

Available online at www.sciencedirect.com

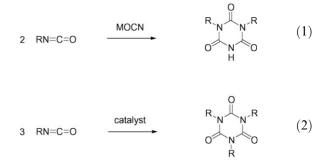
Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 15 (2005) 693-698

A convenient one-pot synthesis of asymmetric 1,3,5-triazine-2,4,6-triones and its application towards a novel class of gonadotropin-releasing hormone receptor antagonists

Zhiqiang Guo,^{a,*} Dongpei Wu,^a Yun-Fei Zhu,^a Fabio C. Tucci,^a Joseph Pontillo,^a John Saunders,^a Qiu Xie,^b R. Scott Struthers^b and Chen Chen^{a,*}

^aDepartment of Medicinal Chemistry, Neurocrine Biosciences, Inc., 12790 El Camino Real, San Diego, CA 92130, USA ^bDepartment of Endocrinology, Neurocrine Biosciences, Inc., 12790 El Camino Real, San Diego, CA 92130, USA

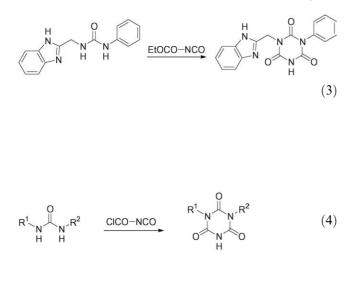

> Received 1 October 2004; revised 8 November 2004; accepted 10 November 2004 Available online 2 December 2004

Abstract—A convenient one-pot synthetic route was developed for the preparation of asymmetric 1,3-dialkyl-1,3,5-triazine-2,4,6-triones from readily available alkyl- or aryl-isocyanates, primary amines and *N*-chlorocarbonyl isocyanate in excellent yields. Subsequent alkylation with N-protected amino alcohols afforded the desired 1,3,5-triazine-2,4,6-triones in good yields. This methodology was applied to the synthesis of a chemical library acting as antagonists of the *h*GnRH receptor. © 2004 Elsevier Ltd. All rights reserved.

1,3,5-Triazine-2,4,6-trione, also known as isocyanurate, is a class of simple heteroaromatic molecules.¹ Symmetrical 1,3-disubstituted triazinetriones can be prepared by condensation of two molecules of isocyanates with a metal isocyanate (Na, K, Li, as in MNCO) in a dipolar aprotic solvent (Eq. 1),² and symmetrical trisubstituted triazinetriones are synthesized by trimerization of isocyanates using a variety of catalysts such as Lewis bases,³ anions,⁴ and metallic compounds (Eq. 2).⁵ In addition to the severe conditions required for these reactions, these approaches are limited to the 1,3,5-triazine-2,4,6triones substituted with two or three identical groups. However, there are very few literature reports on the synthesis of asymmetric triazinetriones with two or three different substituents. Kappe and co-workers synthesized 1-(1H-benzimidazol-2-ylmethyl)-3-phenyl-s-triazine-2,4,6(1H,3H,5H)-trione as an antimicrobial agent by cyclization of the corresponding urea and N-ethoxycarbonyl isocyanate in refluxing bromobenzene in 60% yield (Eq. 3).⁶ A more efficient cyclization of N, N'-dialkylureas with N-chlorocarbonyl isocyanate to yield asym-

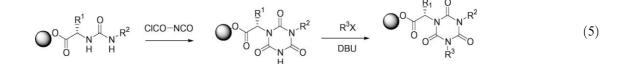
doi:10.1016/j.bmcl.2004.11.026

metric disubstituted triazinetriones is described in an early patent literature (Eq. 4).⁷ Recently, this cyclization has been applied to the solid-support synthesis of asymmetric 1,3,5-triazine-2,4,6-triones using resin-bound amino acids for a chemical library (Eq. 5).⁸



We have reported the discovery of a new series of 6methyluracils such as 1 (Fig. 1) as potent antagonists of the human gonadotropin-releasing hormone (*h*GnRH) receptor.⁹ The early lead compound 1a ($K_i = 34$ nM) has been optimized to much more potent analogues such as 1b ($K_i = 1.1$ nM); interestingly, the regio-isomer of 1a, 2, did not display measurable binding affinity ($K_i > 20 \mu$ M). This data suggest the important role of the 4-carbonyl functionality of uracil 1a in

Keywords: GnRH; Antagonist; Triazinetrione.


