in mBMDC (1 × 105 cell/well). 

IL-6 was measured by ELISA. The potencies of representative compounds (1, 3, 6, 

8, and 11) are presented. Vehicle (0.25% DMSO)-stimulation was not observed, 

respectively. (G) Human PBMC were plated at 2 × 105 cells/well and incubated 

with 10 μM glycan-conjugated TLR7 ligands (1, 6, and 11) or 1V209 for 18 h. 

Control cells were treated with 0.25% DMSO. (H, I) RAW264.7 cells (1.5 × 104 
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cell/well) were plated and pre-incubated with or without 1 μM of cytochalasin D, 

and incubated with serially diluted sugar-conjugated TLR7 ligands (3, 6, and 11) 

or unconjugated TLR7 ligand (1V209) for 6 h. TNF-α and IL-6 released in the 

culture supernatants were determined by ELISA. All data shown are means ± SD 

of triplicate and are representative of three independent experiments. **A value of 

p < 0.01 by one-way ANOVA with Dunnett's multiple comparisons test (G).

Table 1. Immunostimulatory activity of sugar conjugates.

TNF-a IL-6b

Compound EC50 

(nM)c

Emax 

(%)d

EC50 

(nM)c

Emax 

(%)d

1V209 252 100 434 100

1 234 103 239 139 

2 153 83 210 139 
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3 230 87 198 118 

4 316 115 258 118 

5 252 121 303 116 

6 136 157 99 159 

7 80 177 110 142 

8 128 126 71 127 

9 287 135 153 127 

10 132 97 108 130 

11 57 96 27 104 

12 40 106 40 113 

13 107 113 56 109 

a RAW264.7 cells were used for production of TNF-.

b mBMDC cells were used for production of IL-6.

c EC50 was calculated using Prism software.

d Emax values normalized to 1V209.

Table 2. Immunostimulatory activity of sugar conjugates in the presence or 

absence of cytochalasin D.
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TNF-a (EC50/M)b

Compound cytochalasin 

D (-)

cytochalasin 

D (+)

1V209 2.15 2.11

3 0.490 0.909

6 0.277 0.585

11 0.186 1.06

a RAW264.7 cells were used for production of TNF-.

b EC50 was calculated using Prism software.

To evaluate the binding interaction of sugar conjugates to TLR7 ligand, 

computational modeling was further performed (Figure 4). Modeling of the 

monosaccharide conjugate 3 with monkey TLR7 (PDB: 5GMH35) suggested that 

monosaccharide moiety of conjugate 3 is positioned outside of TLR7 dimer and no 

interaction between the sugar moiety and TLR7 dimer was observed. The 

disaccharide of 6 is also found to be positioned outside of the 1V209-TLR dimer 

complex (see supporting information, Figure 1S). The results suggest that sugar 

moiety is not responsible for dimerization of TLR7, and sugar moieties are 

important for water solubility, cellular uptake, and trafficking of ligands. Although 
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the detailed mechanism is still unclear, further analysis will clarify how sugar 

structures enhance the agonistic activity.

Figure 4. Computational docking studies of 1V209 and conjugate 3 to TLR7 

dimer. Molecular docking of 1V209 (purple) and conjugate 3 (green) in the 

resiquimod (R848) binding pocket of monkey TLR7 dimer complex (PDB: 

5GMH). The van der Waals surface area of binding pocket is shown in gray. 

Overlay of binding geometry between 1V209 (purple) and conjugate 3 (green) is 

shown in the magnified view.

Conclusion
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We synthesized various sugar-conjugated TLR7 ligands and evaluated their 

immune stimulatory potency in mice and human cells. The conjugation of a TLR7 

ligand with the amino group in sugar molecules was accomplished by simple 

amide condensation reaction using HATU. Synthesized sugar conjugates were 

water soluble and showed higher immunostimulatory potency compared to the 

unconjugated 1V209. Among them, the cyclodextrin conjugate 11 showed 10-fold 

higher potency in mBMDC and 3-fold higher activity in hPBMC relative to 1V209. 

We demonstrated that the higher potencies of sugar conjugates are due to 

incorporation into cells via the endocytic process. Molecular modeling of TLR7 

with monosaccharide conjugates suggests that the sugar moiety is not involved in 

the interaction of TLR7 dimerization. Although the detailed analysis of the sugar 

structures relative to cellular trafficking property is needed, this study may lead to 

novel applications in cancer immunotherapy or infectious diseases aimed at 

selective activation of immune cells using sugar properties.
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