DOI: 10.1002/cmdc.201200316

Effect of Oxime Ether Incorporation in Acyl Indole Derivatives on PPAR Subtype Selectivity

Morgan Le Naour,^[a] Veronique Leclerc,^[a] Amaury Farce,^[a] Daniel-Henri Caignard,^[b] Nathalie Hennuyer,^[c] Bart Staels,^[c] Valérie Audinot-Bouchez,^[d] Jean-Albert Boutin,^[d] Michel Lonchampt,^[e] Catherine Dacquet,^[e] Alain Ktorza,^[e] Pascal Berthelot,^[a] and Nicolas Lebegue*^[a]

Compounds that simultaneously activate peroxisome proliferator-activated receptor (PPAR) subtypes α and γ have the potential to effectively treat dyslipidemia and type 2 diabetes (T2D) in a single pharmaceutically active molecule. The frequently observed side effects of selective PPAR γ agonists, such as edema and weight gain, were expected to be overcome by using additive PPAR α activity, leading to dual PPAR α/γ agonists with balanced activity for both subtypes. Herein we report the discovery, synthesis, and optimization of a new series of α ethoxyphenylpropionic acid bearing 5- or 6-substituted in-

Introduction

Metabolic syndrome remains one of the leading causes of mortality in Western society and has become a major public health challenge worldwide. The term *metabolic syndrome* refers to a cluster of risk factors of metabolic origin that promote the development of cardiovascular diseases and type 2 diabetes mellitus. Metabolic syndrome includes such pathological factors as insulin resistance, hyperinsulinemia, abdominal obesity, impaired glucose tolerance, type 2 diabetes, microalbuminuria, high triglyceride levels, low HDL cholesterol levels, elevated blood pressure, and pro-inflammatory and pro-thrombic states.^[1]

The peroxisome proliferator-activated receptors (PPARs) were cloned in $1990^{\scriptscriptstyle [2]}$ as orphan members of the nuclear receptor family, which includes receptors for steroid, retinoid and thyroid hormones,^[3] and vitamin D.^[4] PPARs are transcription factors that are activated by the binding of small lipophilic ligands. They induce or repress the transcription of a large number of various genes, thereby influencing cellular function.^[5] Among these functions, PPARs contribute to the regulation of glucose, lipid, and cholesterol metabolism, apparently making them ideal targets for the development of oral agents for the treatment of metabolic syndrome.^[6] Consequently, for years, PPAR agonists have represented a promising approach to treat type 2 diabetes (T2D) and the associated metabolic diseases, including obesity, hypertension, and dyslipidemia. There are three known PPAR receptor subtypes, designated as PPAR α , γ , and β/δ . Although the PPAR subtypes share a high degree of sequence and structural similarity, each PPAR subtype exhibits a unique tissue expression profile.^[7]

doles. The incorporation of oxime ethers on the carbonyl portion of the benzoyl group can bring the PPAR α/γ potency ratio equal to or slightly greater than one, as is the case for compounds **20 c** and **21 a**. Compound **20 c** shows high efficacy in an *ob/ob* mouse model of T2D and dyslipidemia, similar to that of rosiglitazone and tesaglitazar, but with a significant increase in body weight gain. In contrast, compound **21 a**, less potent as a dual PPAR α/γ activator than **20 c**, showed an interesting pharmacological profile, as it elicits a decrease in body weight relative to reference compounds.

Given the importance of controlling both glucose and lipid levels in T2D, the concept of identifying ligands that bind to and activate both PPAR α and γ represent a logical continuation in the field of PPAR research. PPAR γ agonists have been associated with improved insulin sensitivity and glucose tolerance, but at the cost of increased weight gain and other side effects such as liver dysfunction^[8] and bone loss.^[9] The fibrates have shown specific efficacy in decreasing the angiographic progression of coronary heart disease in T2D, and the effect is

🛞 WILEY 順

ONLINE LIBRARY

[[]a] Dr. M. Le Naour, Dr. V. Leclerc, Dr. A. Farce, Prof. P. Berthelot, Dr. N. Lebeque Laboratoire de Chimie Therapeutique, EA4481 Université Lille-Nord de France Faculté des Sciences Pharmaceutiques et Biologiques de Lille 3 rue du Prof. Laguesse, BP83, 59006 Lille (France) E-mail: nicolas.lebegue@univ-lille2.fr [b] Dr. D.-H. Caignard Etudes Extérieures et Alliances stratégiques Institut de Recherches Servier 125 Chemin de Ronde, 78290 Croissy sur Seine (France) [c] Dr. N. Hennuyer, Prof. B. Staels Département d'Athérosclérose, U1011 Institut Pasteur de Lille 1 Rue du Pr. Calmette, 59019 Lille Cedex (France) [d] Dr. V. Audinot-Bouchez, Dr. J.-A. Boutin Division de Recherche Pharmacologie Moléculaire et Cellulaire 125 Chemin de Ronde, 78290 Croissy sur Seine (France) [e] Dr. M. Lonchampt, Dr. C. Dacquet, Prof. A. Ktorza Division de Recherche Maladies Métaboliaues Institut de Recherches Servier 11 Rue des Moulineaux, 92150 Suresnes (France) Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/cmdc.201200316: ¹³C NMR spectra of tested compounds 16a-e, 18a-d, 20a-c, 21a-c, 25a-d, and 29a-b.

CHEMMEDCHEM

most likely related to the correction of atherogenic dyslipidemia. In addition to their benefit on lipids, there are reports that fibrates decrease body weight gain in rodents without affecting food intake.^[10] Thus, activation of PPAR α may mitigate the weight gain induced by PPARy activation observed in humans. The hypothesis that dual PPAR α/γ agonism should provide additive—and possibly synergistic—pharmacology has resulted in an intense effort within the pharmaceutical industry to develop and evaluate these agents. Dual activation of PPAR α and γ could, in theory, also limit the occurrence of side effects associated with thiazolidinedione (TZD) therapy.^[11] Thus, combined PPAR α/γ activation has emerged as an interesting concept and has spawned the development of various co-agonists. A number of dual PPAR α/γ agonists have been reported in this class of compounds and have shown robust insulin-sensitizing and hypolipidemic activities in clinical trials.^[12]

In our continued search for PPAR ligands, we synthesized a large series of α -ethoxyphenylpropionic acid bearing an acylheteroaryl core and found that many of them are full PPAR γ agonists.^[13] Pharmacophore modulations performed within this class of compounds led to the discovery of the potent compound S73362, which exhibits better in vitro PPAR activity than the dual PPAR α/γ agonist tesaglitazar, with higher selectivity for the PPAR γ receptor.

Molecular modeling studies were conducted to understand the PPARy selectivity of \$73362, by docking \$73362 into the PPAR α and γ ligand binding domains (LBDs). The binding poses of S73362 with the LBDs of PPAR α and γ are shown in Figure 1; further details of the molecular modeling studies will be reported in due course. From the results, it was apparent that the benzoyl moiety and the indole core of \$73362 are buried in a binding cavity of $\text{PPAR}\alpha$ LBD composed of a cluster of hydrophobic residues (Ile241, Leu247, Ile272, Met330, Val332, Ile339, and Leu344), closed on its lower part by Met355. In the case of PPARy, the narrower pocket is spread more in depth, and the carbonyl portion of the benzoyl group is directed toward Phe264 and His266, while position 3 of the indole is oriented toward Leu228 and Leu333. The overall picture suggests that the introduction of small hydrophobic substituents on the ketone tail portion of the acyl group or at the 3-position of the indole group would increase the contact surface with the receptors and thus benefit binding at both PPAR subtypes.

Herein we report the effect of linking oxime ethers to the ketone tail of 5- or 6-acylindole and/or at position 3 of the indole ring, on the selectivity between PPAR α and γ , while retaining the α -ethoxypropionic acid moiety of tesaglitazar as an acidic head group (Figure 2). The binding affinity to human PPAR γ was characterized by using a competitive binding assay with [³H]rosiglitazone, and the in vitro PPAR agonist activity and subtype selectivity of all test compounds were assessed with in vitro pGal4–hPPAR transactivation assays. Furthermore, several selected compounds with a PPAR α :PPAR γ potency ratio equal to or slightly greater than one, were subjected to in vivo studies to assess their anti-hyperlipidemic, anti-hyperglycemic, and body weight effects in experimental animal models.

Figure 1. Molecular modeling results of S73362 (pink) docked into the LBD of PPAR α and PPAR γ : shown are the molecular surface maps and key residues (in white) showing the binding pose of S73362 in complex with a) PPAR α (PDB code: 3FEI) and b) PPAR γ (PDB code: 1KNU).

Figure 2. Design of dual PPAR α/γ agonists.

Results and Discussion

Chemistry

The key α -ethoxypropionic acid ester intermediate was synthesized as illustrated in Scheme 1. For the synthesis of the ethoxy phosphonoacetate **3**, benzenesulfonyl azide was prepared by coupling sodium azide with benzenesulfonyl chlo-

Scheme 1. Reagents and conditions: a) benzenesulfonyl azide, NaH, dry THF, 0 °C, 16 h, 87%; b) EtOH, [Rh(OAc)₂]₂, toluene, reflux, 4 h, 80%; c) 1-bromo-2-chloroethane, K₂CO₃, CH₃CN, reflux, 15 h, 92%; d) NaH, dry THF, 0 °C \rightarrow RT, 5 h, 86%; e) H₂, Pd/C, EtOH, RT, 20 h, 93%; f) LiOH, THF/H₂O, RT, 20 h, 85%; g) 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride, Et₃N, HOBT, (S)-(-)-2-phenylglycinol, CH₂Cl₂, 0 °C \rightarrow RT, 12 h, 33–37%; h) 5 M H₂SO₄, dioxane/H₂O, reflux, 8 h, 78–81%.

ride.^[14] This azide was sufficiently stable for handling and was used to synthesize diazo intermediate 2 from phosphonoacetate 1 using sodium hydride in dry THF as described by Moody et al.^[15] and Regitz et al.^[16] Diazo intermediate 2 proved stable to silica chromatography. Thereafter, the rhodium(II) acetate dimer was used to generate a carbenoid from the diazo compound which was inserted into the O-H bond of ethanol, as per Haigh et al.^[17] (Scheme 1). A Horner-Wadsworth-Emmons (HWE) coupling^[18] was carried out between ethoxy phosphonoacetate 3 and benzaldehyde 5 to give compound 6 as a mixture of E/Z isomers, which were not separated, but used directly in the next step. Reduction of the double bond was realized by catalytic hydrogenation with 10% Pd/C, leading to the racemic α -ethoxypropionic acid ester 7. Ester 7 could be saponified to the racemic acid 8, which was transformed into the optically pure amides **9a** and **9b** via (S)-2-phenylglycinol coupling.^[19] Separation of the resulting two diastereomers and amide hydrolysis afforded the optically pure carboxylic acids 10 a and 10b. Chiral liquid chromatography was used to determine enantiomeric purity, estimated to be 98% ee.

The general procedure for the synthesis of indole derivatives **16a–e** and **18a–d** is represented in Scheme 2. Reaction of 5or 6-bromoindole or 5-bromo-3-methylindole with potassium hydride in THF at -78°C allowed abstraction of the indole NH to afford a homogeneous solution of the potassium salt, which upon treatment with tert-butyllithium, underwent rapid and efficient lithium-halogen exchange.^[20] The metalated species 12a-c were then treated with the appropriate methyl or phenyl Weinreb amide to prepare 5- and 6-benzoylindole derivatives 14a-c. This method cannot be used for the introduction of cycloalkylcarbonyl groups, and we recently developed an effective procedure for the synthesis of acylindoles under Stille conditions.^[21] Compound 12a was then treated with tributyltin chloride as electrophile to afford 5-tributylstannylindole 13 in 78% yield. Stannane 13 was then treated with cyclopropanoyl or cyclohexanoyl chloride under the Stille-type crosscoupling conditions, leading to the corresponding acylindoles 14 d,e in 70% yield. Condensation of acylindoles 14 a-e with intermediates 7 was carried out in the presence of potassium carbonate in DMF at reflux, and the desired acids 16a-e were obtained after lithium hydroxide mediated saponification. Esters 15 a, b, d, e were further functionalized into the required oxime ethers 17 a-d by treatment with O-methylhydroxylamine hydrochloride in pyridine followed by alkaline hydrolysis

Scheme 2. Reagents and conditions: a) 1. KH, dry THF, 0°C, 2. tBuLi, -78 °C; b) *N*-methoxy-*N*-methylbenzamide, dry THF, -78 °C \rightarrow RT, 12 h, 48–64%; c) 1. Bu₃SnCl, dry THF, -78 °C \rightarrow RT, 2. H₂O, 0 °C, 78%; d) cyclopropyl- or cyclohexylcarbonyl chloride, PdCl₂(PPh₃)₂, dry toluene, reflux, 16 h, 70–71%; e) **7**, K₂CO₃, DMF, reflux, 15 h, 55–65%; f) *O*-methylhydroxylamine hydrochloride, pyridine, 100 °C, 4 h, 75–81%; g) LiOH, THF/H₂O, RT, 15 h, 78–85%.

to provide the corresponding carboxylic acids **18a-d** in yields.

Synthesis of enantiomerically pure 20a-c and 21a-c is outlined in Scheme 3. Treatment of 5- or 6-benzoylindole with *O*methylhydroxylamine hydrochloride led to the corresponding oxime ethers, the *E* and *Z* isomers of which, respectively **19a**

Scheme 3. *Reagents and conditions:* a) *O*-methylhydroxylamine hydrochloride, pyridine, MeOH, RT, 24 h, 38–79 %; b) NaH, 10 a or 10 b, HMPA, RT, 24 h, 47–63 %.

and **19b**, could be separated by liquid chromatography for the 5-benzoyl derivative, and the stereochemistry of each isomer was assigned by NOE experiments. Condensation with the optically pure carboxylic acids **10a** and **10b** under alkaline conditions followed by acid hydrolysis provided the desired products **20a**–c and **21a**–c in >95% *ee* and 47–63% yield.

Synthesis of the target compounds **25 a**–**d** was realized from 5-acetylindole^[22] **22** by using the same chemical pathway as **18 a**–**d** (Scheme 4). Condensation with intermediate **7** was followed by introduction of various oxime ethers to provide the *E* isomers exclusively, which were finally saponified to the corresponding racemic acids.

Introduction of oxime ethers at position 3 of the indole ring was carried out as depicted in Scheme 5. Formylation at the indole 3-position was carried out by a Vilsmeier–Haack reaction

Scheme 4. Reagents and conditions: a) 7, K₂CO₃, DMF, reflux, 15 h, 56%; b) Osubstituted hydroxylamine hydrochloride, pyridine, MeOH, reflux, 4 h, 87– 93%; c) LiOH, THF/H₂O, RT, 15 h, 76–81%.

