

Available online at www.sciencedirect.com

European Journal of Medicinal Chemistry 41 (2006) 353-359

Original article

http://france.elsevier.com/direct/ejmech

Synthesis and biological activity of 4-thiazolidinones, thiosemicarbazides derived from diflunisal hydrazide

Güniz Küçükgüzel^{a,*}, Ayla Kocatepe^a, Erik De Clercq^b, Fikrettin Şahin^{c,d}, Medine Güllüce^d

^a Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul 34668, Turkey

^b Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroedersstraat, B-3000 Leuven, Belgium

^c Department of Genetic and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, İstanbul 34755, Turkey

^d Biotechnology Application and Research Center, Ataturk University, Erzurum 25240, Turkey

Received 11 June 2005; received in revised form 28 October 2005; accepted 3 November 2005 Available online 18 January 2006

Abstract

Two novel series of 4-thiazolidinone derivatives, namely 2',4'-difluoro-4-hydroxybiphenyl-3-carboxylic acid [2-(5-nitro-2-furyl/substituted phenyl)-4-thiazolidinone-3-yl]amides (**5a–g**) and 2-(2',4'-difluoro-4-hydroxybiphenyl-3-carbonylhydrazono)-3-alkyl/aryl-4-thiazolidinones (**6a–e**) together with 5-(2',4'-difluoro-4-hydroxybiphenyl-5-yl)-2-cyclohexylamino-1,3,4-oxadiazole (**7a**) have been synthesized as title compounds. 1-(2',4'-Difluoro-4-hydroxybiphenyl-3-carbonyl)-4-alkyl/arylthiosemicarbazides (**4a–g**) were also obtained and used as intermediate to give the title compounds. All synthesized compounds were screened for their antimycobacterial activity against *Mycobacterium tuberculosis H37Rv*, antiviral and antimicrobial activities against various virus, bacteria and fungi strains.

© 2006 Elsevier SAS. All rights reserved.

Keywords: 4-Thiazolidinone; Anti-HIV activity; Diflunisal; Thiosemicarbazide

1. Introduction

4-Thiazolidinone derivatives are known to possess antibacterial [1–5], antifungal [6–8], antiviral [9–13] and antituberculosis [4,14–16] properties (Fig. 1). Peptidoglycan is an essential component of the cell wall of both Gram-positive and Gram-negative bacteria. 4-Thiazolidinones have been reported as novel inhibitors of the bacterial enzyme Mur B which is a precursor acting during the biosynthesis of peptidoglycan [17]. Human immunodeficiency virus type 1 (HIV-1) was identified in the development of acquired immune deficiency syndrome (AIDS). Reverse transcriptase is a key enzyme, packaged within HIV virion capsid, which plays an essential role in the replication of virus. Combinations of reverse transcriptase nucleoside inhibitors, reverse transcriptase non-nucleoside inhibitors and protease inhibitors have been clinically used for the treatment of HIV infections. The result of observations culminated in the discovery of 4-thiazolidinone as a new class of highly potent non-nucleoside inhibitors [9–12]. Tuberculosis is a chronic infection disease caused by several species of mycobacteria. The incidence of tuberculosis is increasing world wide, partly due to poverty and inequity and partly to the HIV/AIDS pandemic, which greatly increase the risk of infectious proceeding to overt disease. During recent years, *Mycobacterium tuberculosis* and microorganisms increased resistance against drugs. Therefore, there is need to develop the new, potent, fast-acting antimicrobial, antiviral and antimycobacterial drugs with low toxicity.

4-Thiazolidinone derivatives of diflunisal, prepared from diflunisal hydrazide-hydrazones can give corresponding 2',4'-difluoro-4-hydroxybiphenyl-3-carboxylic acid (Diflunisal) as a metabolite via hydrolytic route. 4-Thiazolidinones of diflunisal were also designed as possible dual acting antimicrobial/antituberculosis agents possessing anti-inflammatory properties via

^{*} Corresponding author. Tel.: +90 216 349 12 16; fax: +90 216 345 29 52. *E-mail address:* gkucukguzel@marmara.edu.tr (G. Küçükgüzel).

its active metabolite, diflunisal against pain and inflammatory events due to the cell damage arising from tuberculosis and accompanying infectious diseases. In view of the above observations, the synthesis of novel and related compounds were aimed at investigating biological activities of these compounds.

2. Chemistry

2',4'-Difluoro-4-hydroxybiphenyl-3-carboxylic acid (analgesic and anti-inflammatory drug, Diflunisal) and methanol in the presence of a few drops of concentrated sulfuric acid were heated and 2',4'-difluoro-4-hydroxybiphenyl-3-carboxylic acid methyl ester (1) was isolated. By heating this methyl ester and hydrazine-hydrate in methanol 2',4'-difluoro-4-hydroxybiphenyl-3-carboxylic acid hydrazide (2) was obtained. After condensing hydrazide with aromatic aldehydes in ethanol, 2',4'-difluoro-4-hydroxybiphenyl-3-carboxylic acid [(5-nitro-2-furyl/ substituted phenyl) methylene] hydrazides (3a-g) were obtained as previously reported by Kücükgüzel et al. [18]. 2',4'-Difluoro-4-hydroxybiphenyl-3-carboxylic acid [2-(5-nitro-2furyl/substituted phenyl)-4-thiazolidinone-3-yl]amides (5a-g) were obtained by refluxing the related hydrazide-hydrazones (3a-g) and thioglycolic acid in dry benzene for 9-16 h using a Dean–Stark water separator. Compound (2) [18] and alkyl/ aryl isothiocyanates were heated in ethanol to yield original 1-(2',4'-difluoro-4-hydroxybiphenyl-3-carbonyl)-4-alkyl/arylthiosemicarbazides (4a-g). The thiosemicarbazides were then reacted with ethyl a-bromoacetate in the presence of anhydrous sodium acetate in absolute ethanol to yield 2-(2',4'-difluoro-4hydroxybiphenyl-3-carbonylhydrazono)-3-alkyl/aryl-4-thiazolidinones (6a-e). However, formation of desired 4-thiazolidinones from 1-(2',4'-difluoro-4-hydroxybiphenyl-3-carbonyl)-4cvclohexylthiosemicarbazide (4g) failed and instead 5-(2',4'-difluoro-4-hydroxybiphenyl-5-yl)-2-cyclohexylamino-1,3,4-oxadiazole (7a) was obtained (Scheme 1). Purity of the synthesized compounds in this study was confirmed by thin layer chromatography and microanalysis. Structures of these compounds were characterized using UV, FT-IR, ¹H-NMR, ¹³C-