^{*} Corresponding authors. Tel.: +1 858 617 7657; fax: +1 858 617 7619; e-mail: zguo@neurocrine.com URL: http://www.neurocrine.com

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter © 2004 Elsevier Ltd. All rights reserved.

than 1a. While this data did not provide a conclusive answer to the question, it prompted us to further investigate this class of compounds as potential small molecule antagonists of the hGnRH receptor.

In order to explore the structure–activity relationship of this class of compounds, a general synthetic method to yield the 1,3,5-triazine-2,4,6-triones with three different substitution groups that would be amenable to the efficient preparation of large numbers of analogues is required. If we could achieve rapid access to the asymmetric 1,3-disubstituted 1,3,5-triazine-2,4,6-trione, this key intermediate could be suitable for Mitsunobu alkylation with readily available amino alcohols. This would incorporate a side-chain bearing a basic nitrogen, an important pharmacophore feature for this class of GnRH antagonists. In this paper, we report an efficient one-pot synthesis of 1,3-disubstituted 1,3,5-triazine-2,4,6-triones bearing two different substituents from

receptor binding possibly through hydrogen bonding. Alternatively, the change from the 6-methyl group of **1a** to the carbonyl moiety of **2** between the 3-methoxyphenyl and the 2,6-difluorobenzyl groups could also cause a conformational change of molecule **2**, which may account for its loss of potency. To explore the impact of this carbonyl group on GnRH receptor binding we designed and synthesized the 1,3,5-triazine-2,4,6-trione analogue **3**, using the method described in Eq. 3. Interestingly, compound **3** exhibited a K_i value of $4.2 \mu M$, which was superior to **2**, but much less potent readily available material, and subsequent Mitsunobu reaction with N-protected amino alcohols to prepare the monocyclic compounds in a screening library for the human GnRH receptor.

The initial approach to synthesize the targeted 1,3,5-triazine-2,4,6-triones **3** is summarized in Scheme 1. 1-Allyl-3-(3-methoxy-phenyl)-1,3,5-triazine-2,4,6-trione **5a** was obtained by a cyclization of *N*-allyl-*N'*-(3-methoxyphenyl)urea **4** with *N*-ethoxycarbonyl isocyanate in refluxing bromobenzene in \sim 30% yield. Compound **5a** was then

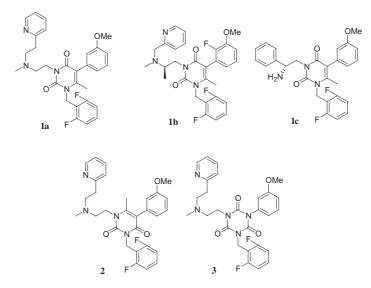
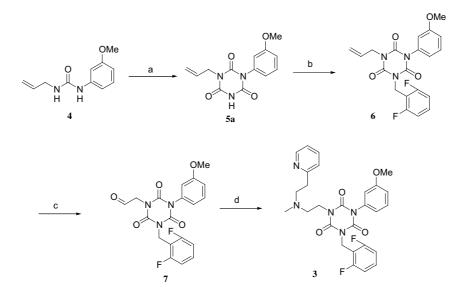
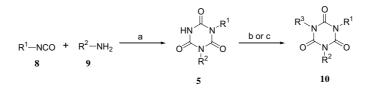




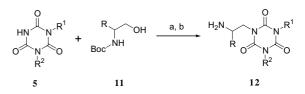
Figure 1. Small molecule GnRH antagonists.