Scheme 5. Reagents and conditions: a) 7, K₂CO₃, DMF, reflux, 15 h, 56–62%; b) *O*-methylhydroxylamine hydrochloride, pyridine, reflux, 4 h, 88%; c) LiOH, THF/H₂O, RT, 15 h, 83–85%.

with oxalyl chloride and DMF followed by acylation with benzoyl chloride and excess aluminum chloride to provide the 5and 6-benzoyl-3-formylindoles **26 a,b** in a one-pot procedure in 60 and 20% yields, respectively.^[23] Condensation with intermediate **7** followed by reaction with *O*-methylhydroxylamine hydrochloride led to the formation of a racemic mixture of *E* and *Z* isomers in the benzoyl group, whereas the *E* isomer was exclusively obtained at the indole 3-position. Compounds **28 a,b** were finally saponified to afford the desired carboxylic acids **29 a,b**.

In vitro biological evaluation

Compounds were characterized by determining the binding affinity to human PPARy using a competitive binding assay with $[^{3}\text{H}]\text{rosiglitazone, an appropriate radioligand for PPARy. The$ binding profiles of test compounds were compared with those of two references: rosiglitazone and tesaglitazar. Functional activity was measured in a transient transfection assay using human pGal4–hPPAR α and pGal4–hPPAR γ constructs, and the results are listed in Table 1. All tested compounds were functionally inactive at 10 µm against human PPARb. As described above, **16a** (S73362) is a full dual PPAR α/γ agonist, with higher selectivity for the PPARy receptor. Its 6-benzoyl regioisomer **16 b** shows increased α functional potency (EC₅₀ ratio: 3.8) while maintaining the same in vitro PPARy pharmacological profile as \$73362. Replacement of the 5-benzoyl substituent by cycloalkylcarbonyl to give compounds 16d and 16e provided the desired α/γ potency ratio of approximately one or greater (i.e., **16d** EC₅₀ ratio: 0.8; **16e** EC₅₀ ratio: 7). The weak α selectivity of **16d** is not due to enhanced PPAR α potency, but by decreased PPAR γ functional activity, while the γ affinity is maintained. Acyl substitution with cyclohexyl or phenyl groups seemed to be most tolerated among the steric bulk of substituents for PPARy activity.

The incorporation of small hydrophobic substituents such as methyl oxime ethers on the ketone tail portion of the acyl group led to compounds **18 a**–**d**. In agreement with docking studies, these compounds exhibited better α functional activity than their carbonyl counterparts and proved to interact better with the PPAR α LBD, with an appropriate α/γ ratio (com-

Table 1. In vitro profile of compounds 16a-e, 18a-d, 20a-c, 21a-c, 25a-d, and 29a-b as PPAR agonists.

k^2											
Compd	Pos ^[a]	R ¹	Х	R ²	Stereo		hPPAR gene reporter			<i>К</i> _і [пм] ^[b]	$\alpha/\gamma^{[c]}$
						lpha Gal4 [%] ^[d]	$\alpha \text{EC}_{\text{50}} [\text{nm}]^{[\text{e}]}$	γ Gal4 [%] ^[d]	γEC ₅₀ [nм] ^[e]		
16 a ^[f]	5	Ph	0	Н	Rac	105	117	90	0.9	0.9	130
16b	6	Ph	0	Н	Rac	96	19	92	5	1.2	3.8
16 c	5	Ph	0	Me	Rac	117	22	108	6.5	1.4	3.4
16 d	5	cPr	0	Н	Rac	74	123	138	151	1.2	0.8
16e	5	<i>c</i> Hex	0	Н	Rac	332	112	99	16	0.7	7
18a	5	Ph	NOMe (<i>E/Z</i>)	Н	Rac	165	13	170	7.6	2.8	1.7
18b	6	Ph	NOMe (<i>E/Z</i>)	Н	Rac	94	8.2	115	5.5	14.4	1.5
18 c	5	<i>c</i> Pr	NOMe (<i>E/Z</i>)	Н	Rac	302	9	92	102	2.4	0.08
18 d	5	<i>c</i> Hex	NOMe (<i>E/Z</i>)	Н	Rac	79	15	90	5	2.7	3
20 a	5	Ph	NOMe (E)	Н	S	109	3	107	0.3	2	10
21 a	5	Ph	NOMe (E)	Н	R	78	1000	72	700	157	1.4
20 b	5	Ph	NOMe (Z)	Н	S	107	250	129	8	3.1	31.2
21 b	5	Ph	NOMe (<i>Z</i>)	Н	R	77	10000	71	1100	183	9.1
20 c	6	Ph	NOMe (<i>E/Z</i>)	Н	S	78	50	66	46	4.8	1.1
21 c	6	Ph	NOMe (<i>E/Z</i>)	Н	R	80	212	48	10000	841	0.02
25 a	5	Me	NOPh (E)	Н	Rac	60	200	73	3	5.5	66.6
25 b	5	Me	NOBn (E)	Н	Rac	64	2000	75	10	2.7	200
25 c	5	Me	NOCH ₂ cPr (E)	Н	Rac	97	200	97	10	3.4	20
25 d	5	Me	NOcHex (E)	Н	Rac	115	129	135	0.3	17	430
29 a	5	Ph	NOMe (<i>E/Z</i>)	CH=NOMe (E)	Rac	129	59	113	14	25	4.2
29 b	6	Ph	NOMe (<i>E/Z</i>)	CH=NOMe (E)	Rac	88	24	98	12	65	2
rosi ^[g]	-	-	-	-	-	28	10000	100	4	8	>100
tesa ^[h]	-	-	-	-	-	89	414	76	37	18	11.2

[a] Indole position. [b] hPPAR γ binding affinity: K_i is the test compound concentration required to achieve an apparent concentration value according to the equation $K_i = |C_{50}/(1+[L]/K_d)$, for which $|C_{50}$ is the test compound concentration required to inhibit 50% of specific binding of the radioligand, [L] is the radioligand concentration used, and K_d is the dissociation constant for the radioligand at the receptor. [c] PPAR α/γ selectivity ratio. [d] Potency. [e] Compound concentration required to induce 50% maximum activity of WY 14,643 (10 µm) for PPAR α and rosiglitazone (1 µm) for PPAR γ ; fold activation relative to maximum activation obtained with WY 14,643 (10 µm) and rosiglitazone (1 µm) corresponded to 100% in Gal4 chimeric PPAR α and PPAR γ systems. [f] S73362. [g] Rosiglitazone. [h] Tesaglitazar.

pounds **18a**, **18b**, and **18d** have respective EC₅₀ ratios of 1.7, 1.5, and 3). As for cyclopropyl carbonyl derivative **16d**, which has weak PPAR α selectivity, its functionalization with *O*-methyl oxime ether (giving compound **18c**) enhanced α selectivity to afford 10-fold more potent activity at the α receptor than the PPAR γ subtype, and displaying threefold more activation than the reference compound WY 14,643. These results confirm that the incorporation of small lipophilic substituents such as methyl oxime ether strengthens the ligand–PPAR α interaction and likely increases activity while maintaining good PPAR γ potency.

We were also interested in synthesizing 5-acetylindoles, in which bulkier oxime ethers such as phenyl (compound **25a**), benzyl (**25b**), methylcyclopropyl (**25c**), or cyclohexyl (**25d**) substituents are introduced. Although these compounds displayed PPAR γ activities and affinities similar to those of their parent *O*-methyl oxime ether derivatives **18a** and **18d**, these modifications led to a significant decrease in PPAR α potency and so improved PPAR γ selectivity. Regarding PPAR α , the introduction of a short-chain oxime ether group on bulky acyl substituents was found to be favorable for transactivation activity,

and might be better at filling the PPAR α hydrophobic cavity. In contrast, a longer oxime ether group introduced on the acetyl derivative was not preferable and led to less potent PPAR α agonists. These results are consistent with the working hypothesis that the shape and environment of the hydrophobic cavity that hosts the acyl group substituted by oxime ethers differs somewhat between the PPAR α and γ subtypes.

Further chemical modifications that may improve the potency and selectivity for the PPAR α subtype were performed at the 3-position of the indole ring by introducing small hydrophobic substituents such as methyl (compound **16c**) or *O*methyl oxime ethers (compounds **29a,b**). Altogether, compounds **16c** and **29a,b** displayed higher PPAR α activity and lower PPAR γ activity than the unsubstituted indole analogue **16a**, providing the desired α/γ ratio of approximately one or higher (i.e., **16c** EC₅₀ ratio: 3.4; **29a** EC₅₀ ratio: 4.2; **29b** EC₅₀ ratio: 2). These small substituents appear to lie closer to Ile272, lle339, and Leu344 of the PPAR α LDB, thereby forming stronger hydrophobic interactions than **16a**. In the γ receptor, higher affinity was observed with a methyl substitution, whereas an oxime ether group led to decreased affinity. The larger the size of the substituent, the greater the loss in PPAR γ binding affinity. From all the compounds synthesized, adjustment of the PPAR α/γ potency ratio to an equal balance was observed for racemates 18a and 18b, which were then resolved into their pure enantiomers following the synthetic procedure of Scheme 3. As described for other PPAR agonists,^[24] analogues containing (S)-ethoxypropanoic acid had higher activities than analogues containing (R)-ethoxypropanoic acid at both PPAR α and PPAR γ (**20 a** vs. **21 a**, **20 b** vs. **21 b**, and **20 c** vs. 21 c). Regarding the 5-substituted indole derivatives, E isomers 20 a and 21 a displayed better functional activities and affinities than their Z isomer counterparts 20b and 21b. The optically pure S-configured derivative 20 a represents the most potent dual PPAR α/γ full agonist, but with a lower α/γ ratio of 10, whereas its *R*-configured analogue provides the appropriate ratio, slightly greater than one, with partial activity in the micromolar range at both receptors. The resolution of racemate **18b** into its optical antipodes first led to compound **20c**, which corresponds to the S enantiomer of the racemic mixture of E/Z oxime ether isomers, and possesses the desired equal potency ratio (i.e., **20 c** EC₅₀ ratio: 1.1) with dual PPAR α/γ partial agonist activity. In contrast, its R-configured counterpart **21 c** was found to be a selective PPAR α partial agonist with no activity and affinity for the PPARy subtype.

In vivo biological evaluation

The in vivo effects of test compounds were determined by measuring glycemia, triglyceridemia, insulinemia, and body weight in *ob/ob* mice, which are obese, insulin resistant with hypertriglyceridemia and hyperglycemia, and have been used as a rodent model of obesity-induced insulin resistance. In this model, mice were dosed orally with either compounds **20 a**-**c** and **21 a**-**c** or standard reference compounds (rosiglitazone and tesaglitazar) at 3 mg kg⁻¹ for four days. As listed in Table 2,

Table 2. In vivo efficacy of compounds 20a-c and 21a-c in ob/ob mice.										
	Change [%] ^[a]									
Compound	TG ^[b]	Gly ^[c]	Ins ^[d]	$\Delta BW^{[e]}$						
20a	-57	-47	-86	490						
20 b	-46	-41	-37	370						
20 c	-40	-52	-49	305						
21a	-17	-32	-3	66						
21b	6	-5	5	54						
21 c	-19	-22	-26	42						
rosiglitazone	-61	-59	-54	100						
tesaglitazar	-60	-51	-94	93						
[a] Percent change versus control for <i>ob/ob</i> mice at day 4 (dose: 3 mg kg^{-1} p.o.). [b] Triglycerides. [c] Glycemia. [d] Insulin. [e] Body weight variation between day 0 and day 4.										

S-enantiomer derivatives 20a-c elicited significant decreases in serum triglyceride, glucose, and insulin levels and were found to be similar to the two reference compounds. The good in vivo efficacy of compounds 20a-c observed in the mouse model is consistent with the good potency displayed in the

PPAR α and γ gene reporter assays. Body weight was also measured daily, and body weight variation was calculated as a percentage of the difference in body weight between days 4 and 0. Thus, at the end of treatment, body weight gain was threeto fivefold higher for compounds **20a-c** than for rosiglitazone and tesaglitazar. PPAR γ activation is well known to enhance body weight gain through two major mechanisms: increase in fat mass by pre-adipocyte recruitment from bone marrow, and adipocyte differentiation and fluid retention.^[25] Whereas they are highly potent agonists of both human PPAR α and γ in cellular assays, compounds 20a-c appeared to be predominantly PPARy activators in the ob/ob mice model. The functional activity of **20 c**, the best equally balanced PPAR α/γ ligand, was then measured in a murine PPAR α transient transfection assay and was found to be 20-fold less potent toward the human receptor, as observed for tesaglitazar (i.e., 20c and tesaglitazar murine PPAR α EC₅₀ values of 1 and 10 μ M, respectively). These results are in accord with those of previous studies, which describe the beneficial effect of PPAR α activity on body weight as being dependent on the animal model used.^[10b] The profile of in vivo efficacy on both insulin sensitivity and energy homeostasis of compounds 21 a-c showed lower pharmacological action in ob/ob mice than their S enantiomers, but without promoting body weight gain relative to rosiglitazone and tesaglitazar. The triglyceride- and glucose-lowering activity of 21 a could be associated with its weak dual PPAR α/γ potency, which down-regulated the adipocyte differentiation gene expression mediated by PPAR γ and decreased fluid retention and body weight gain. The pharmacological profile of compound **21 c** could be partially due to the selective activation of PPAR α which decreased serum triglyceride levels and exerted its glucose-lowering activity through insulin-sensitizing effects.

Conclusions

In summary, a molecular docking design approach has led to a novel series of α -ethoxyphenylpropionic acids bearing 5- or -6-substituted indoles displaying highly potent activities toward both PPAR α and PPAR γ . Oxime ether introduction on the carbonyl portion of the benzoyl group within this series provided compounds 18a and 18b, and allowed adjustment of the PPAR α/γ potency ratio to be equal to or slightly greater than one. Enantiomeric resolution led to the best equally balanced PPAR α/γ ligands **20 c** and **21 a**, with respective α/γ potency ratios of 1.1 and 1.4. Compound 20 c shows high efficacy in an ob/ob mice model of T2D and dyslipidemia, similar to rosiglitazone and tesaglitazar, but with a significant increase in body weight gain. Our primary hypothesis, that equally balanced dual PPAR α/γ agonists might overcome or diminish the side effects of the glitazones as PPAR γ agonists, such as weight gain, is not supported by our in vivo results. Compound 20 c seems to be a predominant PPARy activator in the ob/ob mice model, as it was found to be 20-fold less potent in the murine PPAR α transactivation assay than on the human receptor. The beneficial effect of PPAR α activity on body weight could not be monitored by our in vivo study, as this depends on the animal model employed. In contrast, compound 21 a, a less potent dual PPAR α/γ activator than **20 c**, shows an interesting pharmacological profile, with a decrease in body weight gain relative to rosiglitazone and tesaglitazar; this could be due to a down-regulation of adipocyte differentiation gene expression mediated by PPAR γ . Further in vivo studies are needed to evaluate the efficacy of these equally balanced dual PPAR α/γ agonists in order to provide insight into the properties of these molecules and their biological actions. Further studies might also be useful in determining whether these compounds exhibit an improved benefit–risk ratio for the treatment of diabetes.

