NEW GLYCOSIDES OF ERIODICTYOL FROM Dracocephalum palmatum

D. N. Olennikov,^{1*} N. K. Chirikova,² Eungyoung Kim,³ Sang Woo Kim,³ and I. S. Zul'fugarov^{2,3,4}

Two new glycosides of eriodictyol were isolated from the aerial part of Dracocephalum palmatum and identified using UV, NMR, and CD spectroscopy and mass spectrometry as (S)-eriodictyol-7-O-(6"-O-malonyl)- β -D-glucopyranoside (pyracanthoside-6"-O-malonate, 1) and (S)-eryodictyol-7-O-(4"-O-malonyl)- β -D-glucopyranoside (pyracanthoside-4"-O-malonate, 2). The stabilities of 1 and 2 were studied under simulated stomach and intestinal conditions.

Keywords: *Dracocephalum palmatum*, Lamiaceae, (*S*)-eriodictyol-7-O-(6"-O-malonyl)- β -D-glucopyranoside, (*S*)-eriodictyol-7-O-(4"-O-malonyl)- β -D-glucopyranoside, pyracanthoside-6"-O-malonate, pyracanthoside-4"-O-malonate.

Dracocephalum palmatum Steph. ex Willd. (Lamiaceae) is indigenous to northern Yakutia and is used by nomads as a medicinal and food plant [1]. Previous chemical investigations of *D. palmatum* identified phenylpropanoids, coumarins, flavonoids, triterpenoids [1, 2], lipids, essential oil, simple phenols, and carbohydrates [3]. Herein, two new flavonoids isolated from *D. palmatum* are reported.

Chromatographic separation of fraction F3-2 (prep. HPLC, CC) isolated eight compounds (1–8) including the known flavonoids acacetin-7-O-(6"-O-acetyl)- β -D-glucopyranoside (agastachoside, 3) [4], apigenin-7-O-(6"-O-acetyl)- β -D-glucopyranoside (4) [5], luteolin-7-O-(6"-O-acetyl)- β -D-glucopyranoside (5) [6], acacetin-7-O-(6"-O-malonyl)- β -D-glucopyranoside (6) [7], apigenin-7-O-(6"-O-malonyl)- β -D-glucopyranoside (7) [7], luteolin-7-O-(6"-O-malonyl)- β -D-glucopyranoside (8) [7], and two new compounds 1 and 2.

Compound 1 had molecular formula $C_{24}H_{24}O_{14}$ based on ¹³C NMR spectroscopic and mass spectrometric data (*m*/*z* 535, [M – H][–]). Acid hydrolysis of 1 gave eriodictyol and D-glucose. The ESI-MS contained fragment ions with *m*/*z* 449 and 287 that were consistent with loss of species with *m*/*z* 86 (malonyl) and 162 (glucosyl) [8]. PMR and ¹³C NMR spectra were similar to that of eriodictyol-7-*O*- β -D-glucopyranoside (pyracanthoside, miscanthoside; **1a**) [9] with the exception of additional resonances [$\delta_{\rm H}$ 3.26 (2H, s); $\delta_{\rm C}$ 41.2, 167.1, 167.8] due to the malonyl group (Table 1) [10].

¹⁾ Institute of General and Experimental Biology, Siberian Branch, Russian Academy of Sciences, 6 Sakh'yanovoi St., Ulan-Ude, 670047, fax: +73012 434743, e-mail: olennikovdn@mail.ru; 2) M. K. Ammosov North-Eastern Federal University, 58 Belinskogo St., Yakutsk, 677000, e-mail: hofnung@mail.ru; 3) Department of Biological Sciences, Pusan National University, 46241, Busan, Republic of Korea, e-mail: kimsw@pusan.ac.kr; 4) Institute of Molecular Biology and Biotechnology, National Academy of Sciences of Azerbaijan, 2a Metbuat Prosp., Baku, AZ 1073, e-mail: iszulfugarov@pusan.ac.kr. Translated from *Khimiya Prirodnykh Soedinenii*, No. 5, September–October, 2018, pp. 731–734. Original article submitted March 28, 2018.

