Enantioselective Addition of Diethylzinc to Aryl Aldehydes Catalyzed by ADPD Imine Catalysts

Takashi Mino,¹ Katsuhiko Oishi, and Masakazu Yamashita*

Department of Molecular Science and Technology, Faculty of Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan

Fax : 81-774-65-6840; E-mail : myamashi@mail.doshisha.ac.jp

Received 18 May 1998

Abstract: The use of chiral imines **1-4** prepared from (4S,5S)-(+)-5amino-2,2-dimethyl-4-phenyl-1,3-dioxane (ADPD) in the enantioselective addition of diethylzinc to aryl aldehydes is reported. Secondary aryl alcohols are obtained up to 85% *ee* in good yields.

Enantioselective carbon-carbon bond formation is one of the most important methods in organic synthesis.² Recently the catalytic enantioselective addition of diethylzinc to aldehydes using various chiral β -amino alcohols has been reported.³ However, only a few examples of this reaction have been reported using ligands which have imine skeleton such as the salen type ligands,⁴ the diimine which are located in the core part of the ligands⁵ and the benzaldehyde imine of primary amino alcohol which was created *in vitro*.⁶

(4*S*,5*S*)-(+)-5-Amino-2,2-dimethyl-4-phenyl-1,3-dioxane (ADPD) is a chiral amine which has a dioxane skeleton with a Ph group as a shield. We previously reported the enantioselective synthesis of chiral aldehydes using ADPD as a chiral auxiliary.⁷ Enders reported the asymmetric synthesis using the *N*-Me derivative.⁸ So ADPD is one of the useful chiral amines. But, in the catalytic asymmetric synthesis, to our knowledge only ADPD derivative was applied to a catalyst in the enantioselective intramolecular *Stetter* reaction.⁹

Herein, we report the enantioselective addition of diethylzinc to aryl aldehydes such as benzaldehyde using ADPD imines **1–4**. These imines **1–4**¹⁰ were easily prepared from ADPD and corresponding aldehydes such as 2-pyridinecarboxaldehyde, 6-methyl-2-pyridinecarboxaldehyde, 2-hydroxybenzaldehyde, and 3-*tert*-butyl-2-hydroxybenzaldehyde¹¹ under MS 3A.

Enantioselective addition of diethylzinc to benzaldehyde was carried out using 5 mol% of these imines 1-4.¹² These results are presented in Table 1. When pyridine-imine type catalysts 1 and 2 were used, the reactions were slow and (*S*)-phenylpropanol was obtained in low or

moderate enantioselectivities (entries 1 and 3). When the excess of $Ti(O-i-Pr)_4$ was added, the reaction was accelerated and the enantioselectivity was increased (entries 2 and 4) (Figure). Lithiated 2-hydroxybenzaldehyde ADPD imine **3** was used as a ligand, the yield was raised up to 93% and the enantioselectivity was increased (entry 5 vs 6). Using 3-*tert*-butyl-2-hydroxybenzaldehyde ADPD imine **4** which has a bulky substituent such as a *tert*-butyl group at 3-position, the enantioselectivity was better than ligand **3** (entries 5 vs 7 and 6 vs 8). In the absence of $Ti(O-i-Pr)_4$ or *n*-BuLi, the yield and the enantioselectivity was used instead of *n*-BuLi as lithiated reagent, enantioselectivity was not observed (entry 11).

Table 1. Enantioselective Addition of Diethylzinc to Benzaldehyde 5a

Entry	Ligand	Additive	Reaction time	Yield / % ^a	%ee ^b
1	1	non	48 h	20	10
2	1	Ti(O-⊬Pr) ₄	24 h	20	40
3	2	non	48 h	35	52
4	2	Ti(O-∔Pr)₄	24 h	48	57
5	3	non	48 h	78	25
6	3	Ti(O- <i>i</i> -Pr) ₄ , <i>n</i> -BuLi	24 h	93	30
7	4	non	48 h	48	71
8	4	Ti(O- <i>i</i> -Pr) ₄ , <i>n</i> -BuLi	24 h	94	82
9	4	Ti(O-∔Pr)₄	24 h	33	7
10	4	<i>n</i> -BuLi	24 h	12	27
11	4	Ti(O- <i>i</i> -Pr) ₄ , <i>t-</i> BuLi	24 h	72	2

^a Determined by GLC. ^b Determined by GLC with chiral column

Finally, using lithiated ADPD imine **4** as a catalyst, enantioselective addition of diethylzinc promoted by excess of $Ti(O-i-Pr)_4$ to various aryl aldehydes was carried out. These results are presented in the Table 2. For example 3-methylbenzaldehyde (**5c**) was used as an aryl aldehyde, α -ethyl-3-methylbenzylalcohol was obtained in high yield and enantioselectivity (up to 85% *ee*) (entry 2).