Experimental Section

Chemistry

General methods: All commercially available reagents and solvents were used without further purification. Melting points were determined on a Büchi B-540 apparatus and are uncorrected. NMR spectra were acquired with NMR spectrometers operating at 300 (¹H) or 75 MHz (¹³C); chemical shifts (δ) are given in ppm. The following abbreviations are used: singlet (s), broad singlet (brs), doublet (d), double doublet (dd), triplet (t). HPLC–MS analyses were performed with an HPLC instrument combined with a Surveyor MSQ (Thermo Electron) equipped with an APCI source (ODS-30 column, mobile phase of H₂O/CH₃CN/HCO₂H (gradient mode). Elemental analyses were performed by CNRS–Vernaison, and data are in agreement with calculated values within ± 0.4 %. Reference compounds rosiglitazone^[26] and tesaglitazar^[27] were synthesized by previously described procedures.

Chiral HPLC method: A Waters HPLC system was equipped with an HPLC 600 pump and a 2996 photodiode array detector. The column used was a Daicel Chiralpak AD ($250 \times 4.6 \text{ mm}$) at a flow rate of 1 mLmin⁻¹ and 20 °C. The eluents were: A) IPA + 0.1 % TFA, B) petroleum ether (PE), C) EtOH + 0.2 % TFA, and D) MeOH. Isocratic elution conditions involved a flow rate of 0.8 or 1 mLmin⁻¹ at 20 °C with a total run time of 25 min.

Ethyl 2-diazo-2-(diethoxyphosphoryl)acetate 2: The formation of benzenesulfonyl azide was carried out according to published procedures.^[16] In brief, benzenesulfonyl chloride (10 g, 56.6 mmol, 1.0 equiv) in acetone (100 mL) and NaN_3 (5.52 g, 84.9 mmol, 1.5 equiv) in H₂O (20 mL) were combined to yield 9.6 g of the desired reagent as a colorless liquid (93%); ¹H NMR (CDCl₃): $\delta = 7.63$ (dd, 2H, ${}^{3}J=7.2$ and 8.3 Hz), 7.75 (dd, 1H, ${}^{3}J=7.2$ Hz, ${}^{4}J=1.5$ Hz), 7.97 ppm (dd, 2 H, ${}^{3}J = 8.3$ Hz, ${}^{4}J = 1.5$ Hz); MS m/z 184 $[M + H]^{+}$. The next stage was carried out according to the procedure of Regitz et al.^[16] Triethyl phosphonoacetate 1 (10.4 mL, 52.4 mmol, 1.0 equiv) in dry THF (50 mL) was added dropwise to an ice-cold suspension of 60% NaH (3.14 g, 78.6 mmol, 1.5 equiv) in dry THF (50 mL). The reaction mixture was stirred at 0 $^\circ\text{C}$ for 1 h, after which time benzenesulfonyl azide (9.6 g, 52.4 mmol, 1.00 equiv) in dry THF (100 mL) was added under a constant flow of N₂. The reaction mixture was further stirred for 16 h at 0°C, then quenched by the addition of a 5% aqueous solution of NaHCO₃ (200 mL). Thereafter, the aqueous phase was extracted with EtOAc and washed with H₂O and brine. The organic extract was then dried over MgSO₄, filtered off and concentrated in vacuo. The residue was purified by flash column chromatography (cyclohexane/EtOAc 5:5) to yield **2** as a pale-yellow liquid (11.4 g, 87%); ¹H NMR (CDCl₃): $\delta =$ 1.19 (t, 3 H, ³*J*=7.2 Hz), 1.36 (t, 6 H, ³*J*=7.2 Hz), 4.18-4.23 ppm (m, 6H); MS *m*/*z* 251.1 [*M*+H]⁺.

Ethyl 2-(diethoxyphosphoryl)-2-(ethoxy)acetate 3: This conversion was performed according to the method of Haigh et al.^[17] A mixture of diazo ester **2** (10 g, 40 mmol, 1.0 equiv), EtOH (23.0 mL, 400 mmol, 10 equiv), and [Rh(OAc)₂]₂ (176.8 mg, 0.4 mmol, 0.01 equiv) in toluene (60 mL) was heated with stirring at reflux for 4 h. Thereafter, the solution was concentrated in vacuo, hydrolyzed and extracted three times with EtOAc. The combined organic extracts were washed with H₂O, brine, dried over MgSO₄, filtered off, and concentrated under reduced pressure. The resulting colorless liquid (8.6 g, 80%) was used in the next step without further purification; ¹H NMR (CDCl₃): δ = 1.24–1.35 (m, 12 H), 3.55 (m, 1 H), 3.70 (m, 1H), 4.23–4.28 (m, 6 H), 4.35 ppm (s, 1 H); MS *m/z* 269.2 [*M* + H]⁺.

4-(2-Chloroethoxy)benzaldehyde 5: A mixture of 4-hydroxybenzaldehyde (10 g, 80 mmol, 1.0 equiv), K_2CO_3 (22 g, 160 mmol, 2.0 equiv), and 1-bromo-2-chloroethane (30 mL, 320 mmol, 4.0 equiv) was held at reflux in CH₃CN (80 mL) for 15 h. The reaction mixture was filtered, and the filtrate was evaporated under reduced pressure. The residue was purified by flash column chromatography (cyclohexane/EtOAc 7:3) to yield 4 as a white powder (13.6 g, 92%); mp: 29–32°C; ¹H NMR (CDCl₃): δ =3.86 (t, 2H, ³*J*=6.1 Hz), 7.03 (d, 2H, ³*J*=8.9 Hz), 7.86 (d, 2H, ³*J*=8.9 Hz), 9.90 ppm (s, 1H); MS *m/z* 185 [*M*+H³⁵Cl]⁺, 187 [*M*+H³⁷Cl]⁺.

Ethyl 3-[4-(2-chloroethoxy)phenyl]-2-ethoxypropionate 7: Phosphonoacetate 3 (5 g, 18.6 mmol, 1.2 equiv) in THF (50 mL) was added dropwise to a suspension of 60% NaH (0.93 g, 23.2 mmol, 1.5 equiv) in anhydrous THF (100 mL) at 0 °C under a constant flow of $N_{2\prime}$ and the reaction mixture was stirred at $0\,^\circ C$ for 1 h. Benzaldehyde 5 (2.85 g, 15.5 mmol, 1.0 equiv) was then added in dry THF (50 mL). After stirring for a further 4 h at room temperature, the solution was concentrated in vacuo, and the residue was dissolved in EtOAc for washing with H₂O and brine. Combined organic extracts were dried over MgSO₄, filtered off, and concentrated in vacuo to give a residue that was purified by flash column (cyclohexane/ EtOAc 8:2) to yield 6 (3.95 g, 86%) as two isomers (Z/E=59:41) which were not separated, but used directly in the next catalytic hydrogenation step. A solution of 6 (3.95 g, 13.2 mmol) in EtOH (150 mL) was stirred with 10% Pd/C catalyst at room temperature under H₂ (1 atm) for 20 h. The catalyst was separated by filtration, and the solvent evaporated under reduced pressure. The crude product was purified by flash column chromatography (cyclohexane/EtOAc 7:3) to yield 7 as a colorless liquid (3.68 g, 93%); ¹H NMR (CDCl₃): $\delta = 1.17$ (t, 3H, ³J = 7.1 Hz), 1.24 (t, 3H, ³J = 7.1 Hz), 2.97 (d, 2H, ${}^{3}J = 5.6$ Hz), 3.33 (m, 1H), 3.59 (m, 1H), 3.81 (t, 2H, ${}^{3}J =$ 5.9 Hz), 3.98 (t, 1 H, ³J=5.6 Hz), 4.12–4.25 (m, 4 H), 6.85 (d, 2 H, ³J= 8.6 Hz), 7.17 ppm (d, 2 H, ${}^{3}J = 8.6$ Hz); MS m/z 300.1 $[M + H^{35}CI]^{+}$, 302.2 $[M + H^{37}CI]^+$; Anal. calcd for $C_{15}H_{21}CIO_4$: C 59.90, H 7.04, found: C 60.02, H 6.98.

3-[4-(2-Chloroethoxy)phenyl]-2-ethoxypropionic acid 8: LiOH (0.49 g, 20.4 mmol, 3.0 equiv) was added to a solution of **7** (2 g, 6.6 mmol, 1.0 equiv) dissolved in a 1:1 mixture of THF (30 mL) and H₂O (30 mL), and the mixture was then stirred at room temperature for 20 h. Thereafter, the whole was concentrated in vacuo, and the concentrate was subjected to vigorous stirring at 0°C as the solution was adjusted to pH 1 with $1 \times \text{HCl}_{(aq)}$. The resulting precipitate was filtered, washed with H₂O and pentane, and dried under reduced pressure to give **8** as a white solid (1.71 g, 85%); mp: 49–51°C; ¹H NMR (CDCl₃): δ =1.19 (t, 3H, ³J=7.0 Hz), 2.95 (m, 2H), 3.45 (m, 1H), 3.63 (m, 1H), 3.82 (t, 2H, ³J=6.1 Hz), 4.06 (dd, 1H, ³J=7.9 Hz, ³J=4.4 Hz), 4.22 (t, 2H, ³J=6.1 Hz), 6.87 (d, 2H, ³J=8.7 Hz), 7.20 (d, 2H, ³J=8.7 Hz), 10.3 ppm (brs, 1H); MS *m/z* 273.2

 $[M + H^{35}CI]^+$, 275.3 $[M + H^{37}CI]^+$; Anal. calcd for C₁₃H₁₇ClO₄: C 57.25, H 6.28, O 23.47, found: C 57.41, H 6.19, O 23.52.

2-(*S*)-3-[4-(2-Chloroethoxy)phenyl]-2-ethoxy-*N*-((*S*)-2-hydroxy-1-phenylethyl)propanamide 9a and 2-(*R*)-3-[4-(2-chloroethoxy)-phenyl]-2-ethoxy-*N*-((*S*)-2-hydroxy-1-phenylethyl)propanamide

9b: EDCI (2.87 g, 15.0 mmol, 1.2 equiv), (S)-(–)-2-phenylgycinol (1.74 g, 12.5 mmol, 1.0 equiv), and HOBT (2.0 g, 15.0 mmol, 1.2 equiv) were added to a solution of **8** (3.4 g, 12.5 mmol, 1.0 equiv) in CH₂Cl₂ (150 mL) at 0 °C. Finally, Et₃N (2.1 mL, 15.0 mmol, 1.2 equiv) was added dropwise at 0 °C. The reaction mixture was then stirred for 12 h at room temperature, quenched with saturated NH₄Cl_(aq), and diluted with CH₂Cl₂. The organic layer so obtained was washed with H₂O, dried over MgSO₄, filtered off and concentrated in vacuo. Purification of the residue by flash column chromatography (PE/EtOAc 45:55) afforded **9a** (1.8 g, 37%) as an off-white solid, and **9b** (1.6 g, 33%) as a white solid.

9a: mp: 135–137 °C; ¹H NMR (CDCl₃): $\delta = 1.21$ (t, 3 H, ³J = 7.0 Hz), 2.91 (dd, 1 H, ²J = 14.3 Hz, ³J = 8.5 Hz), 3.09 (dd, 1 H, ²J = 14.3 Hz, ³J = 8.5 Hz), 3.58 (m, 2 H), 3.85 (m, 4 H), 4.02 (dd, 1 H, ³J = 6.4 Hz, ³J = 3.8 Hz), 4.19 (t, 2 H, ³J = 5.8 Hz), 5.01 (m, 1 H), 6.78 (d, 2 H, ³J = 8.7 Hz), 7.07 (dd, 2 H, ³J = 7.6 Hz, ⁴J = 2.0 Hz), 7.13 (m, 3 H), 7.33 ppm (m, 3 H); MS *m*/*z* 393.0 [*M* + H³⁵Cl]⁺, 395.1 [*M* + H³⁷Cl]⁺; Anal. calcd for C₂₁H₂₆CINO₄: C 64.36, H 6.69, N 3.57, found: C 64.45, H 6.57, N 3.61.

9b: mp: 127–128 °C; ¹H NMR (CDCl₃): δ =1.16 (t, 3 H, ³*J*=7.0 Hz), 2.96 (dd, 1H, ²*J*=14.3 Hz, ³*J*=6.4 Hz), 3.15 (dd, 1H, ²*J*=14.3 Hz, ³*J*=6.4 Hz), 3.52 (m, 2 H), 3.71 (m, 2 H), 3.83 (t, 2 H, ³*J*=5.8 Hz), 4.00 (dd, 1H, ³*J*=6.7 Hz, ³*J*=3.9 Hz), 4.24 (t, 2 H, ³*J*=5.8 Hz), 4.99 (m, 1H), 6.88 (d, 2 H, ³*J*=8.7 Hz), 7.03 (d, 1H, ³*J*=7.3 Hz), 7.20 (m, 4H), 7.34 ppm (m, 3 H); MS *m*/*z* 393.0 [*M*+H³⁵Cl]⁺, 395.1 [*M*+H³⁷Cl]⁺; Anal. calcd for C₂₁H₂₆CINO₄: C 64.36, H 6.69, N 3.57, found: C 64.44, H 6.61, N 3.60.

2-(S)-3-[4-(2-Chloroethoxy)phenyl]-2-ethoxypropionic acid **10a** and **2-(R)-3-[4-(2-chloroethoxy)phenyl]-2-ethoxypropionic** acid **10b**: $5 \text{ M H}_2\text{SO}_4$ (82 mL, 408 mmol, 100 equiv) was added to a solution of **9a** or **9b** (1.6 g, 4.08 mmol, 1 equiv) in a 1:1 mixture of 1,4dioxane (80 mL) and H₂O (80 mL). The reaction mixture was held at reflux for 8 h, cooled to room temperature, diluted with EtOAc, and the organic layer so obtained was washed with H₂O, dried over MgSO₄, filtered off and concentrated in vacuo. The brown residue was purified by flash column chromatography (CH₂Cl₂/MeOH/ Et₃N 96:2:2) to afford the corresponding carboxylic acid **10a** (0.90 g, 81%) or **10b** (0.87 g, 78%) as white solids.