C atom	1		2	
	$\delta_{ m H}$	$\delta_{\rm C}$	δ_{H}	δ _C
		Eriodictyol		
2	5.46 (1H, dd, J = 12.0, 3.0)	78.5	5.33 (1H, dd, J = 12.1, 3.0)	78.6
3	3.15 (1H, dd, J = 17.1, 12.0)	42.0	3.12 (1H, dd, J = 17.0, 12.1)	42.2
	2.70 (1H, dd, J = 17.1, 3.0)		2.71 (1H, dd, J = 17.0, 3.0)	
4	_	197.0	_	196.8
5	_	163.0	_	163.2
6	6.03 (1H, m)	96.4	6.00 (1H, m)	96.2
7	-	165.5	-	165.0
8	6.08 (1H, m)	95.2	6.12 (1H, m)	95.5
9	-	162.6	-	162.3
10	_	102.5	_	102.4
1'	—	129.4	_	129.8
2'	6.95 (1H, m)	115.6	7.01 (1H, m)	115.3
3'	-	145.7	-	145.4
4'	-	145.1	-	145.0
5'	(75 (211)	114.8	6 72 (211 m)	114.3
6'	6.75 (2H, M)	117.6	6.72 (2H, M)	117.5
	7	- <i>O</i> -β-D-Glucopyranc	osyl	
1‴	5.06 (1H, d, J = 7.1)	99.7	5.02 (1H, d, J = 7.0)	99.8
2‴	2.26.2.20 (211 m)	73.1	72.7	
3‴	5.50–5.59 (2H, III)	76.3	3.31–3.40 (2H, m) 75.2	75.2
4‴	3.30 (1H, m)	69.9	4.40 (1H, m)	71.2
5''	3.72 (1H, m)	74.1	3.75 (1H, m)	73.4
6''	4.46 (1H, dd, J = 1.7, 12.1)	64.1	3.61 (1H, d J = 12.0)	60.0
	4.12 (1H, dd, J = 7.0, 12.1)		3.51 (1H, dd, J = 5.4, 12.0)	
	6 ^{''-} O-Malonyl		4 ^{"-} O-Malonyl	
1‴	_	167.1	_	166.9
2′′′	3.26 (2H, s)	41.2	3.24 (2H, s)	41.0
3‴	_	167.8	_	167.9

TABLE 1. PMR (500 MHz) and ¹³C NMR Spectra (125 MHz) of 1 and 2 (MeOH-d₄, δ , ppm, J/Hz)

The acyl group was positioned on C-6" according to weak-field shifts of glucose resonances for C-6" (δ 64.1) and H-6" [δ 4.46 (1H, dd, J = 1.7, 12.1 Hz), 4.12 (1H, dd, J = 7.0, 12.1 Hz)] as compared to resonances of **1a** ($\delta_{\rm C}$ 60.4; $\delta_{\rm H}$ 3.66, 3.43) [9] and correlations in HMBC spectra between glucose H-6" ($\delta_{\rm H}$ 4.12, 4.46) and malonyl C-1"" ($\delta_{\rm C}$ 167.1) [11]. The absolute configuration of the eriodictyol C-2 phenyl was determined using circular dichroism. A positive Cotton effect at 327 nm and a negative effect at 298 nm indicated that C-2 had the *S*-configuration [12]. Thus, the structure of **1** was determined as (*S*)-eriodictyol-7-*O*-(6"-*O*-malonyl)- β -D-glucopyranoside or pyracanthoside-6"-*O*-malonate.

Compound 2 had molecular formula $C_{24}H_{24}O_{14}$ and mass and UV spectra that were similar to those of 1. This indicated that 2 was also an eriodictyol-7-*O*- β -D-glucopyranoside derivative with a malonic-acid substituent. A comparison of PMR and ¹³C NMR spectra of 2 and those of 1 and 1a showed that they were similar. However, weak-field shifts were observed for resonances of glucopyranose C-4" (δ 71.2) and H-4" [δ 4.40 (1H, m)] relative to those of 1a (δ_C 69.1; δ_H 3.18) (Table 1). HMBC spectra showed a correlation between glucopyranose H-4" (δ 4.40) and δ_C 166.9, indicating that the malonyl moiety was bonded to glucopyranose C-4" [10].