In summary, we reported a convenient synthesis of novel ADPD imines and a diethylzinc addition to various aryl aldehydes using these imines in moderate to high enantioselectivities.

Typical Procedure for the Enantioselective Addition of Diethylzinc to Aryl Aldehydes. To a solution of ADPD imine 4 (0.05 mmol, 0.018 g) in toluene (5 mL), *n*-butyl lithium (0.05 mmol, 0.03 mL of 1.6 M solution in hexane) was added and the mixture was stirred at -78 °C under an argon atmosphere for 20 min. Then, $Ti(O-i-Pr)_4$ (1.0 mmol, 0.28 mL)

 Table 2.
 Enantioselective Addition of Diethylzinc to Aryl Aaldehyde

 5b-f Using Lithiated Chiral Ligand 4

^a Determined by GLC. ^b Determined by HPLC with chiral column

was added. After 20 min, diethylzinc (2 mmol, 2 mL of 1 M solution in hexane) was added and stirring was continued for 1 h. After warming to -35° C, benzaldehyde (1.0 mmol, 0.10 mL) was added and the mixture was stirred for 24 h at -35° C. The reaction mixture was quenched with 2 M hydrochloric acid, and then extracted with ether. The organic layers were washed with sat. NaHCO₃ aq. and brine, and dried over MgSO₄ anhydrous. The solvent was evaporated and the residue was purified by TLC (hexane:EtOAc=4:1). The *ee* values were determined by GLC with a Chrompack CP-Cyclodextrin-B-236-M-19 column (0.25mm i.d. x 50m) and HPLC with a Chiralcel OD column. The absolute configuration of alcohols was determined by the comparison of the optical rotation of literature data.¹³

References and Notes

- New address: Department of Materials Technology, Faculty of Engineering, Chiba University, Inage, Chiba 263-8522 Japan. Fax: 81-43-290-3401; e-mail: tmino@planet.tc.chiba-u.ac.jp
- (2) Seyden-Penne, J. in *Chiral Auxiliaries and Ligands in Asymmetric Synthesis*; John Wiley & Sons, Inc., New York, **1995**.

- (3) a) Soai, K.; Niwa, S. Chem. Rev. 1992, 92, 833. b) Noyori, R.; Kitamura, M. Angew. Chem. Int. Ed. Engl. 1991, 30, 49.
- (4) Cozzi, P. G.; Papa, A.; Umani-Ronchi, A. *Terahedron Lett.* 1996, 37, 4613.
- (5) Suzuki, T.; Hirokawa, Y.; Ohtake, K.; Shibata, T.; Soai, K. *Terahedron: Aymmetry* **1997**, *8*, 4033.
- (6) Itsuno, S.; Sakurai, Y.; Ito, K.; Maruyama, T.; Nakahama, S, Fréchet, J. M. J. J. Org. Chem. 1990, 55, 304.
- (7) Mino, T.; Saitoh, M.; Yamashita, M. J. Org. Chem. 1997, 62, 3981.
- (8) Enders, D.; Kirchhoff, J. *Acros Organics Acta* **1996**, *2*, 10 and references cited therein.
- (9) Enders, D.; Breuer, K.; Runsink, J. Helv. Chem. Acta 1996, 79, 1899.
- (10) **1**. $[\alpha]_{D}^{25}$ =+25.48 (*c* 1.0, CHCl₃); m.p. 144–145 8C; ¹H NMR (CDCl₃) δ : 1.64 (*s*, 3H), 1.65 (*s*, 3H), 3.55 (*d*, *J*=2.4 Hz, 1H), 3.97 (*dd*, *J*=2.4 and 12.2 Hz, 1H), 4.47 (*dd*, *J*=3.1 and 12.2 Hz, 1H), 5.33 (*d*, *J*=2.4 Hz, 1H), 7.10–7.99 (*m*, 9H), 8.52 (*s*, 1H); ¹³C NMR (CDCl₃) δ : 19.52, 29.08, 64.97, 67.24, 74.17, 99.53, 121.33, 124.59, 126.73, 127.32, 127.90, 136.32, 138.85, 148.99, 154.52, 163.00; MS m/z (rel intensity): 281 (M⁺-Me, 0.4).