NMR and EI-mass spectral data. Physical and spectral data of the synthesized compounds are given in Tables 1 and 2.

Thiosemicarbazides (4a–g) were also characterized by UV absorption bands at 243–258 nm [19] whereas IR spectra displayed C=O bands at 1630–1668 cm⁻¹ and C=S bands at 1223–1247 cm⁻¹ [20].

4-Thiazolidinones (6a-e) obtained from thiosemicarbazide gave absorption bands at 221-222 nm in UV spectra and lactam C=O stretching bands of the ring at 1716–1736 cm⁻¹. ¹H-NMR and ¹³C-NMR data were also in agreement with the formation of 4-thiazolidinone ring. Signals appeared at 3.72-4.02 ppm in the ¹H-NMR spectra were attributed to 4-thiazolidinone methylene group. On the other hand, peaks resonated at 33.72, 156.19 and 171.90 [4] ppm in the ¹³C-NMR spectrum of compound 2-(2',4'-difluoro-4-hydroxybiphenyl-3-carbonylhydrazono)-3-ethyl-4-thiazolidinones (6c), assigned for S-CH₂, C=N and C=O moieties, confirms the carbon skeleton of 4-thiazolidinone ring. Compound (7a), which was obtained from (4g), gave absorption bands at 258 nm (instead of 221-222 nm) in UV and C=N stretching band at 1642 cm⁻¹ (instead of C=O band at 1716–1736 cm⁻¹) in the IR spectrum. Moreover, microanalysis revealed that 6a-c had no sulfur atom leading to the conclusion that the structures of these compounds must be different from 4-thiazolidinone. Together with microanalysis, lack of ¹H-NMR resonances observed with S-CH₂ function in the ¹H-NMR spectrum of (7a) proved that ring closure starting from (4g) resulted in formation of 1,3,4-oxadiazole ring instead of 4-thiazolidinone (Scheme 2). This was not surprising as a similar event was previously reported [4,21]. Attempts to synthesize 4-thiazolidinones, by the reaction of 1-arovl-4-alkyl/aryl thiosemicarbazides with α -halogeno acids (or esters), have been reported to result in formation of 1,3,4-oxadiazole ring system instead of 4-thiazolidinone in some conditions. First step of this reaction is thought to be S-alkylation of thiosemicarbazide in its thiol form (due to sodium acetate used) (Scheme 2). Second step involves leaving of ethanol to give 4-thiazolidinone or ethyl mercaptoacetate leading to 1,3,4oxadiazole ring closure (Scheme 2). Electronic and steric properties of the substituent at the 4-position of thiosemicarbazide

antimycobacterial activity, Ref. [15]

antimycobacterial activity, Ref. [4]

antiviral activity, Ref. [13]

Scheme 1. Synthetic route to compounds **4a–g**, **5a–g 6a–e** and **7a**. Reagents and conditions: (a) CH₃OH/H₂SO₄, reflux; (b) NH₂NH₂.H₂O, reflux; (c) Ar–CH=O/ EtOH, reflux; (d) *R*–NCS/EtOH, reflux; (e) HS–CH₂–COOH/dry benzene; (f) Br–CH₂–COOEt/*anhyd*. CH₃COONa–*abs*. EtOH (*R* being aryl or alkyl; see Table 1).

4a-0

seems to be a determinant for a selection between one of these two possible pathways. Previous reports on these types of compounds reveal that a bulky substituent like cyclohexyl facilitates ethyl mercaptoacetate expulsion resulting in oxadiazole ring formation whilst small alkyl groups lead to 4-thiazolidinone ring via ethanol loss.

2

Another series of 4-thiazolidinones (5a-g), prepared from diflunisal hydrazide-hydrazones (3a-g), were characterized by UV absorption bands at 222-226 nm and IR absorption bands due to 4-thiazolidinone C=O stretching at 1681-1721 cm⁻¹. Their ¹H-NMR spectra exhibited resonances at 5.86-6.35, 3.61-3.98 and 3.69-4.13 ppm assigned for 4-thiazolidinone, CH and S–CH₂, respectively. In the ¹H-NMR spectra, methylene protons of the 4-thiazolidinone ring displayed two signals appearing as doublets at 3.61-3.98 and 3.69-4.13 ppm due to the non-equivalent, geminal methylene protons [4] interacting with the chiral center at position 2. This phenomenon was not observed with (6a-e) lacking the asymmetric carbon. ¹³C-NMR data of selected prototype 2',4'-difluoro-4-hydroxybiphenyl-3-carboxylic acid[2-(4-fluorophenyl)-4-thiazolidinone-3yl)]amide (5f), also supported the structure of 4-thiazolidinone ring via S-CH₂, CH and C=O resonances appeared at 30.14, 61.93 and 169.8 ppm [4], respectively. The EI-MS of the selected compound 2',4'-Difluoro-4-hydroxybiphenyl-3-carboxylic acid[2-(5-nitro-2-furyl)-4-thiazolidinone-3-yl)]amide (5a) displayed molecular ion at m/z 461 which confirmed its molecular weight. Other important fragmentations were loss of sulfur and CH₂SH from the molecular ion as evidenced by the fragment ions at m/z 429 and m/z 415, respectively.