The absolute configuration of C-2 was determined as *S* from the positive Cotton effect at 325 nm and a negative effect at 300 nm. The results established the structure of **2** as (*S*)-eriodictyol-7-O-(4"-O-malonyl)- β -D-glucopyranoside or pyracanthoside-4"-O-malonate.

Esters of malonic acid and eriodictyol glycosides have not previously been isolated from plants. Until now, the only known flavanone containing a malonic-acid fragment was naringin-6"-malonate from leaves and fruit of *Citrus paradisi* Macfad. [13] and fruit of *C*. × *aurantium* L. (Rutaceae) [14].

TABLE 2. Products from Reactions of 1 and 2 with Simulated Physiological Media^{1,2}

Simulated medium	1	2
Control (H ₂ O)	1 (100)	2 (100)
Stomach juice	1 (80), 2 (15), 1a (5)	1 (62), 2 (31), 1a (7)
Intestinal juice	1 (21), 2 (25), 1a (53), 1b (< 1)	1 (39), 2 (2), 1a (58), 1b (< 1)
Intestinal microflora	1a (2), 1b (98)	1a (1), 1b (99)

¹Component peak area (% of total peak areas) is shown in parentheses; ²1a, eriodictyol-7-O- β -D-glucopyranosyl; 1b, eriodictyol.

The stabilities of 1 and 2 under simulated gastrointestinal-tract (GIT) conditions showed that both compounds in stomach juice underwent chemical reactions involving acyl migration and deacylation (Table 2). Compound 1 with malonyl on glucopyranose C-6" was more stable than 2 to acyl migration. Incubation in stomach juice converted ~15% of 1 into 2 whereas 2 was >60% converted into 1. Only 5–7% of the total compound mass was deacylated under these same conditions. However, the content of deacylated 1a increased to 53–58% in juice of later GIT stages. Intestinal microflora caused more extensive changes of 1 and 2 that led to total hydrolysis of the compounds to eriodictyol (1b). Previously, the same transformation pathway in physiological fluids was demonstrated for naringenin and hesperetin glycosides [15] and is probably common for flavanone glycosides.

EXPERIMENTAL

General comments were published [1–3]. Spectrophotometric studies used an SF-2000 spectrophotometer (OKB Spectr, St. Petersburg, Russia). Circular dichroism spectra were recorded on a J-1500 spectrometer (JASCO, Easton, MD, USA). Mass spectrometric studies used an LCMS-8050 TQ-mass-spectrometer (Shimadzu, Columbia, MD, USA). The conditions were electrospray ionization (ESI, negative-ion mode); ESI interface temperature 300°C; desolvation line temperature 250°C; heating block 400°C, sprayer-gas (N₂) flow rate 3 L/min; heating-gas (air) flow rate 10 L/min; collision-induced dissociation (CID) gas (Ar) pressure 270 kPa; Ar flow rate 0.3 mL/min; capillary potential 3 kV; and mass scan range (*m/z*) 100–1000. NMR spectra were recorded on a VXR 500S NMR spectrometer (Varian, Palo Alto, CA, USA). Preparative HPLC used a Summit liquid chromatograph (Dionex, Sunnyvale, CA, USA); LiChrospher RP-18 column (250 × 10 mm, Ø 10 µm; Supelco, Bellefonte, PA, USA); mobile phase H₂O (A) and MeCN (B); flow rate 1 mL/min; column temperature 30°C; and UV detector at 280 and 330 nm.