Scheme 1. Reagents and conditions: (a) EtOCONCO, bromobenzene, 150 °C, 30%; (b) 2,6-difluorobenzyl bromide, TBAF, THF, 62%; (c) NaIO₄, OsO₄ (cat), THF/H₂O, 92%; (d) 2-(*N*-methylaminoethyl)pyridine, NaBH(OAc)₃, dichloroethane, 85%.

Scheme 2. Reagents and conditions: (a) 1. dichloromethane, ambient temperature, 2. ClCONCO, dichloromethane; (b) R³OH, triphenylphosphine, di-*t*-butyl-azodicarboxylate, THF; (c) R³Br, K₂CO₃, DMF.

treated with 2,6-difluorobenzyl bromide and *n*-tetrabutylammonium fluoride in THF to afford **6**, which was subjected to an oxidative cleavage of the olefin by NaIO₄/OsO₄ to yield **7**. Finally, the aldehyde **7** was reacted with 2-(*N*-methyl-2-aminoethyl)pyridine under reductive conditions to give the desired product **3**.

Since this route was inefficient, we focused on the development of a new synthetic method for 1,3,5-triazine-2,4,6-triones with two different groups at the 1- and 3positions. Typically, an N,N'-dialkylurea is prepared by the treatment of a primary amine with an isocyanate, then the isolated urea is cyclized into the triazinetrione. We found that by combining these two steps in dichloromethane, first by mixing an equimolar amount of amine and isocyanate, followed by addition of N-chlorocarbonyl isocyanate (1.5-2 equiv, excess amount was required for the reaction to completion), the desired triazinetrione usually precipitated out from the reaction mixture to afford the pure product. Thus, a convenient method to synthesize the asymmetric disubstituted 1,3,5-triazine-2,4,6-trione 5 in an one-pot procedure was developed (Scheme 2).


A general procedure for this synthesis of 1,3-dialkyl-1,3,5-triazine-2,4,6-triones is described as follows.¹⁰ To a solution of a primary amine (7.5 mmol) in CH_2Cl_2 (10 mL), an isocyanate (7.5 mmol) was added slowly. The resulting mixture was stirred at ambient temperature for 1 h. N-Chlorocarbonyl isocyanate (1 equiv, 0.6 mL, 7.5 mmol) was then added slowly (caution: the reaction was usually exothermic), and the reaction mixture was stirred for one additional hour. An additional equivalent of N-chlorocarbonyl isocyanate (0.6 mL) was slowly introduced and the resulting mixture was stirred overnight. If precipitate formed, it was filtered, and washed with cold dichloromethane to yield the desired triazinetrione product. Otherwise, the reaction was diluted with dichloromethane, washed with saturated aqueous NaHCO₃ and then brine, and the organic layer dried over Na₂SO₄, and evaporated to give the final product as white solid.¹¹

In general, this efficient, two-step, one-pot reaction sequence afforded 1,3-dialkyl-1,3,5-triazine-2,4,6-triones in very good to excellent yields, while minimal workup and purification were required. Over 100 compounds with a wide variety of substitutions were prepared using this method. A selection of compounds and their yields are listed in Table 1.

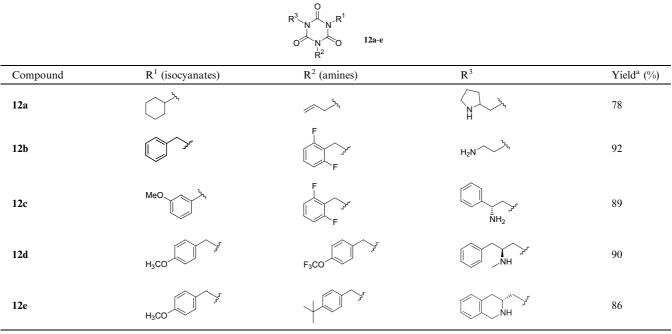
These disubstituted 1,3,5-triazine-2,4,6-triones **5** were further modified by introduction of the third substituent, by either a conventional alkylation with an alkyl halide in the presence of a base such as potassium carbonate (Scheme 2) or by Mitsunobu reaction with