7a

3. Biological activity

3.1. Antimicrobial activity

The antimicrobial activities of the synthesized compounds against laboratory strains 56 bacterial species and isolates of six fungi and a yeast species which described previously [18] were tested by using disc-diffusion [22] and microdilution assay [23]. 2',4'-Difluoro-4-hydroxybiphenyl-3-carboxylic acid [(5-nitro-2-furyl) methylene] hydrazide (**3a**) [18] which is starting compound of (**5a**) have shown activity against *Staphylococcus epidermis* HE-5 and *Staphylococcus aureus* HE-9 at 18.75 and 37.5 μ g/ml, respectively. However, compound (**5a**) containing 4-thiazolidinone ring, which was obtained by the reaction of compound (**3a**) with thioglycolic acid, has not ex-

Table 1				
Physical and spectral d	lata for 4a–g ,	5a-g,	6a–e an	d 7a

Compound	R	Molecular formula ^a	m.p. (°C)	Rf ^d	UV	IR (KBr) v (cm ⁻¹)
					ethanol	
49	CH ₂	C15H12F2N2O2S	210-2 ^b	0.74	$\frac{\lambda_{\text{max}}}{319}$	3346 (Ar-OH) 3225 (N-H) 1657(amide C=O) 1269
та	City	01511131 21130 25	210 2	0.74	243	1203 (C=S), 1142 (Ar–F).
					205	
4b	CH ₂ CH=CH ₂	C ₁₇ H ₁₅ F ₂ N ₂ O ₂ S	202–4 ^b	0.79	324	3385 (Ar-OH), 3216 (N-H), 1668 (amide, C=O), 1301.
	- 2 2	-17 15 2 5 2			246	1195 (C=S), 1143 (Ar–F)
					206	
4c	C_2H_5	$C_{16}H_{15}F_{2}N_{3}O_{2}S$	205–6 ^b	0.78	320	3393 (Ar-OH), 3196 (N-H), 1672 (amide, C=O), 1309,
					245	1200 (C=S), 1142 (Ar–F).
	~ ~~				206	
4d	C_6H_5	$C_{20}H_{15}F_2N_3O_2S$	185-9 °	0.79	333	3269 (Ar–OH, N–H), 1641 (amide, C=O), 1275, 1215
					238	(C-S), 1140 (AI-F).
4 e	$C_{2}H_{2}CH_{2}(4)$	CarH17FaNaOaS	188–9 ^b	0.82	330	3293 (Ar-OH) 3186 (N-H) 1641 (amide C=O) 1290
ie	061140113(1)	02111/1213020	100 9	0.02	251	1244 (C=S). 1144 (Ar-F).
					206	
4f	$C_6H_4 \text{ OCH}_3(4)$	C ₂₁ H ₁₇ F ₂ N ₃ O ₃ S	180–4 ^b	0.72	333	3310 (Ar-OH), 3225 (N-H), 1630 (amide, C=O), 1299,
					247	1247(C=S), 1176 (Ar–F).
					204	
4g	$C_{6}H_{11}$	$C_{20}H_{21}$ F ₂ N ₃ O ₂ S	210-2 6	0.86	324	3371 (Ar–OH), 3190 (N–H), 1664 (amide, C=O), 1297,
					245	1197 (C=S).
5a *	5 Nitro 2 fumil	CHENOS	162 5 °	0.71	205	2221 (Ar OH N H) 1685 (this radidinana C-O) 1654
54 "	5-INITO-2-IUTYI	$C_{20}\Pi_{13} \Gamma_2 N_3 O_6 S$	103-3	0.71	302 275	(anide C=0) (anide C=0)
					275	(annue, e=o).
					206	
5b	C ₆ H ₅	C ₂₂ H ₁₆ F ₂ N ₂ O ₃ S. C ₂ H ₅ OH	164–6 ^c	0.85	336	3391 (Ar-OH), 3246 (N-H), 1696 (thiazolidinone, C=O),
					275	1647 (amide, C=O).
					226	
					206	
5c	C_6H_4 Cl(4)	C ₂₂ H ₁₅ ClF ₂ N ₂ O ₃ S	222–6 °	0.85	340	3186 (Ar-OH, N-H), 1682 (thiazolidinone, C=O), 1649
					282	(amide, C=O).
					224	
5d	C H E(2)	C. H. F.N.O.S 1/2	178_80 °	0.83	202	3307 (Ar-OH N-H) 1697 (this rolidingne C=O) 1647
54	$C_{6}^{-114} \Gamma(2)$	C221115 1 31 (2035) 1/2	170 00	0.05	268	(amide $C=0$)
		02113011			224	
					200	
5e	C ₆ H ₄ F(3)	C ₂₂ H ₁₅ F ₃ N ₂ O ₃ S. 1/2	100–2 °	0.85	348	3262 (Ar-OH, N-H), 1701 (thiazolidinone, C=O), 1653
		C ₂ H ₅ OH			272	(amide, C=O).
					226	
5 £		C IL ENOS	100 02 6	0.92	201	2210 (Ar. OII) 2107 (N. II) 1721 (this sell dimension (C-O))
51	$C_6H_4 F(4)$	$C_{22}H_{15}F_3N_2O_3S$	188–92	0.83	332 272	3310 (Ar-OH), 3197 (N-H), 1721 (thiazolidinone, C=O), 1651 (amida, C=O))
					272	1051 (annue, C=O).
					204	
5g	$C_{6}H_{4}CH_{3}(4)$	C ₂₃ H ₁₈ F ₂ N ₂ O ₃ S. 1/2 H ₂ O	180–2 °	0.86	338	3192 (Ar-OH, N-H), 1681 (thiazolidinone, C=O), 1648
					222	(amide, C=O).
					204	
6a	CH ₃	C ₁₇ H ₁₃ F ₂ N ₃ O ₃ S. 1/2 H ₂ O	252—4 ^в	0.28	349	3166 (Ar-OH, N-H), 1718 (thiazolidinone, C=O), 1653
					275	(amide, C=O), 1617 (C=N), 1148 (Ar–F).
					222	
6h	СН СН-СН	C H ENOS	226 30 b	0.60	207	1721 (this roliding (-0) 1653 (amide (-0) 1620
00	ch ₂ ch-ch ₂	C ₁₉ 11 ₁₅ T ₂ N ₃ O ₃ S	(decomposed)	0.09	281	(C=N) 1145 (Ar=F)
			(accomposed)		209	(~,
					200	
6c	C_2H_5	C ₁₈ H ₁₅ F ₂ N ₃ O ₃ S. 1/2H ₂ O	208–10 ^b	0.62	345	3591 (Ar-OH), 1716 (thiazolidinone, C=O), 1654
			(decomposed)		275	(amide, C=O), 1619 (C=N), 1143 (Ar-F).
					221	
					205	