Isolation of 1–8. The extraction conditions for obtaining fraction F3-2 were described before [1]. Fraction F3-2 was chromatographed over a polyamide column (CC, 4×120 cm) with elution by H₂O–MeOH mixtures (100:0 \rightarrow 0:100) to produce subfractions F3-2-1–F3-2-10. Subfractions F3-2-2 and F3-2-3 were combined and separated over Sephadex LH-20 (CC, 3×110 cm, MeOH–H₂O eluent, 100:0 \rightarrow 0:100) and by prep. HPLC [gradient mode (%B): 0–10 min, 10–70%; 10–60 min, 70–100%] to isolate acacetin-7-*O*-(6"-*O*-acetyl)- β -D-glucopyranoside (agastachoside, **3**, 17 mg) [4]; apigenin-7-*O*-(6"-*O*-acetyl)- β -D-glucopyranoside (**4**, 10 mg) [5], and luteolin-7-*O*-(6"-*O*-acetyl)- β -D-glucopyranoside (**5**, 22 mg) [6]. Subfractions F3-2-7–F3-2-9 were combined and chromatographed over RP-SiO₂ (CC, 3×100 cm, H₂O–MeCN eluent, 100:0 \rightarrow 0:100) and by prep. HPLC [gradient mode (%B): 0–35 min, 5–45%; 35–50 min, 45–60%; 50–70 min, 60–90%; 70–90 min, 90–100%]. This produced **1** (18 mg), **2** (10 mg), acacetin-7-*O*-(6"-*O*-malonyl)- β -D-glucopyranoside (**6**, 15 mg) [7], apigenin-7-*O*-(6"-*O*-malonyl)- β -D-glucopyranoside (**7**, 14 mg) [7], and luteolin-7-*O*-(6"-*O*-malonyl)- β -D-glucopyranoside (**8**, 27 mg) [7].

(S)-Eriodictyol-7-O-(6''-O-malonyl)-β-D-glucopyranoside (6''-O-malonylpyracanthoside, 1). $C_{24}H_{24}O_{14}$. (-)ESI-MS (*m/z*): 535 [M – H]⁻, 449 [(M – H) – 86]⁻, 287 [(M – H) – 86–162]⁻. UV spectrum (MeOH, λ_{max} , nm): 284. CD spectrum (MeOH, *c* 4.01·10⁻⁴ M; λ_{max} , $\Delta\epsilon$): 298 (–25.4), 327 (+15.2). Table 1 lists PMR (500 MHz) and ¹³C NMR (125 MHz) spectral data.

(S)-Eriodictyol-7-O-(4''-O-malonyl)-β-D-glucopyranoside (4''-O-malonylpyracanthoside, 2). $C_{24}H_{24}O_{14}$. (-)ESI-MS (*m/z*): 535 [M – H]⁻, 449 [(M – H) – 86]⁻, 287 [(M – H) – 86 – 162]⁻. UV spectrum (MeOH, λ_{max} , nm): 283. CD spectrum (MeOH, *c* 3.92·10⁻⁴ M; λ_{max} , $\Delta\epsilon$): 300 (–21.7), 325 (+16.1). Table 1 lists PMR (500 MHz) and ¹³C NMR (125 MHz) spectral data. Acid Hydrolysis of 1 and 2. The compound (2 mg) was dissolved in TFA (5%, 3 mL) and heated at 110°C for 2 h. The hydrolysate was concentrated *in vacuo*, dissolved in MeOH, and chromatographed over polyamide (CC, 10 g) with elution by H_2O (50 mL, eluate I) and EtOH (90%, 50 mL, eluate II). The eluates were concentrated *in vacuo* and analyzed by HPLC (conditions 1, monosaccharides as 3-methyl-1-phenyl-2-pyrazolin-5-one derivatives [3]; conditions 2, phenolic compounds). Eluate 1 was also analyzed to determine D- and L-monosaccharides after derivatization with L-tryptophan [16]. Eluate I from hydrolysis of 1 and 2 contained D-glucose (t_R 12.52 min); eluate II, eriodictyol (t_R 5.52 min).