Table 1. Synthesis of disubstituted 1,3,5-triazine-2,4,6-diones **5b**-t by one-pot procedure

Compound	R^1 (isocyanates)	R ² (amines)	Yield ^a (%)
5b	- in	- in	87
5c	in the second se	1 Ares	91
5d	F F F	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	76
5e	when the second	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	82
5f	Jan.	F J	83
5g	and a second sec	"In	95
5h	MeO	F J ^J ^J	81
5i	C C C C C C C C C C C C C C C C C C C	F	87
5j		F ₃ CO	98
5k		A A A A A A A A A A A A A A A A A A A	100
51	H ₃ CO	A A A A A A A A A A A A A A A A A A A	90
5m	H ₃ CO	F ₃ CO	100
5n	H ₃ CO	MeO	94
50	- the second sec	A Contraction of the second se	95
5p	C ''		94
5q			99
5r	O V V		96
5s		F ₃ CO	93
5t		MeO	92
Isolated vield			

Scheme 3. Reagents and conditions: (a) PPh₃, di-*t*-butyl-azodicarb-oxylate, THF; (b) TFA/CH₂Cl₂ (1:1).

alcohols to afford the asymmetric triazinetriones **12** (Scheme 3). The successful Mitsunobu reaction of the disubstituted triazinetriones allowed us to introduce, by utilizing readily available N-protected amino alcohols, an aminoalkyl side-chain, which is important for high affinity GnRH receptor binding. Examples of this Mitsunobu alkylation followed by deprotection of Boc group are listed in Table 2.¹²


We have also successfully adopted solid-supported triphenylphosphine (Aldrich, 1 mmol/g loading) in the synthesis of library compounds, which overcame the difficulty of separating the triphosphine oxide by-product from the reaction mixture. Despite the large excess of solid-supported triphenylphosphine (\sim 10 equiv) that was required (instead of 1.5 equiv of triphenylphosphine in solution) and the longer reaction times (10–16 vs 1–4h), the solid-supported reaction offered an easy purification of the desired product by filtration. This method was especially useful when the product had similar polarity to triphenylphosphine oxide.

All final compounds were evaluated for their ability to inhibit des-Gly¹⁰[¹²⁵I-Tyr⁵, DLeu⁶, NMeLeu⁷, Pro⁹-NEt]-GnRH radioligand binding to the cloned *h*GnRH receptor stably expressed in HEK293 cells using a 96well filtration assay format.¹³ The binding affinities of a few selected compounds **12** are summarized in Table 3. Several compounds from this collection were found to exhibit moderate potency with the 3-methoxyphenyl compound derived from (*R*)-phenylglycinol (**12c**) having the highest binding affinity ($K_i = 37$ nM). The 2-fluorophenyl analogue **12g** displayed a K_i value of 89 nM. Interestingly, the 2,6-difluorophenyl analogue (**12h**, 220 nM) was slightly less potent than **12g**.

In comparison with the corresponding uracil derivative **1c** ($K_i = 2.3 \text{ nM}$), **12c** displayed lower affinity, but only by about 16-fold. This data indicates that the change from a methyl group to a carbonyl moiety between the 3-methoxyphenyl and 2,6-difluorobenzyl groups in **1c** has some impact, but is not a key factor in *h*GnRH receptor binding. Thus the loss of potency in **2** is most likely caused by the loss of the carbonyl group between the 3-methoxyphenyl and the aminoethyl groups for possible hydrogen bonding.

In summary, we have developed a convenient two-step, one-pot cyclization procedure for assembly of the 1,3,5triazine-2,4,6-triones with disubstitutions in excellent yields. Mitsunobu reaction of these disubstituted triazinetriones was also developed and applied to introduce, from readily available amino alcohols, a third

 Table 2. Synthesis of 1,3,5-triazine-2,4,6-diones
 12a-e
 by Mitusnobu reaction¹²

^a Isolated yield.