Compound	R	Molecular formula ^a	m.p. (°C)	Rf ^d	UV etha-	IR (KBr) v (cm ⁻¹)
					nol λ_{max}	
6d	$C_6H_4CH_3(4)$	C ₂₃ H ₁₇ F ₂ N ₃ O ₃ S. 2H ₂ O	238—45 ^ь	0.69	333	3445 (Ar-OH, N-H), 1736 (thiazolidinone, C=O), 1655
			(decomposed)		266	(amide, C=O), 1603 (C=N), 1145 (Ar-F).
					222	
6e	$C_6H_4 \text{ OCH}_3(4)$	C ₂₃ H ₁₇ F ₂ N ₃ O ₄ S	244–60 ^b	0.52	345	1738 (thiazolidinone, C=O), 1655 (amide, C=O), 1605
			(decomposed)		280	(C=N), 1146 (Ar–F).
					222	
7a	C ₆ H ₁₁	C ₂₀ H ₁₇ F ₂ N ₃ O ₂	204–6 ^b	0.89	326	3218 (Ar-OH, N-H), 1642 (amide, C=O), 1593 (C=N),
					277	1139 (Ar–F).
					258	
					204	

a : Microanalysis for the synthesized compounds Anal. Cal/Found: **4a** C, 53.41; H, 3.88; N, 12.46; S, 9.50/C, 53.80; H, 3.67; N, 12.28; S, 9.65. **4b** C, 56.19; H, 4.16; N, 11.56; S, 8.82/C, 56.58; H, 4.14; N, 11.41; S, 9.02. **4c** C, 54.69; H, 4.30; N, 11.96; S, 9.12/C, 54.89; H, 4.65; N, 11.64; S, 9.15. **4d** C, 60.14; H, 3.79; N, 10.52; S, 8.03/C, 60.43; H, 4.20; N, 10.45; S, 8.16. **4e** C, 61.01; H, 4.14; N, 10.16; S, 7.75/C, 61.47; H, 3.77; N, 10.18; S, 7.29. **4f** C, 58.73; H, 3.99; N, 9.79; S, 7.45/C, 58.99; H, 3.84; N, 9.73; S, 7.00. **4g** C, 59.25; H, 5.22; N, 10.36; S, 7.91/C, 59.31; H, 5.29; N, 10.52; S, 7.87. **5b** C, 61.01; H, 4.69; N, 5.93; S, 6.78/C, 60.84; H, 4.62; N, 6.08; S, 6.95. **5c** C, 57.33; H, 3.28; N, 6.08; S, 6.96/C, 57.45; H, 3.06; N, 6.11; S, 6.99. **5d** C, 59.09; H, 3.88; N, 5.99; S, 6.86/C, 59.15; H, 3.82; N, 6.77; S, 6.70. **5e** C, 59.09; H, 3.88; N, 5.99; S, 6.86/C, 58.64; H, 3.71; N, 5.72; S, 6.20. **5f** C, 59.46; H, 3.40; N, 6.30; S, 7.21/C, 59.90; H, 3.30; N, 6.12; S, 6.88. **5g**. C, 61.46; H, 4.26; N, 6.23; S, 7.13/C, 60.56; H, 3.83; N, 6.52; S, 7.94. **6a** C, 52.85; H, 3.65; N, 10.87; S, 8.30/C, 53.24; H, 3.23; N, 10.85; S, 8.31. **6b** C, 56.57; H, 3.75; N, 10.42; S, 7.95/C, 56.71; H, 3.33; N, 10.41; S, 7.97. **6c** C, 53.99; H, 4.035; N, 10.49; S, 8.00/C, 53.53; H,

