Enantioselective Addition of Diethylzinc to Aryl Aldehydes Catalyzed by ADPD Imine Catalysts

Takashi Mino, ${ }^{1}$ Katsuhiko Oishi, and Masakazu Yamashita*
Department of Molecular Science and Technology, Faculty of Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
Fax : 81-774-65-6840; E-mail : myamashi@mail.doshisha.ac.jp
Received 18 May 1998

Abstract

The use of chiral imines $\mathbf{1 - 4}$ prepared from (4S,5S)-(+)-5-amino-2,2-dimethyl-4-phenyl-1,3-dioxane (ADPD) in the enantioselective addition of diethylzinc to aryl aldehydes is reported.

 Secondary aryl alcohols are obtained up to 85% ee in good yields.Enantioselective carbon-carbon bond formation is one of the most important methods in organic synthesis. ${ }^{2}$ Recently the catalytic enantioselective addition of diethylzinc to aldehydes using various chiral β-amino alcohols has been reported. ${ }^{3}$ However, only a few examples of this reaction have been reported using ligands which have imine skeleton such as the salen type ligands, ${ }^{4}$ the diimine which are located in the core part of the ligands ${ }^{5}$ and the benzaldehyde imine of primary amino alcohol which was created in vitro. ${ }^{6}$
$(4 S, 5 S)$-(+)-5-Amino-2,2-dimethyl-4-phenyl-1,3-dioxane (ADPD) is a chiral amine which has a dioxane skeleton with a Ph group as a shield. We previously reported the enantioselective synthesis of chiral aldehydes using ADPD as a chiral auxiliary. ${ }^{7}$ Enders reported the asymmetric synthesis using the N-Me derivative. ${ }^{8}$ So ADPD is one of the useful chiral amines. But, in the catalytic asymmetric synthesis, to our knowledge only ADPD derivative was applied to a catalyst in the enantioselective intramolecular Stetter reaction. ${ }^{9}$
Herein, we report the enantioselective addition of diethylzinc to aryl aldehydes such as benzaldehyde using ADPD imines $\mathbf{1 - 4}$. These imines $1-\mathbf{4}^{10}$ were easily prepared from ADPD and corresponding aldehydes such as 2-pyridinecarboxaldehyde, 6-methyl-2-pyridinecarboxaldehyde, 2-hydroxybenzaldehyde, and 3-tert-butyl-2-hydroxybenzaldehyde ${ }^{11}$ under MS 3A.

1

3

2

4

Figure

Enantioselective addition of diethylzinc to benzaldehyde was carried out using $5 \mathrm{~mol} \%$ of these imines $\mathbf{1 - 4} .^{12}$ These results are presented in Table 1. When pyridine-imine type catalysts $\mathbf{1}$ and 2 were used, the reactions were slow and (S)-phenylpropanol was obtained in low or
moderate enantioselectivities (entries 1 and 3). When the excess of $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$ was added, the reaction was accelerated and the enantioselectivity was increased (entries 2 and 4) (Figure). Lithiated 2hydroxybenzaldehyde ADPD imine $\mathbf{3}$ was used as a ligand, the yield was raised up to 93% and the enantioselectivity was increased (entry 5 vs 6). Using 3-tert-butyl-2-hydroxybenzaldehyde ADPD imine 4 which has a bulky substituent such as a tert-butyl group at 3-position, the enantioselectivity was better than ligand $\mathbf{3}$ (entries 5 vs 7 and 6 vs 8). In the absence of $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$ or n - BuLi , the yield and the enantioselectivity were decreased (entries 9 and 10). On the other hand, when t-BuLi was used instead of $n-\mathrm{BuLi}$ as lithiated reagent, enantioselectivity was not observed (entry 11).