10a: mp: 49–51 °C; ¹H NMR (DMSO): $\delta = 1.04$ (t, 3H, ³*J*=7.0 Hz), 2.83 (m, 2H), 3.29 (m, 1H), 3.52 (m, 1H), 3.92 (t, 2H, ³*J*=5.5 Hz), 4.21 (t, 2H, ³*J*=5.5 Hz), 6.87 (d, 2H, ³*J*=8.5 Hz), 7.14 ppm (d, 2H, ³*J*=8.5 Hz); MS *m/z* 273.1 [*M*+H³⁵CI]⁺, 275.0 [*M*+H³⁷CI]⁺; Anal. calcd for C₁₃H₁₇CIO₄: C 57.25, H 6.28, found: C 57.32, H 6.24; chiral HPLC method: flow rate=1.0 mLmin⁻¹, eluents=A/B 5:95, *t*_R= 16.62 min.

10b: mp: 49–51 °C; ¹H NMR (DMSO): $\delta = 1.04$ (t, 3 H, ³*J*=7.0 Hz), 2.83 (m, 2 H), 3.29 (m, 1 H), 3.52 (m, 1 H), 3.92 (t, 2 H, ³*J*=5.5 Hz), 4.21 (t, 2 H, ³*J*=5.5 Hz), 6.87 (d, 2 H, ³*J*=8.5 Hz), 7.14 ppm (d, 2 H, ³*J*=8.5 Hz); MS *m/z* 273.1 [*M*+H³⁵CI]⁺, 275.0 [*M*+H³⁷CI]⁺; Anal. calcd for C₁₃H₁₇ClO₄: C 57.25, H 6.28, found: C 57.37, H 6.21; chiral HPLC method: flow rate = 1.0 mLmin⁻¹, eluents = A/B 5:95, *t*_R= 12.48 min.

5-Bromo-3-methyl-1H-indole 11 c: Phosphorus oxychloride (4.3 g, 30 mmol, 1.15 equiv) was added dropwise to DMF (8.6 mL) with ice-bath cooling. The mixture was stirred for 5 min, then 5-bromo-

1H-indole (5 g, 25.5 mmol, 1 equiv) was added as a DMF solution (10 mL). The mixture was then allowed to warm to room temperature and stirred for 1 h. The reaction became a heavy suspension that required vigorous stirring. NaOH $_{\rm (aq)}$ (9.3 m, 30 mL, 11 equiv) was added dropwise, and the mixture was heated at reflux overnight. After cooling to room temperature, the precipitate was collected by filtration, washed with H₂O, and recrystallized from EtOH to afford 5-bromo-3-formyl-1H-indole as a light-yellow solid (5.3 g, 93%); mp: 205–207 °C; ¹H NMR (DMSO): $\delta =$ 7.38 (dd, 1 H, ³J =8.7 Hz, ⁴J=2.0 Hz), 7.50 (d, 1 H, ³J=8.7 Hz), 8.22 (d, 1 H, ⁴J=2.0 Hz), 8.36 (s, 1 H), 9.93 (s, 1 H), 12.32 ppm (s, 1 H). A solution of formylindole (5.3 g, 23.6 mmol, 1 equiv) in dry THF (35 mL) was added dropwise to a suspension of LiAlH₄ (1.85 g, 47.2 mmol, 2 equiv) in dry THF (10 mL) at 0 °C and then heated at 65-70 °C for 4 h under N₂. After cooling, the suspension was quenched with H₂O, extracted twice with EtOAc, and the combined organic extracts were dried over MgSO₄, filtered off and concentrated in vacuo. The residue was purified by flash column chromatography (toluene/PE 75:25) to yield 3.4 g (68%) of 11b as a pale-brown solid; mp: 80-81 °C; ¹H NMR (CDCl₃): $\delta = 2.32$ (s, 3 H), 6.69 (s, 1 H), 7.18–7.32 (m, 2H), 7.72 (s, 1H), 7.93 ppm (brs, 1H); MS *m*/*z* 211.2 [*M*+H]⁺.

5-TributyIstannylindole 13: A solution of 5-bromoindole 11a (3.98 g, 20 mmol, 1 equiv) in dry THF (40 mL) was added to a 35% KH dispersion in mineral oil (2.29 g, 20 mmol, 1 equiv) in dry THF (40 mL) at 0 °C. After 15 min the solution was cooled to -78 °C and a solution of tBuLi in pentane (1.5 m, 26.6 mL, 40 mmol, 2 equiv) precooled to $-78\,^\circ\text{C}$ was added via cannula. A white precipitate immediately formed and after 10 min, tributyltin chloride (13 g, 40 mmol, 2 equiv) dissolved in dry THF (10 mL) was added. The reaction mixture was allowed to slowly warm to room temperature, and the suspension was poured into 150 mL ice-cold H₂O. The organic layer was separated, and the aqueous layer was extracted twice with Et₂O. The ether extracts were combined, dried over MgSO₄, filtered off and evaporated under reduced pressure. The residue was purified by flash column chromatography (PE/ EtOAc/Et₃N 90:9:1) previously neutralized with Et₃N to yield 13 as a colorless oil (6.3 g, 78%); ¹H NMR (CDCl₃): $\delta = 0.89$ (t, 9H, ³J = 7.3 Hz), 1.07 (m, 6H), 1.34 (m, 6H), 1.55 (m, 6H), 6.55 (m, 1H), 7.17 (m, 1 H), 7.27 (d, 1 H, ${}^{3}J = 8.4$ Hz), 7.40 (d, 1 H, ${}^{3}J = 8.4$ Hz), 7.76 (t, 1 H, ${}^{3}J=22$ Hz), 8.16 ppm (brs, 1 H); MS m/z 407.2 $[M+H]^{+}$; Anal. calcd for C₂₀H₃₃NSn: C 59.14, H 8.19, N 3.45, found: C 59.48, H 8.11, N 3.51.

General procedure for the synthesis of 5- and 6-acylindole derivatives 14a-c: A solution of bromoindole 11a-c (3.98 g, 20 mmol, 1 equiv) in dry THF (40 mL) was added to a 35% KH dispersion in mineral oil (2.29 g, 20 mmol, 1 equiv) in dry THF (40 mL) at 0 °C. After 15 min the solution was cooled to -78 °C, and a solution of tBuLi in pentane (1.5 m, 26.6 mL, 40 mmol, 2 equiv) precooled to $-78\,^\circ\text{C}$ was added via cannula, and the solution was stirred for 20 min. N-methoxy-N-methylbenzamide (3.96 g, 24 mmol, 1.2 equiv) in dry THF (40 mL) was added at -78 °C, and the mixture was then allowed to warm to room temperature and stirred for 12 h. The reaction mixture was hydrolyzed with an aqueous solution of $H_3 PO_4$ (1 $\mbox{\scriptsize mL})$ and extracted twice with EtOAc. The combined organic extracts were dried over MgSO₄, filtered off and concentrated in vacuo, and the residue was purified by flash column chromatography (toluene/EtOAc 9:1) to afford the corresponding benzoyl indole derivative.

5-Benzoyl-1H-indole 14a: Off-white solid (2.83 g, 64%); mp: 152–153 °C (PE); ¹H NMR (CDCl₃): δ =6.67 (m, 1H), 7.32 (t, 1H, ³*J*=3.1 Hz), 7.45–7.54 (m, 3H), 7.59 (t, 1H, ³*J*=7.5 Hz), 7.79–7.87 (m, 3H), 8.6 (s, 1H), 8.60 ppm (brs, 1H); MS *m/z* 222.2 [*M*+H]⁺; Anal.

calcd for $C_{15}H_{11}NO$: C 81.43, H 5.01, N 6.33, found: C 81.52, H 4.96, N 6.40.

6-Benzoyl-1*H***-indole 14 b**: Off-white solid (2.12 g, 48%); mp: 149–151 °C (PE); ¹H NMR (CDCl₃): δ =6.67 (m, 1H), 7.44 (t, 1H, ³*J*=2.9 Hz), 7.51 (t, 2H, ³*J*=6.1 Hz), 7.60 (t, 1H, ³*J*=7.6 Hz), 7.65 (dd, 1H, ³*J*=8.2 Hz, ⁴*J*=1.5 Hz), 7.73 (d, 1H, ³*J*=8.2 Hz), 7.84 (d, 2H, ³*J*=6.7 Hz), 7.97 (m, 1H), 8.46 ppm (brs, 1H); MS *m/z* 222.2 [*M*+H]⁺; Anal. calcd for C₁₅H₁₁NO: C 81.43, H 5.01, N 6.33, found: C 81.49, H 4.95, N 6.38.

5-Benzoyl-3-methyl-1*H***-indole 14 c**: Light-brown solid (2.06 g, 49%); mp: 148–150 °C (PE); ¹H NMR (CDCl₃): δ =2.72 (s, 3 H), 7.09 (m, 1 H), 7.42 (d, 1 H, ³*J*=8.5 Hz), 7.51 (t, 2 H, ³*J*=6.3 Hz), 7.60 (t, 1 H, ³*J*=7.6 Hz), 7.77 (dd, 1 H, ³*J*=8.5 Hz, ⁴*J*=1.75 Hz), 7.84 (d, 2 H, ³*J*=6.6 Hz), 8.13 (d, 1 H, ⁴*J*=1.75 Hz), 8.17 (brs, 1 H); MS *m*/*z* 236.3 [*M*+H]⁺; Anal. calcd for C₁₆H₁₃NO: C 81.68, H 5.57, N 5.95, found: C 81.77, H 5.47, N 6.01.

General procedure for the synthesis of 5-cycloalkylcarbonyl indole derivatives 14 d,e: PdCl₂(PPh₃)₂ (140.4 mg, 0.2 mmol, 0.02 equiv) was added to a solution of cyclopropylcarbonyl chloride (1.04 g, 10 mmol, 1 equiv) or cyclohexylcarbonyl chloride (1.46 g, 10 mmol, 1 equiv) in anhydrous toluene (40 mL) under Ar. The mixture was stirred at room temperature for 10 min, and 5tributylstannylindole 13 (5.3 g, 13 mmol, 1.3 equiv) in toluene (10 mL) was added. The reaction mixture was stirred and heated at 110°C for 16 h. After conversion was complete (checked by TLC), the solvent was evaporated under reduced pressure, and the oily mixture was treated with EtOAc and a solution of KF (1 м) at room temperature for 30 min to precipitate the formed tributyltin fluoride. The resulting solution was filtered through a Celite pad and extracted with EtOAc. The combined organic layers were dried over MgSO₄, filtered off and evaporated under reduced pressure. The crude product was purified by flash column chromatography (PE/EtOAc 75:25) to afford the corresponding 5-cycloalkylcarbonyl indole derivative.

5-cyclopropylcarbonyl-1*H***-indole 14d**: Off-white solid (1.64 g, 70%); mp: 114–116 °C; ¹H NMR (CDCl₃): $\delta = 1.05$ (m, 2H), 1.27 (m, 2H), 2.82 (m, 1H), 6.69 (m, 1H), 7.30 (m, 1H), 7.44 (d, 1H, ³*J* = 8.8 Hz), 7.93 (dd, 1H, ³*J* = 8.8 Hz, ⁴*J* = 1.7 Hz), 8.44 (d, 1H, ⁴*J* = 1.7 Hz), 8.51 (brs, 1H); MS *m/z* 236.2 [*M*+H]⁺; Anal. calcd for C₁₂H₁₁NO: C 77.81, H 5.99, N 7.56, found: C 78.03, H 6.04, N 7.47.

5-cyclohexylcarbonyl-1*H***-indole 14e**: Off-white solid (1.61 g, 71%); mp: 119–121 °C; ¹H NMR (CDCl₃): δ =1.24–1.96 (m, 10H), 3.43 (m, 1H), 6.68 (m, 1H), 7.30 (t, 1H, ³*J*=2.9 Hz), 7.44 (d, 1H, ³*J*=8.7 Hz), 7.88 (dd, 1H, ³*J*=8.7 Hz, ⁴*J*=1.65 Hz), 8.33 (d, 1H, ³*J*=1.7 Hz), 8.48 ppm (brs, 1H); MS *m/z* 228.2 [*M*+H]⁺; Anal. calcd for C₁₅H₁₇NO: C 79.26, H 7.54, N 6.16, found: C 79.34, H 7.48, N 6.22.

General procedure for the synthesis of compounds 15a–e and 23: To a solution of 5- or 6-substituted indole derivative 14a–e or 22 (5 mmol, 1.0 equiv) in DMF (50 mL) was added K₂CO₃ (15 mmol, 3 equiv), and the mixture was stirred for 1 h at 100 °C. A solution of 7 (6 mmol, 1.2 equiv) in DMF (10 mL) was added dropwise, and the mixture was stirred at reflux for 15 h. After cooling, the reaction mixture was filtered, hydrolyzed, and extracted twice with EtOAc. The combined organic extracts were washed with H₂O, dried over MgSO₄, filtered off and concentrated in vacuo. The crude product was purified by flash column chromatography (toluene/EtOAc 95:5) to afford the corresponding *N*-alkylated indole derivative.

Ethyl 3-{4-[2-(5-benzoylindol-1-yl)ethoxy]phenyl}-2-ethoxypropionate 15 a: Colorless oil (1.48 g, 61%); ¹H NMR (CDCl₃): δ = 1.15 (t,

3 H, ${}^{3}J$ = 6.8 Hz), 1.23 (t, 3 H, ${}^{3}J$ = 7.3 Hz), 2.92 (m, 2 H), 3.33 (m, 1 H), 3.59 (m, 1 H), 3.95 (t, 1 H, ${}^{3}J$ = 6.3 Hz), 4.17 (q, 2 H, ${}^{3}J$ = 6.8 Hz), 4.30 (t, 2 H, ${}^{3}J$ = 5.7 Hz), 4.58 (t, 2 H, ${}^{3}J$ = 5.7 Hz), 6.62 (d, 1 H, ${}^{3}J$ = 3.1 Hz), 6.78 (d, 2 H, ${}^{3}J$ = 8.9 Hz), 7.17 (m, 3 H), 7.32 (d, 1 H, ${}^{3}J$ = 3.1 Hz), 7.50 (m, 3 H), 7.58 (t, 1 H, ${}^{3}J$ = 7.3 Hz), 7.82 (d, 2 H, ${}^{3}J$ = 7.5 Hz), 8.12 ppm (d, 1 H, ${}^{3}J$ = 1.5 Hz); MS *m/z* 486.3 [*M*+H]⁺; Anal. calcd for C₃₀H₃₁NO₅: C 74.21, H 6.43, N 2.88, found: C 74.30, H 6.38, N 2.94.