Table 2

¹H-NMR spectral data of 4a–g, 5a–g, 6a–e and 7a

Compound	¹ H-NMR
$4a (CDCl_3 + CD_3COCD_3)$	2.93 (s, 3H, CH ₃), 6.73–7.80 (m, 7H, Ar–H and CHCl ₃), 7.65 (s, 1/5H, NHCH ₃), 8.02–8.29 (s, 1/5H, Ar–OH), 9.94 (s, 1/5H,
	N <u>H</u> CS), 11.13–12.07 (s, 1/5H, CONH).
4b $(CDCl_3 + CD_3COCD_3)$	4.16 (s, 2H, N-CH ₂ -CH=CH ₂), 4.94-4.97 (d, 1H, CH=CH ₂ , <i>cis</i> , J = 10.3 Hz), 5.05-5.09 (d, 1H, CH=CH ₂ , <i>trans</i> , J = 17.2 Hz),
	5.73–5.79 (m, 1H, CH=CH ₂), 6.83–7.89 (m, 7H, Ar–H and CHCl ₃), 7.57 (s, 1/2H, NHCH ₂).
$4c (CDCl_3 + CD_3COCD_3)$	1.07 (s, 3H, CH ₃), 3.55 (q, 3H, CH ₂), 6.84–7.89 (m, 7H, Ar–H and CHCl ₃), 7.64–7.85 (b, 1/2H, NHCH ₂), 8.42 (s, 1/2H, Ar–
	OH), 10.06 (s, 1/2H, N <u>H</u> CS), 11.12–12.17 (s, 1/5H, CONH).
4d $(CDCl_3 + CD_3COCD_3)$	6.81–7.91 (m, 12H, Ar-H and CHCl ₃), 8.26–9.14 (b, 1H, NHC ₆ H ₅), 9.37 (s, 1H, Ar-OH), 10.33 (s, 1H, NHCS), 11.57 (s, 1H,
	CONH).
4e ($CDCl_3 + CD_3COCD_3$)	2.86 (s, 3H, CH ₃), 6.92–7.96 (m, 10H, Ar–H), 8.61 (b, 1/5H, NH–C ₆ H ₄ –CH ₃), 9.41 (s, 1/5H, Ar–OH), 10.21–10.47 (b, 1/5H,
	N <u>H</u> CS), 11.50–11.87 (s, 1H, CONH).
4f (DMSO-d ₆)	3.90 (s, 3H, OCH ₃), 7.05–8.23 (m, 10H, Ar–H), 9.92 (s, 2H, NH–C ₆ H ₄ –CH ₃ and Ar–OH), 10.56–11.74 (b, 1H, NHCS), 12.20
	(s, 1H, CONH).
$4g (CDCl_3 + DMSO-d_6)$	$1.07 - 1.96 \text{ (m, 10H, } C_6H_{11}\text{)}, 3.51 - 3.70 \text{ (m, 1H, } C_6H_{11}\text{)}, 7.05 - 8.23 \text{ (m, 10H, } Ar - H\text{)}, 9.92 \text{ (s, 2H, } NH - C_6H_4 - CH_3 \text{ and } Ar - OH\text{)}, 8.01 + 1.01$
	10.56–11.74 (b, 1H, N <u>H</u> CS), 12.20 (s, 1H, CONH).
5a $(CDCl_3 + CD_3OD)$	3.71, 3.86 (2d and each 1H, S-CH ₂ , J = 15.8 Hz), 5.99 (s, 1H, S-CH-N), 6.75-7.85 (m, 9H, Ar-H and CHCl ₃), 10.55 (s, 1H,
	Ar–OH), 11.19–11.55 (s, 1H, CONH).
5b $(CDCl_3 + CD_3OD)$	1.10 (t, 3H, CH ₃ –CH ₂ –OH), 3.55 (m, 2H, CH ₃ –CH ₂ –OH), 3.67, 3.82 (2d and each 1H, S–CH ₂ , J = 15.9 Hz), 5.92 (s, 1H, S–
	CH-N), 6.76–7.77 (m, 12H, Ar-H and CHCl ₃), 10.18 (s, 1H, Ar-OH), 10.97–11.67 (s, 1H, CONH).
5c (CD ₃ OD)	3.67, 3.80 (2d and each 1H, S-CH ₂ , J = 16.0 Hz), 5.91 (s, 1H, S-C <u>H</u> -N), 6.77-7.79 (m, 10H, Ar-H), 10.16 (s, 1H, Ar-OH),
	11.29 (s, 1H, CONH).
5d (DMSO-d ₆)	1.21 (t, 3H, CH ₃ -CH ₂ -OH), 3.63 (m, 2H, CH ₃ -CH ₂ -OH), 4.51 (s, 1H, CH ₃ -CH ₂ -OH), 3.98, 4.13 (2d and each 1H, S-CH ₂ ,
	J = 15.9 Hz), 6.35 (s, 1H, S-C <u>H</u> -N), 7.18–8.02 (m, 10H, Ar–H), 10.67 (s, 1H, Ar–OH), 11.81 (s, 1H, CONH).
5e (CDCl ₃)	1.40 (t, 3H, CH ₃ –CH ₂ –OH), 3.87 (m, 2H, CH ₃ –CH ₂ –OH), 3.94, 4.10 (2d and each 1H, S–CH ₂ , J = 16.2 Hz), 6.18 (s, 1H, S–CH ₂ , J =
	CH-N), 6.97-7.61 (m, 11H, Ar-H and CHCl ₃), 9.62 (s, 1H, Ar-OH), 11.17 (b, 1H, CONH).
*5f ($CDCl_3 + CD_3COCD_3$)	3.61, 3.69(2d and each 1H, S–CH ₂ , J = 15.9 Hz), 5.86 (s, 1H, S–C <u>H</u> –N), 6.69–7.58 (m, 11H, Ar–H and CHCl ₃), 9.90 (s, 1/3H,
	Ar–OH), 11.15–11.40 (b, 1/3H, CONH).
$5g (CDCl_3 + CD_3OD)$	2.24 (s, 3H, $CH_3-C_6H_4$), 3.68, 3.81 (2d and each 1H, S-CH ₂ , J = 15.9 Hz), 5.89 (s, 1H, S-C <u>H</u> -N), 6.77-7.95 (m, 11H, Ar-H
	and CHCl ₃), 10.20 (s, 1/5H, Ar–OH), 11.28 (s, 1/5H, CONH).
6a (CD ₃ OD)	3.25 (s, 3H, C <u>H</u> ₃ -N), 3.91 (2H, S-CH ₂), 6.82–7.47 (m, 6H, Ar-H), 8.07 (s, 1H, Ar-OH), 10.63–11.06 (s, 1H, CONH).
6b (CD ₃ OD)	$3.85 (2H, S-CH_2), 4.35-4.39 (m, 2H, N-CH_2-CH= CH_2), 5.12 (d, 1H, CH=CH_2, cis, J = 10.2 Hz), 5.21 (d, 1H, CH=CH_2, CH_2, $
	<i>trans</i> , $J = 17.1 Hz$), 5.85 (m, 1H, CH=CH ₂), 6.76–7.39 (m, 6H, Ar–H), 8.02 (s, 1H, Ar–OH).
**6c (CD ₃ OD)	1.22 (s, 3H, C <u>H</u> ₃ –N), 3.72–4.02 (m, 4H, S–CH ₂ and CH ₃ –C <u>H</u> ₂ –N), 6.81–7.46 (m, 6H, Ar–H), 8.06 (s, 1H, Ar–OH).
6d (DMSO- d_6 + CD ₃ OD)	2.21 (s, 3H, CH3-C6H4-), 4.00-4.79 (m, 2H, S-CH2), 7.20-8.05 (m, 11H, Ar-H and Ar-OH), 11.99 (s, 1H, CONH)
6e (DMSO- d_6)	3.97 (s, 2H, S–CH ₂), 4.43 (s, 3H, O–CH ₃), 7.18–7.75 (m, 10H, Ar–H), 8.04 (s, 1H, Ar–OH), 11.92 (s, 1H, CONH).
7a (CDCl ₃)	1.26–2.16 (m, 10H, C ₆ H ₁₁), 3.69 (m, 1H, C ₆ H ₁₁), 5.45 (s, 1H, Ar–OH), 6.93–7.72 (m, 6H, Ar–H), 9.25–10.90 (b, 1H, –NH–
	C ₆ H ₁₁).