Entry	Ligand	Additive	Reaction time	Yield / \% ${ }^{\text {a }}$	$\% e e^{\text {b }}$
1	1	non	48 h	20	10
2	1	$\mathrm{Ti}(\mathrm{O}-\mathrm{i} \mathrm{Pr})_{4}$	24 h	20	40
3	2	non	48 h	35	52
4	2	$\mathrm{Ti}(\mathrm{O}-\dot{\mathrm{Pr}})_{4}$	24 h	48	57
5	3	non	48 h	78	25
6	3	$\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}, n-\mathrm{BuLi}$	24 h	93	30
7	4	non	48 h	48	71
8	4	Ti($\mathrm{O}-i-\mathrm{Pr})_{4}, n-\mathrm{BuLi}$	24 h	94	82
9	4	$\mathrm{Ti}(\mathrm{O}-\dot{\mathrm{Pr}})_{4}$	24 h	33	7
10	4	n-BuLi	24 h	12	27
11	4	$\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr}){ }_{4}, \mathrm{t}$ - BuLi	24 h	72	2

a Determined by GLC. ${ }^{\text {b }}$ Determined by GLC with chiral column

Finally, using lithiated ADPD imine 4 as a catalyst, enantioselective addition of diethylzinc promoted by excess of $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$ to various aryl aldehydes was carried out. These results are presented in the Table 2. For example 3-methylbenzaldehyde ($\mathbf{5 c}$) was used as an aryl aldehyde, α-ethyl-3-methylbenzylalcohol was obtained in high yield and enantioselectivity (up to 85% ee) (entry 2).
In summary, we reported a convenient synthesis of novel ADPD imines and a diethylzinc addition to various aryl aldehydes using these imines in moderate to high enantioselectivities.

Typical Procedure for the Enantioselective Addition of Diethylzinc to Aryl Aldehydes. To a solution of ADPD imine $4(0.05 \mathrm{mmol}, 0.018 \mathrm{~g})$ in toluene (5 mL), n-butyl lithium ($0.05 \mathrm{mmol}, 0.03 \mathrm{~mL}$ of 1.6 M solution in hexane) was added and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ under an argon atmosphere for 20 min . Then, $\mathrm{Ti}(\mathrm{O}-i-\operatorname{Pr})_{4}(1.0 \mathrm{mmol}, 0.28 \mathrm{~mL})$

Table 2. Enantioselective Addition of Diethylzinc to Aryl Aaldehyde 5b-f Using Lithiated Chiral Ligand 4