Table 3. Binding affinities of compounds 3, 12 on the hGnRH receptor¹⁴

	R ³ _1	$ \begin{array}{c} 0 \\ N \\ N \\ N \\ F \\ O \\ F \\ J \\ J$		
Compound	R ³	F [×] Chirality	R ¹	K _i (nM)
3	N N N N N N N N N N N N N N N N N N N		J ² OMe	4200
12c	↓ ↓ NH2	R	S ² OMe	37
12f	F NH ₂	RS	s ^d OMe	120
12g	ind the second s	R	A F	89
12h	in the second se	R	F	220
12i	∑,s ^{sr} NH₂	R	S N S	410
12j	HN NH2	RS	F F	380

substitution group bearing a basic nitrogen. This convenient synthetic route was utilized to synthesize a screening library for the human gonadotropin-releasing hormone receptor. The initial work on this series provided us with compounds of moderate affinity. The best compound (**12c**) from the initial SAR study had a K_i value of 37 nM. Further structure-activity relationships of this series of compounds as *h*GnRH antagonists will be presented elsewhere.

References and notes

- Bartholomew, D. In *Chapter 6.12: 1,3,5-Triazines in Comprehensive Heterocyclic Chemistry II*; Boulton, A. J., Ed.; Pergamon, 1996; pp 575–636.
- Argabright, P. A.; Philips, B. L.; DePuy, C. H. J. Org. Chem. 1970, 35, 2253.
- 3. Tang, J. S.; Mohan, T.; Verkade, J. G. J. Org. Chem. 1994, 59, 4931, and references cited therein.
- 4. Nambu, Y.; Endo, T. J. Org. Chem. 1993, 58, 1932.
- (a) Herbstman, S. J. Org. Chem. 1965, 30, 1259; (b) Flamini, A.; Giuliani, A. M.; Poli, N. Tetrahedron Lett. 1987, 28, 2169.
- Badawey, E. A. M.; Hassan, A. M. M.; Kappe, T. Arch. Pharm. 1991, 324, 355.
- Hagmann H. DOS 1927921, 1970. For a review article on N-chlorocarbonyl isocyanate, see: Hagemann, H. Angew. Chem. 1977, 89, 789.
- 8. Yu, Y.; Ostresh, J. M.; Houghten, R. A. J. Comb. Chem. 2002, 4, 484, and references cited therein.
- (a) Zhu, Y.-F.; Gross, T.; Guo, Z.; Gao, Y.; Connors, P. J., Jr.; Tucci, F. C.; Struthers, R. S.; Reinhart, G. J.; Saunders, J.; Chen, C. J. Med. Chem. 2003, 46, 2023; (b) Guo, Z.; Zhu, Y.-F.; Tucci, F. C.; Gao, Y.; Struthers, R. S.; Saunders, J.; Gross, T. D.; Xie, Q.; Reinhart, G. J.; Chen, C. Bioorg. Med. Chem. Lett. 2003, 13, 3311–3315; (c) Tucci, F. C.; Zhu, Y.-F.; Guo, Z.; Gross, T. D.; Connors, P. J.; Struthers, R. S.; Reinhart, G. J.; Saunders, J.; Chen, C. Bioorg. Med. Chem. Lett. 2003, 13, 3317–3322; (d) Guo, Z.; Zhu, Y.-F.; Gross, T. D.; Tucci, F. C.; Gao, Y.; Moorjani, M.; Connors, P. J., Jr.; Rowbottom, M. W.; Chen, Y.; Struthers, R. S.; Xie, Q.; Saunders, J.; Reinhart, G.; Chen, T. K.; Bonneville, A. L. K.; Chen, C. J. Med. Chem. 2004, 47, 1259.