Ethyl 3-{4-[2-(6-benzoylindol-1-yl)ethoxy]phenyl}-2-ethoxypropionate 15 b: Colorless oil (1.43 g, 59%); ¹H NMR (CDCl₃): δ = 1.15 (t, 3 H, ³*J* = 7.0 Hz), 1.22 (t, 3 H, ³*J* = 7.2 Hz), 2.92 (m, 2 H), 3.32 (m, 1 H), 3.60 (m, 1 H), 3.93 (t, 1 H, ³*J* = 6.4 Hz), 4.19 (q, 2 H, ³*J* = 6.9 Hz), 4.28 (t, 2 H, ³*J* = 5.5 Hz), 4.60 (t, 2 H, ³*J* = 5.5 Hz), 6.61 (d, 1 H, ³*J* = 3.1 Hz), 6.74 (d, 2 H, ³*J* = 8.5 Hz), 7.12 (d, 2 H, ³*J* = 8.5 Hz), 7.42–7.61 (m, 5 H), 7.68 (d, 1 H, ³*J* = 8.2 Hz), 7.83 (d, 2 H, ³*J* = 7.5 Hz), 8.05 ppm (d, 1 H, ³*J* = 1.7 Hz); MS *m/z* 486.1 [*M*+H]⁺; Anal. calcd for C₃₀H₃₁NO₅: C 74.21, H 6.43, N 2.88, found: C 74.28, H 6.36, N 2.95.

Ethyl 3-{4-[2-(5-benzoyl-3-methylindol-1-yl)ethoxy]phenyl}-2ethoxypropionate 15 c: Colorless oil (1.55 g, 62%); ¹H NMR (CDCl₃): $\delta = 1.16$ (t, 3 H, ${}^{3}J = 7.1$ Hz), 1.24 (t, 3 H, ${}^{3}J = 6.6$ Hz), 2.33 (s, 3 H), 2.93 (m, 2 H), 3.33 (m, 1 H), 3.60 (m, 1 H), 3.95 (t, 1 H, ${}^{3}J =$ 5.9 Hz), 4.19 (q, 2 H, ${}^{3}J = 6.6$ Hz), 4.28 (t, 2 H, ${}^{3}J = 5.6$ Hz), 4.60 (t, 2 H, ${}^{3}J = 5.6$ Hz), 6.78 (d, 2 H, ${}^{3}J = 8.3$ Hz), 7.07 (s, 1 H), 7.14 (d, 2 H, ${}^{3}J =$ 8.3 Hz), 7.41–7.61 (m, 4 H), 7.75–7.87 (m, 3 H), 8.10 ppm (d, 1 H, ${}^{4}J =$ 1.5 Hz); MS *m*/*z* 500.4 [*M*+H]⁺; Anal. calcd for C₃₁H₃₃NO₅: C 74.53, H 6.66, N 2.80, found: C 74.62, H 6.59, N 2.84.

Ethyl 3-{4-[2-(5-cyclopropanoylindol-1-yl)ethoxy]phenyl}-2ethoxypropionate **15 d**: Colorless oil (1.46 g, 65 %); ¹H NMR (CDCI₃): $\delta = 1.03$ (m, 2H), 1.15 (t, 3H, ³*J* = 7.0 Hz), 1.26 (m, 5H), 2.81 (m, 1H), 2.93 (m, 2H), 3.33 (m, 1H), 3.60 (m, 1H), 3.95 (t, 1H, ³*J* = 5.8 Hz), 4.17 (q, 2H, ³*J* = 6.6 Hz), 4.28 (t, 2H, ³*J* = 5.6 Hz), 4.57 (t, 2H, ³*J* = 5.6 Hz), 6.67 (d, 1H, ³*J* = 3.2 Hz), 6.78 (d, 2H, ³*J* = 8.2 Hz), 7.14 (d, 2H, ³*J* = 8.5 Hz, 7.31 (d, 1H, ³*J* = 3.2 Hz), 7.46 (d, 1H, ³*J* = 8.5 Hz), 7.98 (dd, 1H, ³*J* = 8.5 Hz, ⁴*J* = 1.5 Hz), 8.42 (d, 1H, ⁴*J* = 1.5 Hz); MS *m/z* 450.3 [*M*+H]⁺; Anal. calcd for C₂₇H₃₁NO₅: C 72.14, H 6.95, N 3.12, found: C 72.25, H 6.89, N 3.21.

Ethyl 3-{4-[2-(5-cyclohexanoylindol-1-yl)ethoxy]phenyl}-2-ethoxypropionate 15 e: Colorless oil (1.35 g, 55%); ¹H NMR (CDCl₃): $\delta =$ 1.16 (t, 3 H, ³*J* = 7.0 Hz), 1.23 (t, 3 H, ³*J* = 7.0 Hz), 1.32–1.66 (m, 6 H), 1.72–2.0 (m, 4 H), 2.93 (m, 2 H), 3.38 (m, 2 H), 3.59 (m, 1 H), 3.95 (t, 1 H, ³*J* = 5.8 Hz), 4.19 (q, 2 H, ³*J* = 6.7 Hz), 4.28 (t, 2 H, ³*J* = 5.6 Hz), 4.55 (t, 2 H, ³*J* = 5.6 Hz), 6.62 (d, 1 H, ³*J* = 3.1 Hz), 6.75 (d, 2 H, ³*J* = 8.4 Hz), 7.14 (d, 2 H, ³*J* = 8.4 Hz), 7.29 (d, 1 H, ³*J* = 8.1 Hz), 7.47 (d, 1 H, ³*J* = 8.3 Hz), 7.92 (dd, 1 H, ³*J* = 8.3 Hz, ⁴*J* = 1.6 Hz), 8.32 (d, 1 H, ⁴*J* = 1.6 Hz); MS *m/z* 492.4 [*M*+H]⁺; Anal. calcd for C₃₀H₃₇NO₅: C 73.29, H 7.59, N 2.85, found: C 73.36, H 7.48, N 2.94.

Ethyl 3-{4-[2-(5-acetylindol-1-yl)ethoxy]phenyl}-2-ethoxypropionate 23: Pasty solid (1.18 g, 56%); ¹H NMR (CDCl₃): $\delta = 1.16$ (t, 3H, ³J = 7.0 Hz), 1.24 (t, 3H, ³J = 7.0 Hz), 2.69 (s, 3H), 2.93 (m, 2H), 3.33 (m, 1H), 3.60 (m, 1H), 3.95 (t, 1H, ³J = 6.4 Hz), 4.18 (q, 2H, ³J = 7.0 Hz), 4.29 (t, 2H, ³J = 5.5 Hz), 4.57 (t, 2H, ³J = 5.5 Hz), 6.65 (d, 1H, ³J = 3.2 Hz), 6.78 (d, 2H, ³J = 8.2 Hz), 7.13 (d, 2H, ³J = 8.2 Hz), 7.32 (d, 1H, ³J = 3.2 Hz), 7.47 (d, 1H, ³J = 8.5 Hz), 7.93 (d, 1H, ³J = 8.5 Hz), 8.32 ppm (s, 1H); MS *m*/*z* 424.1 [*M*+H]⁺; Anal. calcd for C₂₅H₂₉NO₅: C 70.90, H 6.90, N 3.31, found: C 70.81, H 6.97, N 3.42.

General procedure for the synthesis of oxime ethers 17a–d: O-Methylhydroxylamine hydrochloride (10 mmol, 4 equiv) was added to a solution of 15a,b,d,e (2.5 mmol, 1 equiv) in pyridine (20 mL), and the mixture was stirred at 100 °C for 4 h. The reaction mixture was concentrated in vacuo, hydrolyzed with 1 N HCl_(aq), and extracted twice with CH₂Cl₂. The combined organic extracts were dried

2187

over MgSO₄, filtered off, evaporated under reduced pressure, and the resulting residue was purified by flash column chromatography (toluene/EtOAc 97:3) to afford the corresponding oxime ether as a racemic mixture of E and Z isomers.

Ethyl 2-ethoxy-3-{4-[2-(5-{[*Z/E*]-methoxyimino]phenylmethyl}indol-1-yl)ethoxy]phenyl}propionate 17 a: Colorless oil (0.97 g, 76%); ¹H NMR (CDCl₃): $\delta = 1.16$ (m, 3H), 1.24 (m, 3H), 2.93 (m, 2H), 3.33 (m, 1H), 3.60 (m, 1H), 3.96 (m, 4H), 4.18 (m, 2H), 4.27 (m, 2H), 4.52 (m, 2H), 6.50 (m, 1H), 6.75 (m, 2H), 7.10–7.21 (m, 4H), 7.24–7.45 (m, 4H), 7.51–7.67 ppm (m, 3H); MS *m*/*z* 515.1 [*M*+H]⁺; Anal. calcd for C₃₁H₃₄N₂O₅: C 72.35, H 6.66, N 5.44, found: C 72.46, H 6.57, N 5.50.

Ethyl 2-ethoxy-3-{4-[2-(6-{[*Z/E*]-methoxyimino]phenylmethyl}indol-1-yl]ethoxy]phenyl}propionate 17b: Colorless oil (1.01 g, 79%); ¹H NMR (CDCl₃): δ = 1.18 (m, 3H), 1.23 (m, 3H), 2.96 (m, 2H), 3.35 (m, 1H), 3.61 (m, 1H), 3.96 (m, 1H), 4.03 (s, 3H), 4.21 (m, 4H), 4.50 (m, 2H), 6.54 (m, 1H), 6.75 (m, 2H), 7.10–7.21 (m, 4H), 7.23–7.50 (m, 4H), 7.52–7.72 ppm (m, 3H); MS *m*/*z* 515.1 [*M*+H]⁺; Anal. calcd for C₃₁H₃₄N₂O₅: C 72.35, H 6.66, N 5.44, found: C 72.42, H 6.60, N 5.49.

Ethyl 2-ethoxy-3-{4-[2-(5-{cyclopropyl-[*Z*/*E*]-methoxyimino]methyl}indol-1-yl)ethoxy]phenyl}propionate 17 c: Colorless oil (0.97 g, 81 %); ¹H NMR (CDCl₃): δ = 0.62–0.96 (m, 4 H), 1.16 (m, 3 H), 1.22 (m, 3 H), 2.35 (m, 1 H), 2.94 (m, 2 H), 3.34 (m, 1 H), 3.61 (m, 1 H), 3.96 (m, 1 H), 4.02 (s, 3 H), 4.18 (m, 2 H), 4.25 (m, 2 H), 4.52 (m, 2 H), 6.53 (m, 1 H), 6.78 (m, 2 H), 7.17 (m, 2 H), 7.21–7.42 (m, 3 H), 7.68 ppm (m, 1 H); MS *m*/*z* 479.4 [*M*+H]⁺; Anal. calcd for C₂₈H₃₄N₂O₅: C 70.27, H 7.16, N 5.85, found: C 70.35, H 7.08, N 5.92.

Ethyl 2-ethoxy-3-{4-[2-(5-{cyclohexyl-[*Z*/*E*]-methoxyimino]methyl}indol-1-yl)ethoxy]phenyl}propionate 17 d: Colorless oil (0.97 g, 75%); ¹H NMR (CDCl₃): δ = 1.15 (m, 3 H), 1.22–1.38 (m, 7 H), 1.43– 1.92 (m, 6 H), 2.95 (m, 2 H), 3.34 (m, 2 H), 3.60 (m, 1 H), 3.80–3.95 (m, 4 H), 4.18 (m, 2 H), 4.24 (m, 2 H), 4.52 (m, 2 H), 6.57 (m, 1 H), 6.73 (m, 2 H), 7.13 (m, 2 H), 7.26 (m, 2 H), 7.39 (m, 2 H), 7.48 (s, 0.5 H), 7.63 ppm (s, 0.5 H); MS *m*/*z* 521.2 [*M*+H]⁺; Anal. calcd for C₃₁H₄₀N₂O₅: C 71.51, H 7.74, N 5.38, found: C 71.64, H 7.67, N 5.42.

General procedure for the synthesis of carboxylic acids 16a–e, 18a–d: LiOH (0.15 g, 6.0 mmol, 3.0 equiv) was added to a solution of ester 15a–e or 17a–d (2.0 mmol, 1.0 equiv) dissolved in a 2:1 mixture of THF (20 mL) and H₂O (10 mL), and the mixture was then stirred at room temperature for 12 h. Thereafter, the whole was concentrated in vacuo, and the concentrate was hydrolyzed with 1 \mbox{M} HCl_(aq), then extracted twice with CH₂Cl₂. The combined organic extracts were dried over MgSO₄, filtered off, evaporated under reduced pressure, and the resulting residue was purified by flash column chromatography (CH₂Cl₂/MeOH 95:5) to afford the corresponding carboxylic acids.

3-{4-[2-(5-Benzoylindol-1-yl)ethoxy]phenyl}-2-ethoxypropionic

acid 16a: White solid (0.77 g, 84%); mp: 49–52 °C; ¹H NMR (DMSO): $\delta = 1.03$ (t, 3 H, ${}^{3}J = 6.8$ Hz), 2.82 (m, 2H), 3.27 (m, 1 H), 3.48 (m, 1 H), 3.91 (t, 1 H, ${}^{3}J = 6.3$ Hz), 4.30 (t, 2 H, ${}^{3}J = 5.9$ Hz), 4.66 (t, 2 H, ${}^{3}J = 5.9$ Hz), 6.66 (d, 1 H, ${}^{3}J = 3.1$ Hz), 6.80 (d, 2 H, ${}^{3}J = 8.6$ Hz), 7.12 (d, 2 H, ${}^{3}J = 8.6$ Hz), 7.57 (m, 3 H), 7.67 (m, 2 H), 7.73 (m, 3 H), 7.99 ppm (s, 1 H); LC–MS: $t_{\rm R} = 4.19$ min (98%), *m/z* 458.1 [*M*+H]⁺; Anal. calcd for C₂₈H₂₇NO₅: C 73.51, H 5.95, N 3.06, found: C 73.59, H 5.88, N 3.10.

3-{4-[2-(6-Benzoylindol-1-yl)ethoxy]phenyl}-2-ethoxypropionic

acid 16 b: White solid (0.74 g, 81%); mp: 131-132 °C; ¹H NMR (DMSO): $\delta = 1.01$ (t, 3H, ³J = 6.7 Hz), 2.80 (m, 2H), 3.28 (m, 1H), 3.49 (m, 1H), 3.90 (t, 1H, ³J = 6.1 Hz), 4.27 (t, 2H, ³J = 5.7 Hz), 4.65 (t, 2H,

 ${}^{3}J=5.7$ Hz), 6.60 (d, 1 H, ${}^{3}J=2.6$ Hz), 6.74 (d, 2 H, ${}^{3}J=8.5$ Hz), 7.09 (d, 2 H, ${}^{3}J=8.5$ Hz), 7.46 (d, 1 H, ${}^{3}J=8.2$ Hz), 7.56 (t, 2 H, ${}^{3}J=7.3$ Hz), 7.62–7.80 (m, 5 H), 8.07 ppm (s, 1 H); LC–MS: $t_{\rm R}=4.12$ min (96%), *m/z* 458.0 [*M*+H]⁺; Anal. calcd for C₂₈H₂₇NO₅: C 73.51, H 5.95, N 3.06, found: C 73.35, H 6.10, N 3.02.