*Compound **5f**: ¹³C-NMR (DMSO-d₆) δ 30.14 (thiazolidinone C₅), 61.93 (thiazolidinone C₂), 105.33 (biphenyl C₉), 112.78 (biphenyl C₁₁), 112.99 (4-fluorophenyl C₃, C₅), 116.27 (biphenyl C₅), 118.43 (biphenyl C₃), 124.68 (4-fluorophenyl C₂, C₆), 126.08 (biphenyl C₁₂), 130.15 (biphenyl C₁), 131.02 (biphenyl C₂), 132.44 (biphenyl C₆), 135.35 (biphenyl C₇), 135.42 (4-fluorophenyl C₁), 158.65 (biphenyl C₄), 161.16 (4-fluorophenyl C₄), 118.43 (biphenyl C₈), 164.44 (biphenyl C₁₀), 166.95 (amide, C=O), 169.80 (thiazolidinone, C=O). **Compound **6c**: ¹³C-NMR (DMSO-d₆) δ 13.06 (CH₃-CH₂-N), 33.72 (thiazolidinone CH₂), 38.39 (CH₃-CH₂-N), 105.29 (biphenyl C₁₁), 112.81 (biphenyl C₉), 118.42 (biphenyl C₅), 125.08 (biphenyl C₃), 130.32 (biphenyl C₂), 132.57 (biphenyl C₆), 133.93 (biphenyl C₁₂), 156.19 (thiazolidinone C₂), 158.59 (biphenyl C₈), 160.25 (biphenyl C₄), 160.95 (biphenyl C₁₀), 164.25 (amide, C=O), 171.90 (thiazolidinone, C=O).

Scheme 2. Mechanism of 4-thiazolidinone or 1,3,4-oxadiazole ring closure from 1-acyl-4-alkyl/aryl thiosemicarbazides.

hibited antimicrobial activity. According to these results, it was understood that 4-thiazolidinone and thiosemicarbazide derivatives of diflunisal had no antimicrobial activity against the tested microorganisms.