2. $[\alpha]_D^{25}=+28.68$ (*c* 1.0, CHCl₃); m.p. 121–122 8C; ¹H NMR (CDCl₃) &: 1.64 (*s*, 3H), 1.65 (*s*, 3H), 2.50 (*s*, 3H), 3.55 (*q*, *J*=2.7 Hz, 1H), 3.93 (*dd*, *J*=2.4 and 12.2 Hz, 1H), 4.45 (*dd*, *J*=3.0 and 12.2 Hz, 1H), 5.33 (*d*, *J*=2.4 Hz, 1H), 7.09–7.80 (*m*, 8H), 7.97 (*s*, 1H); ¹³C NMR (CDCl₃) &: 19.58, 24.23, 29.05, 65.01, 67.63, 74.18, 99.54, 118.45, 124.22, 126.81, 127.28, 127.89, 136.57, 138.89, 153.96, 157.55, 163.19; MS m/z (rel intensity): 310 (M⁺, 100).

3. $[\alpha]_{D}^{25}$ =+39.48 (*c* 1.0, CHCl₃); m.p. 180–182 8C; ¹H NMR(CDCl₃) δ : 1.62 (*s*, 3H), 1.64 (*s*, 3H), 3.39 (*d*, *J*=2.0 Hz, 1H), 3.97 (*dd*, *J*=2.0 and 7.8 Hz, 1H), 4.45 (*dd*, *J*=2.4 and 12.2 Hz, 1H), 5.31 (*d*, *J*=2.0 Hz, 1H), 6.73–7.87 (*m*, 9H), 7.89 (*s*, 1H); MS m/z (rel intensity): 311 (M⁺, 1.5).

4. [α] $_{\rm D}^{25}$ =+37.88 (*c* 1.0, CHCl₃); m.p. 107–109 8C; ¹H NMR (CDCl₃) δ: 1.42 (*s*, 9H), 1.62 (*s*, 3H), 1.64 (*s*, 3H), 3.37 (*q*, *J*=2.1 Hz, 1H), 3.99 (*dd*, *J*=2.1 and 11.9 Hz, 1H), 4.45 (*dd*, *J*=2.4 and 11.9 Hz, 1H), 5.30 (*d*, *J*=2.4 Hz, 1H), 6.66–7.28 (*m*, 8H), 7.93 (*s*, 1H); ¹³C NMR (CDCl₃) δ: 19.23, 29.28, 29.34, 34.84, 65.00, 65.57, 73.83 99.54, 117.18, 118.49, 126.38, 127.51, 128.10, 129.16, 129.61, 137.39, 138.62, 160.70, 166.03; MS m/z (rel intensity): 367 (M⁺, 12); Anal. Calcd. for C₂₃H₂₉NO₃: C, 75.17; H, 7.95; N, 3.81. Found: C, 74.76; H, 8.06; N, 3.74.

- (11) a) Casiraghi, G.; Casnati, G.; Puglia, G.; Sartori, G.; Terenghi, G.
 J. Chem. Soc. Perkin Trans. 1, **1980**, 862. b) Hayashi, M.;
 Miyamoto, Y.; Inoue, T.; Oguni, N. *J. Org. Chem.* **1993**, *58*, 1515.
- (12) **6a**. $[\alpha]_D^{25}$ -39.58 (*c* 1.0, CHCl₃); **6b**. $[\alpha]_D^{25}$ -21.48 (*c* 1.0, CHCl₃); **6c**. $[\alpha]_D^{25}$ -36.78 (*c* 1.0, CHCl₃); **6d**. $[\alpha]_D^{25}$ -34.98 (*c* 1.0, CHCl₃); **6e**. $[\alpha]_D^{25}$ -31.18 (*c* 1.0, CHCl₃); **6f**. $[\alpha]_D^{25}$ -30.48 (*c* 1.0, CHCl₃).
- (13) Soai, K.; Ookawa, A.; Kaba, T.; Ogawa, K. J. Am. Chem. Soc. 1987, 109, 7111.