3-{4-[2-(5-Benzoyl-3-methylindol-1-yl)ethoxy]phenyl}-2-ethoxy-

propionic acid 16c: White solid (0.79 g, 84%); mp: 54–58°C; ¹H NMR (CDCl₃): $\delta = 1.13$ (t, 3 H, ³J = 7.3 Hz), 2.31 (s, 3 H), 2.98 (m, 2 H), 3.43 (m, 1 H), 3.57 (m, 1 H), 4.02 (t, 1 H, ³J = 5.7 Hz), 4.21 (t, 2 H, ³J = 6.9 Hz), 4.47 (t, 2 H, ³J = 6.9 Hz), 6.75 (d, 2 H, ³J = 8.1 Hz), 7.05 (s, 1 H), 7.11 (d, 2 H, ³J = 8.1 Hz), 7.39–7.62 (m, 4 H), 7.72–7.82 (m, 3 H), 8.09 ppm (d, 1 H, ⁴J = 1.5 Hz); LC–MS: $t_{\rm R} = 4.15$ min (99%), *m/z* 472.2 [*M*+H]⁺; Anal. calcd for C₂₉H₂₉NO₅: C 73.87, H 6.20, N 2.97, found: C 73.76, H 6.24, N 3.01.

3-{4-[2-(5-Cyclopropanoylindol-1-yl)ethoxy]phenyl}-2-ethoxypropionic acid 16d: Pasty solid (0.66 g, 79%); ¹H NMR (CDCl₃): $\delta = 1.04$ (m, 2H), 1.17 (t, 3H, ${}^{3}J=6.7$ Hz), 1.27 (m, 2H), 2.82 (m, 1H), 2.93 (dd, 1H, ${}^{3}J=14.0$ Hz, ${}^{3}J=7.6$ Hz), 3.06 (dd, 1H, ${}^{3}J=14.0$ Hz, ${}^{3}J=7.6$ Hz), 3.41 (m, 1H), 3.62 (m, 1H), 4.02 (t, 1H, ${}^{3}J=5.8$ Hz), 4.28 (t, 2H, ${}^{3}J=5.9$ Hz), 4.55 (t, 2H, ${}^{3}J=5.9$ Hz), 6.67 (d, 1H, ${}^{3}J=3.2$ Hz), 6.77 (d, 2H, ${}^{3}J=8.5$ Hz), 7.16 (d, 2H, ${}^{3}J=8.5$ Hz), 7.30 (d, 1H, ${}^{3}J=3.2$ Hz), 7.46 (d, 1H, ${}^{3}J=8.8$ Hz), 7.97 (dd, 1H, ${}^{3}J=8.8$ Hz, ${}^{4}J=1.8$ Hz), 8.42 ppm (d, 1H, ${}^{4}J=1.8$ Hz); LC-MS: $t_{R}=3.84$ min (95%), *m/z* 422.3 [*M*+H]⁺; Anal. calcd for C₂₅H₂₇NO₅: C 71.24, H 6.46, N 3.32, found: C 71.31, H 6.40, N 3.38.

3-{4-[2-(5-Cyclohexanoylindol-1-yl)ethoxy]phenyl}-2-ethoxypro-

pionic acid 16e: White solid (0.78 g, 85%); mp: 72–76°C; ¹H NMR (CDCl₃): δ =1.16 (t, 3H, ³*J*=7.0 Hz), 1.20–1.62 (m, 6H), 1.72–1.98 (m, 4H), 2.92 (m, 1 H), 3.08 (m, 1 H), 3.42 (m, 2 H), 3.58 (m, 1 H), 4.01 (t, 1H, ³*J*=5.9 Hz), 4.26 (t, 2H, ³*J*=6.2 Hz), 4.52 (t, 2H, ³*J*=6.2 Hz), 6.64 (d, 1 H, ³*J*=2.9 Hz), 6.74 (d, 2H, ³*J*=7.9 Hz), 7.12 (d, 2H, ³*J*=7.9 Hz), 7.27 (d, 1 H, ³*J*=2.9 Hz), 7.43 (d, 1 H, ³*J*=8.8 Hz), 7.92 (d, 1 H, ³*J*=8.8 Hz), 8.31 ppm (s, 1 H); LC–MS: $t_{\rm R}$ =4.33 min (94%), *m/z* 464.2 [*M*+H]⁺; Anal. calcd for C₂₈H₃₃NO₅: C 72.55, H 7.18, N 3.02, found: C 72.46, H 7.25, N 2.94.

2-Ethoxy-3-{4-[2-(5-{[Z/E]-methoxyimino]phenylmethyl}indol-1-

yl)ethoxy]phenyl}propionic acid 18a: White solid (0.79 g, 82%); mp: 47–50 °C; ¹H NMR (CDCl₃): δ = 1.18 (m, 3 H), 2.95 (m, 1 H), 3.08 (m, 1 H), 3.44 (m, 1 H), 3.60 (m, 1 H), 4.01 (m, 4 H), 4.28 (m, 2 H), 4.52 (m, 2 H), 6.50 (m, 1 H), 6.78 (m, 2 H), 7.10–7.69 ppm (m, 11 H); LC–MS: t_{R} = 4.22 and 4.27 min (52 and 45%), *m/z* 487.1 [*M*+H]⁺; Anal. calcd for C₂₉H₃₀N₂O₅: C 71.59, H 6.21, N 5.76, found: C 71.64, H 6.32, N 5.81.

2-Ethoxy-3-{4-[2-(6-{[Z/E]-methoxyimino]phenylmethyl}indol-1-

yl)ethoxy]phenyl}propionic acid 18 b: White solid (0.81 g, 83%); mp: 104–105 °C; ¹H NMR (DMSO): δ = 1.02 (m, 3H), 2.81 (m, 2H), 3.28 (m, 1H), 3.49 (m, 1H), 3.90 (m, 4H), 4.21 (m, 2H), 4.51 (m, 2H), 6.59 (m, 1H), 6.71 (m, 2H), 6.92 (m, 0.5H), 7.09 (m, 2.5H), 7.28–7.63 ppm (m, 8H); LC–MS: t_{R} =4.44 and 4.46 min (50 and 48%), MS *m/z* 487.2 [*M*+H]⁺; Anal. calcd for C₂₉H₃₀N₂O₅: C 71.59, H 6.21, N 5.76, found: C 71.50, H 6.30, N 5.58.

2-Ethoxy-3-{4-[2-(5-{cyclopropyl-[Z/E]-methoxyimino]methyl}in-

dol-1-yl)ethoxy]phenyl}propionic acid 18 c: Colorless oil (0.73 g, 81%); ¹H NMR (CDCl₃): δ = 0.62–0.96 (m, 4H), 1.18 (m, 3H), 1.82 (m, 0.5H), 2.36 (m, 0.5H), 2.92 (m, 1H), 3.07 (m, 1H), 3.47 (m, 1H), 3.58 (m, 1H), 3.82 (s, 1.5H), 4.01 (m, 2.5H), 4.25 (m, 2H), 4.51 (m, 2H), 6.52 (m, 1H), 6.73 (m, 2H), 7.05–7.44 (m, 5H), 7.60 (m, 0.5H), 7.62 ppm (m, 0.5H); LC–MS: $t_{\rm R}$ =4.83 and 4.09 min (30 and 67%), *m/z* 451.2 [*M*+H]⁺; Anal. calcd for C₂₆H₃₀N₂O₅: C 69.31, H 6.71, N 6.22, found: C 69.42, H 6.65, N 6.27.

2-Ethoxy-3-{4-[2-(5-{cyclohexyl-[Z/E]-methoxyimino]methyl}in-

dol-1-yl)ethoxy]phenyl}propionic acid 18 d: Pasty solid (0.77 g, 78%); ¹H NMR (CDCl₃): $\delta = 1.18$ (m, 3 H), 1.22–1.40 (m, 4H), 1.42–1.92 (m, 6H), 2.53 (m, 0.5 H), 2.95 (m, 1H), 3.08 (m, 1H), 3.28 (m, 0.5 H), 3.47 (m, 1H), 3.59 (m, 1H), 3.80 (s, 1.5 H), 3.95 (s, 1.5 H), 4.05 (m, 1H), 4.28 (m, 2H), 4.52 (m, 2H), 6.54 (m, 1H), 6.77 (m, 2H), 7.12 (m, 2H), 7.23 (m, 1.5 H), 7.39 (m, 1.5 H), 7.49 (s, 0.5 H), 7.62 ppm (s, 0.5 H); LC–MS: $t_{\rm R}$ =4.28 and 4.56 min (41 and 57%), *m/z* 493.2 [*M* + H]⁺; Anal. calcd for C₂₉H₃₆N₂O₅: C 70.71, H 7.37, N 5.69, found: C 70.62, H 7.46, N 5.61.

General procedure for the synthesis of oxime ethers 19a–c: O-Methylhydroxylamine hydrochloride (3.34 g, 40 mmol, 4 equiv) was added to a solution of 5- or 6-benzoylindole 14a,b (2.22 g, 10 mmol, 1 equiv) in pyridine (40 mL), and the mixture was stirred at 100 °C for 4 h. The reaction mixture was concentrated in vacuo, hydrolyzed with $1 \times \text{HCl}_{(aq)'}$ and extracted twice with CH_2Cl_2 . The combined organic extracts were dried over MgSO₄, filtered off, evaporated under reduced pressure, and the resulting residue was purified by flash column chromatography (PE/CH₂Cl₂/EtOAc 75:24:1) to afford the corresponding oxime ethers 19a–c.

5-{[(*E***)-Methoxyimino]phenylmethyl}-1***H***-indole 19a: Brown solid (1.10 g, 44%); mp: 101–103 °C; ¹H NMR (CDCl₃): \delta=4.01 (s, 3 H), 6.53 (m, 1 H), 7.21 (t, 1 H, ³***J***=3.2 Hz), 7.35–7.48 (m, 6 H), 7.54 (dd, 1 H, ³***J***=8.2 Hz, ⁴***J***=1.8 Hz), 7.62 (s, 1 H), 8.23 ppm (brs, 1 H); MS** *m***/***z* **251.2 [***M***+H]⁺; Anal. calcd for C₁₆H₁₄N₂O: C 76.78, H 5.64, N 11.19, found: C 76.65, H 5.71, N 11.25.**

5-[[(Z)-Methoxyimino]phenylmethyl}-1*H***-indole 19b**: Brown solid (0.95 g, 38%); mp: 113–115 °C; ¹H NMR (CDCl₃): δ =4.03 (s, 3 H), 6.59 (m, 1 H), 7.25 (m, 2 H), 7.35 (m, 3 H), 7.46 (d, 1 H, ³*J*=8.5 Hz), 7.54 (m, 2 H), 7.68 (d, 1 H, ⁴*J*=1.5 Hz), 8.28 ppm (brs, 1 H); MS *m/z* 251.2 [*M*+H]⁺; Anal. calcd for C₁₆H₁₄N₂O: C 76.78, H 5.64, N 11.19, found: C 76.67, H 5.54, N 11.31.

6-{[(Z/E)-Methoxyimino]phenylmethyl}-1*H***-indole 19 c**: Brown solid (1.97 g, 79%); mp: 168–170 °C; ¹H NMR (DMSO): δ = 3.93 (m, 3H), 6.57 (m, 1H), 6.90 (m, 0.5H), 7.11 (m, 0.5H), 7.30–7.65 ppm (m, 8H); MS *m/z* 251.2 [*M*+H]⁺; Anal. calcd for C₁₆H₁₄N₂O: C 76.78, H 5.64, N 11.19, found: C 76.71, H 5.70, N 11.12.

General procedure for the synthesis of optically pure carboxylic acids 20 a-c, 21 a-c: A solution of 19 a-c (0.5 g, 2 mmol, 1 equiv) in HMPA (5 mL) was added dropwise to a 60% NaH dispersion in mineral oil (0.12 g, 3 mmol, 1.5 equiv) in HMPA (5 mL) at 0 °C under N₂, and the solution was stirred for 30 min at room temperature. A solution of 10a or 10b (0.66 g, 2.4 mmol, 1.2 equiv) in HMPA (5 mL) was then added, and the mixture was stirred at room temperature for 12 h under N₂. The reaction mixture was hydrolyzed with 1 \bowtie HCl_(aq), and the precipitate was filtered off, dried and purified by flash column chromatography (CH₂Cl₂/MeOH 95:5) to afford the corresponding optically pure carboxylic acids 20 a-c and 21 a-c.

(S)-2-Ethoxy-3-{4-[2-(5-{[*E*]-methoxyimino]phenylmethyl}indol-1yl)ethoxy]phenyl}propionic acid 20 a: White solid (0.46 g, 47%); mp: 43-46°C; ¹H NMR (CDCl₃): δ = 1.19 (t, 3 H, ³*J* = 7.0 Hz), 2.95 (dd, 1 H, ³*J* = 14.0 Hz, ³*J* = 7.0 Hz), 3.08 (dd, 1 H, ³*J* = 14.0 Hz, ³*J* = 7.0 Hz), 3.48 (m, 1 H), 3.58 (m, 1 H), 4.01 (s, 3 H), 4.05 (dd, 1 H, ³*J* = 7.0 Hz), 4.28 (t, 2 H, ³*J* = 5.6 Hz), 4.52 (t, 2 H, ³*J* = 5.6 Hz), 6.48 (d, 1 H, ³*J* = 3.2 Hz), 6.76 (d, 2 H, ³*J* = 8.8 Hz), 7.13 (d, 2 H, ³*J* = 8.8 Hz), 7.22 (d, 1 H, ³*J* = 3.2 Hz), 7.34–7.47 (m, 6 H), 7.56 ppm (m, 2 H); LC-MS: $t_{\rm R}$ = 4.36 min (95%), *m/z* 487.1 [*M*+H]⁺; Anal. calcd for C₂₉H₃₀N₂O₅: C 71.59, H 6.21, N 5.76, found: C 71.45, H 6.30, N 5.69; Chiral HPLC method: flow rate = 0.8 mLmin⁻¹, eluents = C/D 50:50, t_{R} = 8.92 min.