- For detailed experimental conditions, see: Guo, Z.; Wu, D.; Chen, C.; Tucci, F. C.; Regan, C. WO 0311839, Feb 13, 2003; U.S. Patent 6,677,340, Jan 13, 2004.
- 11. (S)-1-((S)-2-Phenyl-cyclopropyl)-3-(4-trifluoromethoxybenzyl)-[1,3,5]triazinane-2,4,6-trione (5j) was obtained as a white solid (98% yield): mp 192.8-193.0°C; ¹H NMR (TMS/CDCl₃): δ 1.43–1.48 (m, 1H), 1.62–1.67 (m, 2H), 2.36-2.37 (m, 1H), 2.74-2.78 (m, 1H), 5.023 (s, 1H), 7.17-7.56 (m, 9H), 8.48 (br s, 1H). HRMS (ESI) m/z calcd for $C_{20}H_{16}F_3N_3O_4$ (MNa⁺) 442.0985, found 442.0988. Anal. Calcd for $C_{20}H_{16}F_3N_3O_4$: C, 57.28; H, 3.85; N, 10.02. Found: C, 57.26; H, 3.69; N, 10.19. 1-(4-t-Butyl-benzyl)-3-(4-methoxybenzyl)-[1,3,5]triazinane-2,4,6-trione (5l) was obtained as a white solid (90% yield): mp 131.1-131.8 °C; ¹H NMR (TMS/CDCl₃): δ 1.29 (s, 9H), 3.78 (s, 3H), 4.94 (s, 2H), 4.97 (s, 2H), 6.83-7.44 (m, 8H), 8.69 (br s, 1H). HRMS (ESI) m/z calcd for $C_{22}H_{25}N_3O_4$ (M-H⁻) 394.1772, found 394.1765. Anal. Calcd for C₂₂H₂₅N₃O₄: C, 66.82; H, 6.37; N, 10.63. Found: C, 67.05; H, 6.16; N, 10.68.
- 12. Typical procedure: a solution of 51 (32mg, 0.08mmol) in anhydrous THF (1.0mL) was treated with N-Boc-(R)-1-(1,2,3,4-tetrahydro-isoquinolin-3-yl)-methanol (22 mg, 0.08 mmol), Ph₃P (42mg, 0.12 mmol) and di-t-butyl-azodicarboxylate (28 mg, 0.12 mmol) at ambient temperature. The reaction mixture was stirred at ambient temperature for 3h. Volatiles were evaporated, and the residue was treated with 1:1 TFA/DCM (2mL) for 1h. The reaction mixture was then evaporated and purified by reverse phase HPLC (C-18 column, 15-75% ACN/water) to give 1-(4-tbutyl-benzyl)-3-(4-methoxybenzyl)-5-[(R)-1-(1,2,3,4-tetrahydro-isoquinolin-3-yl)methyl]-[1,3,5]triazinane-2,4,6-trione (12e, 45mg, 86% yield) was obtained as TFA salt: ¹H NMR (TMS/CDCl₃): δ 1.28 (s, 9H), 3.10 (d, J = 7.5 Hz, 2H), 3.77 (s, 3H), 3.91-4.13 (m, 2H), 4.48-4.93 (m, 7H), 6.82 (d, J = 9.0 Hz, 2H), 7.09–7.37 (m, 10H); MS (CI) m/z541.2. Anal. Calcd for C₃₂H₃₆N₄O₄·TFA: C, 62.38; H, 5.70; N, 8.56. Found: C, 62.19; H, 5.62; N, 8.45.
- 13. Perrin, M. H.; Haas, Y.; Rivier, J. E.; Vale, W. W. Mol. Pharmacol. 1983, 23, 44.
- 14. On each assay plate a standard antagonist of comparable affinity to those being tested was included as a control for plate-to-plate variability. Overall, K_i values were highly reproducible with an average standard deviation of 45% for replicate K_i determinations. Key compounds were assayed in 3–8 independent experiments.