Entry	Aryl Aldehyde	Yield $/ \%^{a}$	$\% e e^{b}$

82

2

88
85

3

4

91
82
 $\mathbf{5 f}$
(3) a) Soai, K.; Niwa, S. Chem. Rev. 1992, 92, 833. b) Noyori, R.; Kitamura, M. Angew. Chem. Int. Ed. Engl. 1991, 30, 49.
(4) Cozzi, P. G.; Papa, A.; Umani-Ronchi, A. Terahedron Lett. 1996, 37, 4613.
(5) Suzuki, T.; Hirokawa, Y.; Ohtake, K.; Shibata, T.; Soai, K. Terahedron: Aymmetry 1997, 8, 4033.
(6) Itsuno, S.; Sakurai, Y.; Ito, K.; Maruyama, T.; Nakahama, S, Fréchet, J. M. J. J. Org. Chem. 1990, 55, 304.
(7) Mino, T.; Saitoh, M.; Yamashita, M. J. Org. Chem. 1997, 62, 3981.
(8) Enders, D.; Kirchhoff, J. Acros Organics Acta 1996, 2, 10 and references cited therein.
(9) Enders, D.; Breuer, K.; Runsink, J. Helv. Chem. Acta 1996, 79, 1899.
(10) 1. $[\alpha]_{\mathrm{D}}{ }^{25}=+25.48$ (c 1.0, CHCl_{3}); m.p. 144-145 8C; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.64(s, 3 \mathrm{H}), 1.65(s, 3 \mathrm{H}), 3.55(d, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.97$ $(d d, J=2.4$ and $12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(d d, J=3.1$ and $12.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.33(d, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.99(m, 9 \mathrm{H}), 8.52(s, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 19.52,29.08,64.97,67.24,74.17,99.53,121.33$, $124.59,126.73,127.32,127.90,136.32,138.85,148.99,154.52$, 163.00; MS m/z (rel intensity): 281 ($\mathrm{M}^{+}-\mathrm{Me}, 0.4$).
2. $[\alpha]_{\mathrm{D}}{ }^{25}=+28.68$ (c 1.0, CHCl_{3}); m.p. 121-122 $8 \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.64(s, 3 \mathrm{H}), 1.65(s, 3 \mathrm{H}), 2.50(s, 3 \mathrm{H}), 3.55(q, J=2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.93(d d, J=2.4$ and $12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(d d, J=3.0$ and $12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(d, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.80(m, 8 \mathrm{H}), 7.97(s$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 19.58,24.23,29.05,65.01,67.63$, $74.18,99.54,118.45,124.22,126.81,127.28,127.89,136.57$, 138.89, 153.96, 157.55, 163.19; MS m/z (rel intensity): $310\left(\mathrm{M}^{+}\right.$, 100).
3. $[\alpha] \mathrm{D}^{25}=+39.48\left(c \quad 1.0, \mathrm{CHCl}_{3}\right)$; m.p. $180-1828 \mathrm{C} ;{ }^{1} \mathrm{H}$ $\operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.62(s, 3 \mathrm{H}), 1.64(s, 3 \mathrm{H}), 3.39(d, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.97(d d, J=2.0$ and $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(d d, J=2.4$ and 12.2 Hz , $1 \mathrm{H}), 5.31(d, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-7.87(m, 9 H), 7.89(s, 1 \mathrm{H})$; MS m / z (rel intensity): $311\left(\mathrm{M}^{+}, 1.5\right)$.
4. $[\alpha]_{\mathrm{D}}{ }^{25}=+37.88\left(c 1.0, \mathrm{CHCl}_{3}\right)$; m.p. $107-1098 \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.42(s, 9 \mathrm{H}), 1.62(s, 3 \mathrm{H}), 1.64(s, 3 \mathrm{H}), 3.37(q, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.99(d d, J=2.1$ and $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(d d, J=2.4$ and $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(d, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-7.28(\mathrm{~m}, 8 \mathrm{H}), 7.93(s$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 19.23,29.28,29.34,34.84,65.00$, 65.57, $73.8399 .54,117.18,118.49,126.38,127.51,128.10$, 129.16, 129.61, 137.39, 138.62, 160.70, 166.03; MS m/z (rel intensity): $367\left(\mathrm{M}^{+}, 12\right)$; Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{3}: \mathrm{C}, 75.17$; H, 7.95; N, 3.81. Found: C, 74.76; H, 8.06; N, 3.74.
(11) a) Casiraghi, G.; Casnati, G.; Puglia, G.; Sartori, G.; Terenghi, G. J. Chem. Soc. Perkin Trans. 1, 1980, 862. b) Hayashi, M.; Miyamoto, Y.; Inoue, T.; Oguni, N. J. Org. Chem. 1993, 58, 1515.
(12) 6a. $[\alpha]_{\mathrm{D}}{ }^{25}-39.58$ (c 1.0, CHCl_{3}); 6b. $[\alpha]_{\mathrm{D}}{ }^{25}-21.48$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right) ; \mathbf{6 c} \cdot[\alpha]_{\mathrm{D}}{ }^{25}-36.78\left(c 1.0, \mathrm{CHCl}_{3}\right)$; 6d. $[\alpha]_{\mathrm{D}}{ }^{25}-34.98(c$ 1.0, CHCl_{3}); 6e. $[\alpha]_{\mathrm{D}}{ }^{25}-31.18$ (c 1.0, CHCl_{3}); 6f. $[\alpha]_{\mathrm{D}}{ }^{25}-30.48$ (c $1.0, \mathrm{CHCl}_{3}$).
(13) Soai, K.; Ookawa, A.; Kaba, T.; Ogawa, K. J. Am. Chem. Soc. 1987, 109, 7111.