(S)-2-Ethoxy-3-{4-[2-(5-{[Z]-methoxyimino]phenylmethyl}indol-1yl)ethoxy]phenyl}propionic acid 20 b: White solid (0.52 g, 54%); mp: 50-52 °C; ¹H NMR (CDCl₃): $\delta = 1.18$ (t, 3H, ³*J* = 7.0 Hz), 2.95 (dd, 1H, ³*J* = 14.0 Hz, ³*J* = 7.0 Hz), 3.08 (dd, 1H, ³*J* = 14.0 Hz, ³*J* = 7.0 Hz), 3.46 (m, 1H), 3.62 (m, 1H), 4.04 (m, 4H), 4.29 (t, 2H, ³*J* = 5.3 Hz), 4.54 (t, 2H, ³*J* = 5.3 Hz), 6.55 (d, 1H, ³*J* = 2.9 Hz), 6.81 (d, 2H, ³*J* = 8.8 Hz), 7.17 (d, 2H, ³*J* = 8.8 Hz), 7.25-7.38 (m, 5H), 7.46 (d, 1H, ³*J* = 8.8 Hz), 7.54 (dd, 2H, ³*J* = 7.9 Hz, ⁴*J* = 1.75 Hz), 7.68 ppm (s, 1H); LC-MS: $t_{\rm R}$ =4.43 min (97%), *m/z* 487.2 [*M*+H]⁺; Anal. calcd for C₂₉H₃₀N₂O₅: C 71.59, H 6.21, N 5.76, found: C 71.51, H 6.36, N 5.67; Chiral HPLC method: flow rate = 0.8 mL min⁻¹, eluents = C/D 50:50, $t_{\rm R}$ =6.63 min.

(S)-2-Ethoxy-3-{4-[2-(6-{[Z/E]-methoxyimino]phenylmethyl}indol-1-yl)ethoxy]phenyl}propionic acid 20 c: White solid (0.61 g, 63 %);

T-yjetnoxyjpnenyipropionic acid 202: white solid (0.61 g, 63 %); mp: 104–105 °C; ¹H NMR (DMSO): δ = 1.02 (m, 3H), 2.81 (m, 2H), 3.28 (m, 1H), 3.49 (m, 1H), 3.90 (m, 4H), 4.21 (m, 2H), 4.51 (m, 2H), 6.59 (m, 1H), 6.71 (m, 2H), 6.92 (m, 0.4H), 7.09 (m, 2.6H), 7.28– 7.63 ppm (m, 8H); LC–MS: t_{R} =4.30 and 4.33 min (59 and 38%), m/ z 487.2 [M+H]⁺; Anal. calcd for C₂₉H₃₀N₂O₅: C 71.59, H 6.21, N 5.76, found: C 71.47, H 6.15, N 5.82; Chiral HPLC method: flow rate = 1.0 mLmin⁻¹, eluents = A/B 10:90, t_{R} =16.21 min (40%) and 22.32 min (60%).

(*R*)-2-Ethoxy-3-{4-[2-(5-{[*E*]-methoxyimino]phenylmethyl}indol-1yl)ethoxy]phenyl}propionic acid 21 a: White solid (0.59 g, 61%); mp: 43-46 °C; ¹H NMR (CDCl₃): $\delta = 1.19$ (t, 3H, ³*J* = 7.0 Hz), 2.95 (dd, 1H, ³*J* = 14.0 Hz, ³*J* = 7.0 Hz), 3.08 (dd, 1H, ³*J* = 14.0 Hz, ³*J* = 7.0 Hz), 3.48 (m, 1H), 3.58 (m, 1H), 4.01 (s, 3H), 4.05 (dd, 1H, ³*J* = 7.0 Hz), 4.28 (t, 2H, ³*J* = 5.6 Hz), 4.52 (t, 2H, ³*J* = 5.6 Hz), 6.48 (d, 1H, = 3.2 Hz), 6.76 (d, 2H, ³*J* = 8.8 Hz), 7.13 (d, 2H, ³*J* = 8.8 Hz), 7.22 (d, ³*J* 1H, ³*J* = 3.2 Hz), 7.34–7.47 (m, 6H), 7.56 ppm (m, 2H); LC-MS: $t_{R} =$ 4.36 min (96%), *m/z* 487.1 [*M*+H]⁺; Anal. calcd for C₂₉H₃₀N₂O₅: C 71.59, H 6.21, N 5.76, found: C 71.52, H 6.15, N 5.69; Chiral HPLC method: flow rate = 0.8 mLmin⁻¹, eluents = C/D 50:50, $t_{R} =$ 11.22 min.

(*R*)-2-Ethoxy-3-{4-[2-(5-{[*Z*]-methoxyimino]phenylmethyl}indol-1yl)ethoxy]phenyl}propionic acid 21 b: White solid (0.57 g, 59%); mp: 50-52 °C; ¹H NMR (CDCI₃): δ = 1.18 (t, 3H, ³*J* = 7.0 Hz), 2.95 (dd, 1H, ³*J* = 14.0 Hz, ³*J* = 7.0 Hz), 3.08 (dd, 1H, ³*J* = 14.0 Hz, ³*J* = 7.0 Hz), 3.46 (m, 1H), 3.62 (m, 1H), 4.04 (m, 4H), 4.29 (t, 2H, ³*J* = 5.3 Hz), 4.54 (t, 2H, ³*J* = 5.3 Hz), 6.55 (d, 1H, ³*J* = 2.9 Hz), 6.81 (d, 2H, ³*J* = 8.8 Hz), 7.17 (d, 2H, ³*J* = 8.8 Hz), 7.25-7.38 (m, 5H), 7.46 (d, 1H, ³*J* = 8.8 Hz), 7.54 (dd, 2H, ³*J* = 7.9 Hz, ⁴*J* = 1.75 Hz), 7.68 ppm (s, 1H); LC-MS: t_{R} =4.43 min (94%), *m/z* 487.1 [*M*+H]⁺; Anal. calcd for C₂₉H₃₀N₂O₅: C 71.59, H 6.21, N 5.76, found: C 71.70, H 6.14, N 5.70; Chiral HPLC method: flow rate = 0.8 mLmin⁻¹, eluents = C/D 50:50, t_{R} =6.94 min.

(*R*)-2-Ethoxy-3-{4-[2-(6-{[*Z*/*E*]-methoxyimino]phenylmethyl}indol-1-yl)ethoxy]phenyl}propionic acid 21 c: White solid (0.52 g, 54%); mp: 104–105 °C; ¹H NMR (DMSO): δ = 1.02 (m, 3H), 2.81 (m, 2H), 3.28 (m, 1H), 3.49 (m, 1H), 3.90 (m, 4H), 4.21 (m, 2H), 4.51 (m, 2H), 6.59 (m, 1H), 6.71 (m, 2H), 6.92 (m, 0.4H), 7.09 (m, 2.6H), 7.28– 7.63 ppm (m, 8H); LC–MS: $t_{\rm R}$ =4.30 and 4.33 min (60 and 37%), *m*/ *z* 487.2 [*M*+H]⁺; Anal. calcd for C₂₉H₃₀N₂O₅: C 71.59, H 6.21, N 5.76, found: C 71.47, H 6.15, N 5.82; Chiral HPLC method: flow rate = 1.0 mLmin⁻¹, eluents = A/B 20:80, $t_{\rm R}$ =7.09 min (40%) and 8.43 min (60%).

General procedure for the synthesis of oxime ethers 24a–d: *O*-Substituted hydroxylamine hydrochloride (10 mmol, 2 equiv) and

pyridine (0.60 mL, 15 mmol, 3 equiv) were added to a solution of **23** (2.11 g, 5 mmol, 1 equiv) in MeOH (60 mL), and the mixture was stirred at reflux for 4 h. The reaction mixture was concentrated in vacuo, hydrolyzed with $1 \times \text{HCl}_{(aq)}$, and extracted twice with EtOAc. The combined organic extracts were dried over MgSO₄, filtered off, evaporated under reduced pressure, and the resulting residue was purified by flash column chromatography (cyclohexane/EtOAc 80:20) to afford the corresponding *E* isomers of oxime ethers **24 a**–**d**.

Ethyl 2-ethoxy-3-{4-[2-(5-{1-[*E*]-phenoxyimino]ethyl}indol-1-yl)ethoxy]phenyl}propionate 24 a: Colorless oil (2.39 g, 93%); ¹H NMR (CDCl₃): $\delta = 1.18$ (t, 3 H, ³*J* = 7.0 Hz), 1.24 (t, 3 H, ³*J* = 7.0 Hz), 2.56 (s, 3 H), 2.96 (m, 2 H), 3.33 (m, 1 H), 3.60 (m, 1 H), 3.96 (t, 1 H, ³*J* = 6.3 Hz), 4.18 (q, 2 H, ³*J* = 7.0 Hz), 4.29 (t, 2 H, ³*J* = 5.7 Hz), 4.55 (t, 2 H, ³*J* = 5.7 Hz), 6.59 (d, 1 H, ³*J* = 3.1 Hz), 6.78 (d, 2 H, ³*J* = 8.3 Hz), 7.05 (m, 2 H), 7.15 (m, 3 H), 7.31 (m, 3 H), 7.45 (d, 1 H, ³*J* = 8.7 Hz), 7.81 (d, 1 H, ³*J* = 8.7 Hz), 8.02 ppm (s, 1 H); MS *m*/*z* 515.2 [*M*+H]⁺; Anal. calcd for C₃₁H₃₄N₂O₅: C 72.35, H 6.66, N 5.44, found: C 72.19, H 6.75, N 5.39.

Ethyl 2-ethoxy-3-{4-[2-(5-{1-[*E*]-benzyloxyimino]ethyl}indol-1yl)ethoxy]phenyl}propionate 24 b: Colorless oil (2.33 g, 91%); ¹H NMR (CDCl₃): $\delta = 1.17$ (t, 3 H, ${}^{3}J = 7.0$ Hz), 1.24 (t, 3 H, ${}^{3}J = 7.0$ Hz), 2.38 (s, 3 H), 2.95 (m, 2 H), 3.35 (m, 1 H), 3.60 (m, 1 H), 3.96 (t, 1 H, ${}^{3}J = 5.8$ Hz), 4.18 (q, 2 H, ${}^{3}J = 7.0$ Hz), 4.27 (t, 2 H, ${}^{3}J = 5.7$ Hz), 4.52 (t, 2 H, ${}^{3}J = 5.7$ Hz), 5.29 (s, 2 H), 6.55 (d, 1 H, ${}^{3}J = 2.9$ Hz), 6.78 (d, 2 H, ${}^{3}J = 8.1$ Hz), 7.14 (d, 2 H, ${}^{3}J = 7.3$ Hz), 7.24 (d, 1 H, ${}^{3}J = 2.9$ Hz), 7.31-7.44 (m, 4 H), 7.47 (d, 2 H, ${}^{3}J = 7.3$ Hz), 7.66 (dd, 1 H, ${}^{3}J = 8.7$ Hz, ${}^{4}J =$ 1.75 Hz), 7.88 ppm (d, 1 H, ${}^{4}J = 1.75$ Hz); MS *m*/*z* 515.2 [*M*+H]⁺; Anal. calcd for C₃₂H₃₆N₂O₅: C 72.70, H 6.86, N 5.30, found: C 72.61, H 6.75, N 5.41.

Ethyl 2-ethoxy-3-{4-[2-(5-{1-[*E*]-cyclopropylmethoxyimino]ethyl}indol-1-yl)ethoxy]phenyl}propionate 24 c: Colorless oil (2.14 g, 87%); ¹H NMR (CDCl₃): $\delta = 0.36$ (m, 2H), 0.60 (m, 2H), 1.17 (t, 3H, ³*J*=7.0 Hz), 1.23 (m, 4H), 2.38 (s, 3H), 2.95 (m, 2H), 3.35 (m, 1H), 3.60 (m, 1H), 3.95 (t, 1H, ³*J*=7.3 Hz), 4.06 (d, 2H, ³*J*=7.0 Hz), 4.18 (q, 2H, ³*J*=7.0 Hz), 4.27 (t, 2H, ³*J*=5.3 Hz), 4.52 (t, 2H, ³*J*=5.3 Hz), 6.54 (d, 1H, ³*J*=3.1 Hz), 6.78 (d, 2H, ³*J*=8.4 Hz), 7.13 (d, 2H, ³*J*= 8.4 Hz), 7.22 (d, 1H, ³*J*=3.1 Hz), 7.39 (d, 2H, ³*J*=8.8 Hz), 7.67 (d, 1H, ³*J*=8.8 Hz), 7.88 ppm (s, 1H); MS *m*/*z* 493.1 [*M*+H]⁺; Anal. calcd for C₂₉H₃₆N₂O₅: C 70.71, H 7.37, N 5.69, found: C 70.62, H 7.48, N 5.60.

Ethyl 2-ethoxy-3-{4-[2-(5-{1-[*E*]-cyclohexyloxyimino]ethyl}indol-1yl)ethoxy]phenyl}propionate 24 d: Colorless oil (2.36 g, 91%); ¹H NMR (CDCl₃): $\delta = 1.18$ (t, 3 H, ³*J* = 7.0 Hz), 1.21–1.62 (m, 9 H), 1.80 (m, 4 H), 2.35 (s, 3 H), 2.93 (m, 2 H), 3.32 (m, 1 H), 3.60 (m, 1 H), 3.95 (t, 1 H, ³*J* = 6.9 Hz), 4.18 (m, 3 H), 4.27 (t, 2 H, ³*J* = 5.5 Hz), 4.52 (t, 2 H, ³*J* = 5.5 Hz), 6.54 (d, 1 H, ³*J* = 3.2 Hz), 6.76 (d, 2 H, ³*J* = 8.2 Hz), 7.14 (d, 2 H, ³*J* = 8.2 Hz), 7.22 (d, 1 H, ³*J* = 3.2 Hz), 7.39 (d, 2 H, ³*J* = 8.6 Hz), 7.66 (d, 1 H, ³*J* = 8.6 Hz), 7.88 ppm (s, 1 H); MS *m*/*z* 521.3 [*M*+H]⁺; Anal. calcd for C₃₁H₄₀N₂O₅: C 71.51, H 7.74, N 5.38, found: C 71.63, H 7.68, N 5.47.

General procedure for the synthesis of carboxylic acids 25a–d: Compounds **24a–d** were treated according to the same procedure described for the preparation of **16a–e** and **18a–d**.

2-Ethoxy-3-{4-[2-(5-{1-[*E***]-phenoxyimino]ethyl}indol-1-yl)ethoxy]phenyl}propionic acid 25 a:** Off-white solid (0.74 g, 76%); mp: 87– 89°C; ¹H NMR (DMSO): δ = 1.02 (t, 3 H, ³*J* = 7.0 Hz), 2.50 (s, 3 H), 2.81 (m, 2 H), 3.26 (m, 1 H), 3.48 (m, 1 H), 3.92 (t, 1 H, ³*J* = 5.3 Hz), 4.28 (t, 2 H, ³*J* = 5.9 Hz), 4.59 (t, 2 H, ³*J* = 5.9 Hz), 6.55 (d, 1 H, ³*J* = 3.3 Hz), 6.79 (d, 2 H, ³*J* = 8.1 Hz), 7.03 (t, 1 H, ³*J* = 7.3 Hz), 7.11 (d, 1 H, ³*J* = 8.1 Hz), 7.28 (m, 2 H), 7.36 (t, 2 H, ${}^{3}J$ =7.3 Hz), 7.50 (d, 1 H, ${}^{3}J$ = 3.3 Hz), 7.63 (d, 1 H, ${}^{3}J$ =8.6 Hz), 7.70 (d, 1 H, ${}^{3}J$ =8.6 Hz), 8.01 ppm (s, 1 H); LC-MS: t_{R} =4.55 min (98%), *m/z* 487.1 [*M*+H]⁺; Anal. calcd for C₂₉H₃₀N₂O₅: C 71.59, H 6.21, N 5.76, found: C 71.74, H 6.18, N 5.69.