3.2. Antimycobacterial activity

The synthesized compounds were tested in vitro for their antimycobacterial activity. Primary screening was conducted at 6.25 μ g.ml⁻¹ against *M. tuberculosis H37Rv* in BACTEC 12B medium using a broth microdilution assay, the Microplate Alamar Blue Assay (MABA) [24]. Rifampin was used as the standard in the tests. None of the compounds were considered for further evaluation as they had mycobacterial inhibitions less than 90% at 6.25 μ g ml⁻¹. 1-(2',4'-Difluoro-4-hydroxybiphe-nyl-3-carbonyl)-4-ethylthiosemicarbazide (**4c**) was found to provide %25 inhibition of mycobacterial growth of *M. tuber-culosis H37Rv* in the primary screen at 6.25 μ g ml⁻¹.

3.3. Antiviral activity

Compounds (4a–g), (5a–g), (6a–c) and (7a) were tested for antiviral activity and cytotoxicity in various viral test systems, according to previously published procedures [25–29]. None of the compounds inhibited vesicular stomatitis virus, Coxsackie virus, respiratory syncytical virus, parainfluenza-3 virus, reovirus, Sindbis virus, Punto Toro virus, Herpes simplex virus type 1 and 2 and vaccinia virus-induced cytopathicity at subtoxic concentrations in HeLa, Vero or Hel cell culture. 1-(2',4'- Difluoro-4-hydroxybiphenyl-3-carbonyl)-4-methylthiosemicarbazide (**4a**) and 1-(2',4'-difluoro-4-hydroxybiphenyl-3-carbonyl)-4-allylthiosemicarbazide (**4b**) exhibited antiviral inhibitions against Vaccinia virus and Herpes simplex virus-1 TK-KOS at 16 and 9.6 μ g ml⁻¹, respectively. 1-(2',4'-Difluoro-4hydroxybiphenyl-3-carbonyl)-4-phenylthiosemicarbazide (**4d**) and 1-(2',4'-difluoro-4-hydroxybiphenyl-3-carbonyl)-4-(4methylphenyl)thiosemicarbazide (**4e**) exhibited antiviral inhibitions against Herpes simplex virus-1 TK-KOS and Punto Toro virus at 9.6 and 0.64 μ g ml⁻¹, respectively. As conclusion, it was understood that diflunisal thiosemicarbazides were exhibited, more potent antiviral action than corresponding diflunisal 4-thiazolidinones.

4. Experimental protocols

All chemical compounds were purchased from Fluka. Diflunisal was provided by Sanovel Pharmaceuticals. Melting points were taken on Buchi-530 apparatus and were uncorrected. Microanalysis were performed on a Leco CHNS-932 instrument. UV Spectra were recorded on a Beckman DU 530 spectrophotometer (1 mg per 100 ml in EtOH). IR spectra were run on BIO-RAD FTS-135 FT-IR spectrophotometer. ¹H-NMR and ¹³C-NMR spectra were obtained on a Bruker AVANC-DPX 400 instrument. EI-mass spectra were performed using a Micro MS Zabspec Double Focusing Magnetic sector. The purities of the synthesized compounds were checked using thin layer chromatography in ethylacetate/petroleum ether (50:50, v/v) ($\lambda =$ UV 254 nm, t = 28 °C) 4.1. 1-(2',4'-Difluoro-4-hydroxybiphenyl-3-carbonyl)-4-alkyl/ arylthiosemicarbazides (4a-g)

A solution of 0.01 mol of (2) [18] and equimolar amount of appropriate isothiocyanate in 60 ml of EtOH was heated under reflux for 1-2 h. The precipitate obtained was filtered off, washed with water and recrystallized from ethanol.

4.2. 2',4'-Difluoro-4-hydroxybiphenyl-3-carboxylic acid[2-(5nitro-2-furyl/substituted phenyl)-4-thiazolidinone-3-yl)]amide (5a-g)

A mixture of (3a-g) [18] (0.01 mol) and thioglycolic acid (0.01 mol) was refluxed in dry benzene (100 ml) using a Dean–Stark water separator. Excess benzene was evaporated in vacuo. The resulting residue was triturated with saturated NaHCO₃ solution until CO₂ evolution ceased. The solid was washed with water, dried and recrystallized from ethanolwater.

4.3. 2-(2',4'-Difluoro-4-hydroxybiphenyl-3carbonylhydrazono)-3-alkyl/aryl-4-thiazolidinone (**6a–e**)

0.01 mol of appropriate thiosemicarbazide (4a-f) and 0.011 mol of ethyl bromoacetate were refluxed in 30 ml of absolute EtOH in the presence of 0.04 mol of anhydrous NaOAc for 2 h. The reaction mixture was cooled, diluted with water and allowed to stand overnight. The solid precipitated was washed with water, dried and recrystallized from ethanol.

4.4. 5-(2',4'-difluoro-4-hydroxybiphenyl-5-yl)-2cyclohexylamino-1,3,4-oxadiazole (7a)

0.01 mol of appropriate thiosemicarbazide (**4g**) and 0.011 mol of ethyl bromoacetate were refluxed in 30 ml of absolute EtOH in the presence of 0.04 mol of anhydrous NaOAc for 2 h. The reaction mixture was cooled, diluted with water and allowed to stand overnight. The solid precipitated was washed with water, dried and recrystallized from ethanol.

Acknowledgements

Diflunisal was supplied by Sanovel Pharmaceutical Industry Inc. We thank Dr. J.A.M. from the Tuberculosis Antimicrobial Acquisition and Coordinating Facility (TAACF), National Institute of allergy and Infections Diseases Southern Research Institute, GWL Hansen's Disease Centre, Colorado State University, Birmingham, AL, USA, for the in vitro evaluation of antimycobacterial activity using *M. tuberculosis H37Rv*. This study was supported by Scientific Research Project Commission of Marmara University (Project number: HEA-DYD-052/ 051201 and SAĞ-YY-010/020103).