HPLC. Conditions 1: ProntoSIL-120-5-C18 AQ column ($2 \times 75 \text{ mm}$, $\emptyset 5 \mu \text{m}$; Metrohm AG); mobile phase: NH₄OAc (100 mM, pH 4.5) (A) and MeCN (B); gradient mode (%B): 0–20 min, 20–26%; flow rate 150 μ L/min; column temperature 35°C; and UV detector at 250 nm. The retention times of reference standards (t_R , min) were mannose 6.83; glucose 12.52; and galactose 13.54. Conditions 2: ProntoSIL-120-5-C18 AQ column ($2 \times 75 \text{ mm}$, $\emptyset 5 \mu \text{m}$; Metrohm AG); mobile phase LiClO₄ (0.2 M) in HClO₄ (0.006 M) (A) and MeCN (B); gradient mode (%B): 0–18 min, 25–100%; 18–20 min, 100%; flow rate 150 μ L/min; column temperature 35°C; and UV detector at 270 nm. Retention times of reference standards (t_R , min) were eriodictyol 5.53; naringenin 6.72; sakuranetin 8.82; and isosakuranetin 9.45.

The stabilities of the compounds were studied using simulated GIT media that were described by us before [17]. The composition of the reaction products was determined using analytical HPLC [3].

ACKNOWLEDGMENT

The research was sponsored by FASO Russia (Projects No. 0337-2016-0006, AAAA-AA17-117011810037-0) and the Ministry of Education and Science of Russia (Project No. 20.7216.2017/6.7).

REFERENCES

- 1. D. N. Olennikov, N. K. Chirikova, Z. M. Okhlopkova, and I. S. Zulfugarov, *Molecules*, 18, 14105 (2013).
- 2. D. N. Olennikov and N. K. Chirikova, Chem. Nat. Compd., 51, 1067 (2015).
- D. N. Olennikov, N. K. Chirikova, N. I. Kashchenko, T. G. Gornostai, I. Y. Selyutina, and I. N. Zilfikarov, *Int. J. Mol. Sci.*, 18, 2579 (2017).
- 4. O. I. Zakharova, A. M. Zakharov, and V. I. Glyzin, Chem. Nat. Compd., 15, 561 (1979).
- 5. C. Redaelli, L. Formentini, and E. Santaniello, *Phytochemistry*, **19**, 985 (1980).
- 6. J. Y. Lee, E. J. Chang, H. J. Kim, J. H. Park, and S. W. Choi, Arch. Pharm. Res., 25, 313 (2002).
- 7. T. Sugawara and K. Igarashi, Food Sci. Technol. Res., 15, 499 (2009).
- V. Svehlikova, R. N. Bennett, F. A. Mellon, P. W. Needs, S. Piacente, P. A. Kroon, and Y. Bao, *Phytochemistry*, 65, 2323 (2004).
- 9. D. N. Olennikov, L. M. Tankhaeva, and V. V. Partilkhaev, Chem. Nat. Compd., 48, 114 (2012).
- 10. D. N. Olennikov and N. I. Kashchenko, *Chem. Nat. Compd.*, **52**, 996 (2016).
- 11. U. Matern, W. Heller, and K. Himmelspach, *Eur. J. Biochem.*, **133**, 439 (1983).
- 12. J. Pan, S. Zhang, L. Yan, J. Tai, Q. Xiao, K. Zou, Y. Zhou, and J. Wu, J. Chromatogr. A, 1185, 117 (2008).
- 13. M. A. Berhow, R. D. Bennett, K. Kanes, S. M. Poling, and C. E. Vandercook, *Phytochemistry*, **30**, 4198 (1991).
- 14. Z. Lin, H. Wang, Y. Xu, J. Dong, Y. Hashi, and S. Chen, Food Chem., 134, 1181 (2012).
- 15. X. Wang, T. Sakurai, X. Chen, H. Sun, Z. Wang, Q. Sun, W. Sun, and H. Cao, *Planta Med.*, 74, 1751 (2008).
- 16. M. Akabane, A. Yamamoto, S. Aizawa, A. Taga, and S. Kodama, *Anal. Sci.*, **30**, 739 (2014).
- 17. D. N. Olennikov, N. I. Kashchenko, and N. K. Chirikova, Nutrients, 7, 8456 (2015).