References

- Ö. Ateş, A. Kocabalkanlı, G. Sanış-Ötük, A.C. Ekinci, A. Vidin, Arzneim.-Forsch/Drug, Res. 47 (1997) 1134–1138.
- [2] Ö. Ateş, H. Altıntaş, G. Ötük, Arzneim.-Forsch/Drug, Res. 50 (2000) 569–575.
- [3] A. Kocabalkanlı, Ö. Ateş, G. Ötük, Arch.Pharm.Med.Chem. 334 (2001) 35–39.
- [4] Ş.G. Küçükgüzel, E.E. Oruç, S. Rollas, F. Şahin, A. Özbek, Eur. J. Med. Chem. 37 (2002) 197–206.
- [5] C.G. Bonde, N.J. Gaikwad, Bioorg. Med. Chem. 12 (2004) 2151-2161.
- [6] N. Cesur, Z. Cesur, N. Ergenç, M. Uzun, M. Kiraz, Ö. Kasımoğlu, D. Kaya, Arch. Pharm. (Weinheim) 327 (1994) 271–272.
- [7] N. Karali, E. İlhan, A. Gürsoy, M. Kiraz, Farmaco 53 (1998) 346-349.
- [8] H.T.Y. Fahmy, Boll.Chim.Farmaco 140 (2001) 422-427.
- [9] M.L. Barreca, A. Chimirri, L.D. Luca, A.M. Monforte, P. Monforte, A. Rao, M. Zappalà, J. Balzarini, E. De Clercq, C. Pannecouque, M. Witvrouw, Bioorg. Med. Chem. Lett. 11 (2001) 1793–1796.
- [10] A. Rao, A. Carbone, A. Chimirri, E. De Clercq, A.M. Monforte, P. Monforte, C. Pannecouque, M. Zappalà, Farmaco 57 (2002) 747–751.
- [11] A. Rao, A. Carbone, A. Chimirri, E. De Clercq, A.M. Monforte, P. Monforte, C. Pannecouque, M. Zappalà, Farmaco 58 (2003) 115–120.
- [12] M.L. Barreca, A. Chimirri, E. De Clercq, L.D. Luca, A.M. Monforte, P. Monforte, A. Rao, M. Zappalà, Farmaco 58 (2003) 259–263.
- [13] A. Rao, J. Balzarini, A. Carbone, A. Chimirri, E. De Clercq, L.D. Luca, A.M. Monforte, P. Monforte, C. Pannecouque, M. Zappalà, Farmaco 59 (2004) 33–39.
- [14] L. Bukowski, M. Janowiec, Z. Zwolska-Kwiek, Z. Andrezejczyk, Pharmazie 53 (1998) 373–376.
- [15] N. Ulusoy, Arzneim.-Forsch/Drug, Res. 52 (2002) 565-571.
- [16] K. Babaoglu, M.A. Page, V.C. Jones, M.R. McNeil, C. Dong, J. H. Naismith, R.E. Lee, Bioorg. Med. Chem. Lett. 13 (2003) 3227–3230.
- [17] C.J. Andres, J.J. Bronson, S.V. D'Andrea, M.S. Deshpande, P.J. Falk, K. A. Grant-Young, W.E. Harte, H.T. Ho, P.F. Misco, J.G. Robertson, D. Stock, Y. Sun, A.W. Walsh, Bioorg. Med. Chem. Lett. 10 (2000) 715–717.
- [18] Ş.G. Küçükgüzel, A. Mazi, F. Şahin, S. Öztürk, J.P. Stables, Eur. J. Med. Chem. 38 (2003) 1005–1013.
- [19] S. Rollas, Doğa 7 (1983) 65-73.
- [20] A. Gürsoy, Ş. Demirayak, Z. Cesur, J. Reisch, G. Ötük, Pharmazie 45 (1990) 246–250.
- [21] N. Cesur, Z. Cesur, A. Gürsoy, Arch. Pharm. (Weinheim) 325 (1992) 623–624.
- [22] R. Murray, E.J. Baron, M.A. Pfaller, F.C. Tenover, R.H. Yolke, Manual Clin. Microbiol. 6 (1995) (Washington).
- [23] J.R. Zgoda, J.R. Porter, Pharmaceutical Biol. 39 (2001) 221-225.
- [24] L. Collins, S.G. Franzblau, Antimicrob. Agents Chemother. 41 (1997) 1004–1009.
- [25] R. Pauwels, J. Balzarini, M. Baba, R. Snoeck, D. Schols, P. Herdewijn, J. Desmyter, E. De Clercq, J. Virol. Methods 20 (1988) 309–321.
- [26] M. Popovic, M.G. Sarngadharan, E. Read, R.C. Gallo, Science 224 (1984) 497–500.
- [27] F. Barré-Sinoussi, J.C. Chermann, M.T. Nugeyre, S. Chamaret, J. Grest, C. Dauget, C. Axler-Blin, F. Vézinet-Brun, C. Rouzioux, W. Rozenbaum, L. Montagnier, Science 220 (1983) 868–871.
- [28] I. Miyoshi, H. Taguchi, I. Kobonishi, S. Yoshimoto, Y. Ohtsuki, Y. Shiraishi, T. Akagi, Gann. Monogr 28 (1982) 219–228.
- [29] E. De Clercq, J. Descamps, G. Verhelst, R.T. Walker, A.S. Jones, P. F. Torrence, D. Shugar, J. Infect. Dis. 141 (5) (1980) 563–574.