2-Ethoxy-3-{4-[2-(5-{1-[*E***]-benzyloxyimino]ethyl}indol-1-yl)ethoxy]phenyl}propionic acid 25 b**: Off-white solid (0.79 g, 79%); mp: 72–74°C; ¹H NMR (DMSO): δ = 1.02 (t, 3 H, ³*J* = 7.0 Hz), 2.29 (s, 3 H), 2.81 (m, 2 H), 3.27 (m, 1 H), 3.49 (m, 1 H), 3.92 (t, 1 H, ³*J* = 5.7 Hz), 4.27 (t, 2 H, ³*J* = 5.9 Hz), 4.59 (t, 2 H, ³*J* = 5.9 Hz), 5.20 (s, 2 H), 6.51 (d, 1 H, ³*J* = 3.1 Hz), 6.78 (d, 2 H, ³*J* = 8.3 Hz), 7.10 (d, 1 H, ³*J* = 8.3 Hz), 7.27–7.49 (m, 6 H), 7.54 (m, 2 H), 7.82 ppm (s, 1 H); LC–MS: t_{R} = 4.50 min (98%), *m/z* 501.2 [*M*+H]⁺; Anal. calcd for C₃₀H₃₂N₂O₅: C 71.98, H 6.44, N 5.60, found: C 71.91, H 6.52, N 5.71.

2-Ethoxy-3-{4-[2-(5-{1-[*E***]-cyclopropylmethoxyimino]ethyl}indol-1-yl)ethoxy]phenyl}propionic acid 25 c**: Pasty solid (0.75 g, 81%); ¹H NMR (CDCl₃): δ =0.38 (m, 2H), 0.60 (m, 2H), 1.27 (m, 4H), 2.39 (s, 3H), 3.0 (m, 2H), 3.51 (m, 2H), 4.05 (m, 3H), 4.25 (t, 2H, ³*J*= 5.8 Hz), 4.52 (t, 2H, ³*J*=5.8 Hz), 6.55 (d, 1H, ³*J*=3.0 Hz), 6.76 (d, 2H, ³*J*=8.4 Hz), 7.13 (d, 2H, ³*J*=8.4 Hz), 7.22 (d, 1H, ³*J*=3.0 Hz), 7.35 (d, 2H, ³*J*=8.5 Hz), 7.64 (d, 1H, ³*J*=8.5 Hz), 7.86 ppm (s, 1H); LC-MS: $t_{\rm R}$ =4.49 min (95%), *m/z* 465.2 [*M*+H]⁺; Anal. calcd for C₂₇H₃₂N₂O₅: C 69.81, H 6.94, N 6.03, found: C 69.94, H 6.88, N 6.12.

2-Ethoxy-3-{4-[2-(5-{1-[*E***]-cyclohexyloxyimino]ethyl}indol-1-yl)ethoxy]phenyl}propionic acid 25 d**: Pasty solid (0.75 g, 76%); ¹H NMR (CDCl₃): δ = 1.18 (t, 3 H, ³*J* = 7.0 Hz), 1.25–1.62 (m, 6 H), 1.78 (m, 2 H), 2.04 (m, 2 H), 2.32 (s, 3 H), 2.93 (m, 1 H), 3.05 (m, 1 H), 3.41 (m, 1 H), 3.59 (m, 1 H), 4.01 (t, 1 H, ³*J* = 7.1 Hz), 4.22 (m, 3 H), 4.50 (t, 2 H, ³*J* = 5.8 Hz), 6.53 (d, 1 H, ³*J* = 2.9 Hz), 6.76 (d, 2 H, ³*J* = 8.1 Hz), 7.13 (d, 2 H, ³*J* = 8.1 Hz), 7.22 (d, 1 H, ³*J* = 2.9 Hz), 7.36 (d, 2 H, ³*J* = 8.8 Hz), 7.63 (dd, 1 H, ³*J* = 8.8 Hz, ⁴*J* = 1.75 Hz), 7.85 ppm (d, 1 H, ⁴*J* = 1.75 Hz); LC-MS: t_{R} = 4.46 min (94%), *m/z* 493.2 [*M*+H]⁺; Anal. calcd for C₂₉H₃₆N₂O₅: C 70.71, H 7.37, N 5.69, found: C 70.59, H 7.45, N 5.62.

Synthesis of compounds 26 a,b: Oxalyl chloride (8.2 mL, 93.4 mmol, 1.1 equiv) in 1,2-dichloroethane (170 mL) was added dropwise over a period of 15 min into a stirred, ice-cold solution of DMF (7.35 mL, 100.7 mmol, 1.15 equiv) in 1,2-dichloroethane (170 mL) under a N₂ atmosphere, and then the mixture was allowed to warm to room temperature for 15 min. The mixture was cooled to 0°C, and a solution of indole (10 g, 85.4 mmol, 1.0 equiv) in 1,2-dichloroethane (170 mL) was added rapidly. The resulting mixture was warmed to room temperature for 15 min and then cooled. AlCl $_3$ (42 g, 315 mmol, 3.7 equiv) was added rapidly, and the mixture was allowed to warm to room temperature for 15 min. The mixture was cooled, and a solution of benzoyl chloride (13.32 g, 93.4 mmol, 1.1 equiv) in 1,2-dicloroethane (84 mL) was added rapidly, and the reaction was allowed to proceed overnight at room temperature. The reaction mixture was poured into ice/ H₂O, alkalinized to pH 8 with solid NaOH and stirred vigorously for 4 h. Concentrated HCl was added (100 mL), and the resulting mixture was extracted twice with CH₂Cl₂. The combined extracts were washed with brine, dried over MgSO₄, filtered off and evaporated under reduced pressure. The residue was purified by flash column chromatography (PE/EtOAc 65:35) to afford the two regioisomers 26 a,b.

5-Benzoyl-1H-indole-3-carboxaldehyde 26a: Pale-brown solid (11.91 g, 56%); mp: 198–200 °C; ¹H NMR (DMSO): δ =7.58 (t, 2H, ³*J*=7.6 Hz), 7.63–7.78 (m, 5H), 8.49 (d, 2H, ³*J*=7.6 Hz), 9.98 (s, 1H), 12.50 ppm (brs, 1H); MS *m/z* 250.2 [*M*+H]⁺.

6-Benzoyl-1H-indole-3-carboxaldehyde 26 b: White needles (4.89 g, 23 %); mp: 166–168 °C; ¹H NMR (DMSO): δ =7.58 (t, 2H, ³*J*=7.3 Hz), 7.62–7.80 (m, 4H), 7.91 (s, 1H), 8.23 (d, 1H, ³*J*=8.2 Hz), 8.53 (d, 1H, ⁴*J*=2.6 Hz), 10.01 (s, 1H), 12.42 ppm (br s, 1H); MS *m/z* 250.2 [*M*+H]⁺.

Synthesis of compounds 27 a,b: Compounds **26 a,b** were treated according to the same procedure described for the preparation of **15 a–e** and **23**. The crude products were purified by flash column chromatography (toluene/EtOAc 75:25) to afford the corresponding N-alkylated indole derivatives.

Ethyl 3-{4-[2-(5-benzoyl-3-formylindol-1-yl)ethoxy]phenyl}-2-ethoxypropionate 27 a: Colorless oil (1.95 g, 76%); ¹H NMR (CDCl₃): $\delta = 1.15$ (t, 3 H, ³J = 6.8 Hz), 1.23 (t, 3 H, ³J = 7.3 Hz), 2.96 (m, 2 H), 3.34 (m, 1 H), 3.60 (m, 1 H), 3.96 (t, 1 H, ³J = 6.5 Hz), 4.18 (q, 2 H, ³J = 6.8 Hz), 4.36 (t, 2 H, ³J = 6.2 Hz), 4.65 (t, 2 H, ³J = 6.2 Hz), 6.77 (d, 2 H, ³J = 8.4 Hz), 7.17 (d, 2 H, ³J = 8.4 Hz), 7.47–7.63 (m, 4 H), 7.84 (d, 2 H, ³J = 7.5 Hz), 7.97 (m, 2 H), 8.72 (s, 1 H), 10.05 ppm (s, 1 H); MS *m*/*z* 514.3 [*M*+H]⁺; Anal. calcd for C₃₁H₃₁NO₆: C 72.50, H 6.08, N 2.73, found: C 72.41, H 6.17, N 2.79.

Ethyl 3-{4-[2-(6-benzoyl-3-formylindol-1-yl)ethoxy]phenyl}-2ethoxypropionate 27 b: Colorless oil (1.72 g, 67%); ¹H NMR (CDCl₃): $\delta = 1.16$ (t, 3H, ³J = 7.2 Hz), 1.23 (t, 3H, ³J = 7.3 Hz), 2.95 (m, 2H), 3.33 (m, 1H), 3.59 (m, 1H), 3.95 (t, 1H, ³J = 6.2 Hz), 4.18 (q, 2H, ³J = 7.2 Hz), 4.35 (t, 2H, ³J = 6.5 Hz), 4.65 (t, 2H, ³J = 6.5 Hz), 6.78 (d, 2H, ³J = 8.3 Hz), 7.16 (d, 2H, ³J = 8.3 Hz), 7.52 (t, 2H, ³J = 7.6 Hz), 7.62 (t, 1H, ³J = 7.6 Hz), 7.74 (d, 1H, ³J = 8.5 Hz), 7.82 (d, 2H, ³J =7.6 Hz), 8.08 (m, 2H), 8.38 (d, 1H, ³J = 8.5 Hz), 10.08 ppm (s, 1H); MS *m*/*z* 514.2 [*M*+H]⁺; Anal. calcd for C₃₁H₃₁NO₆: C 72.50, H 6.08, N 2.73, found: C 72.64, H 6.16, N 2.62.

Synthesis of compounds 28 a,b: Compounds **27 a,b** were treated according to the same procedure described for the preparation of **24 a–d**. The crude products were purified by flash column chromatography (PE/EtOAc 70:30) to afford the corresponding oxime derivatives.

28 a: Colorless oil (2.37 g, 83%); ¹H NMR (CDCl₃): δ = 1.18 (m, 3 H), 1.24 (m, 3 H), 2.94 (m, 2 H), 3.32 (m, 1 H), 3.60 (m, 1 H), 3.82–3.99 (m, 4 H), 4.01–4.12 (m,3 H), 4.18 (m, 2 H), 4.28 (m, 2 H), 4.54 (m, 2 H), 6.78 (m, 2 H), 7.15 (m, 2 H), 7.31–7.68 (m, 9 H), 8.22 ppm (m, 1 H); MS *m/z* 572.2 [*M*+H]⁺; Anal. calcd for C₃₃H₃₇N₃O₆: C 69.33, H 6.52, N 7.35, found: C 69.21, H 6.62, N 7.40.

28 b: Colorless oil (2.22 g, 78%); ¹H NMR (CDCl₃): δ = 1.17 (m, 3 H), 1.25 (m, 3 H), 2.94 (m, 2 H), 3.33 (m, 1 H), 3.61 (m, 1 H), 3.92–4.04 (m, 7 H), 4.15 (m, 2 H), 4.25 (m, 2 H), 4.49 (m, 2 H), 6.74 (m, 2 H), 7.13 (m, 2 H), 7.20–7.62 (m, 8 H), 8.09 (d, 0.5 H, ³*J* = 8.1 Hz) 8.27 ppm (m, 1.5 H); MS *m/z* 572.3 [*M*+H]⁺; Anal. calcd for C₃₃H₃₇N₃O₆: C 69.33, H 6.52, N 7.35, found: C 69.18, H 6.58, N 7.24.

Synthesis of compounds 29a,b: Compounds 28a,b were treated according to the same procedure described for the preparation of 16a-e and 18a-d.

2-Ethoxy-3-{4-[2-(3-[E]-methoxyiminomethyl-5-{[Z/E]-methoxyi-

 (br s, 1 H); LC–MS: t_R =4.27 and 4.37 min (47 and 49%), *m/z* 544.1 [*M*+H]⁺; Anal. calcd for C₃₁H₃₃N₃O₆: C 68.49, H 6.12, N 7.73, found: C 68.56, H 6.01, N 7.62.

2-Ethoxy-3-{4-[2-(3-[E]-methoxyiminomethyl-6-{[Z/E]-methoxyimino]phenylmethyl}indol-1-yl)ethoxy]phenyl}propionic acid **29 b:** Pale-yellow foam (0.80 g, 74%); mp: 53–56 °C; ¹H NMR (DMSO): $\delta = 1.01$ (m, 3 H), 2.79 (m, 2 H), 3.24 (m, 1 H), 3.47 (m, 1 H), 3.80–4.01 (7 H), 4.22 (m, 2 H), 4.60 (m, 2 H), 6.69 (m, 2 H), 7.08 (m, 2 H), 7.30–7.50 (m, 6 H), 7.59 (m, 1 H), 7.84 (m, 1 H), 7.95 (m, 0.5 H), 8.05 (m, 0.5 H), 8.36 (m, 1 H), 12.54 (brs, 1 H); LC–MS: $t_{\rm R}$ =4.17 and 4.31 min (48 and 49%), MS *m/z* 544.2 [*M*+H]⁺; Anal. calcd for C₃₁H₃₃N₃O₆: C 68.49, H 6.12, N 7.73, found: C 68.36, H 6.22, N 7.60.

Docking

Molecular modeling studies were performed with SYBYL 6.9.1 running on SGI Octane 2 workstations. The geometry of S73362 was subsequently optimized using the Tripos force field^[28] including the electrostatic term calculated from Gasteiger–Hückel atomic charges. The method of Powell, available in the Maximin2 procedure, was used for energy minimization until the gradient value was < 0.001 kcal mol⁻¹ Å⁻¹. The crystallographic data for PPAR α and γ were retrieved from the RCSB Protein Data Bank (PDB) with particular concern for the structural proximity of the co-crystallized ligand and S73362. We therefore chose PDB codes 3FEI^[29] for PPAR α and 1KNU^[30] for PPAR γ . S73362 was docked using GOLD 3.2^[31] in both receptors, and the consistency of the 30 solutions generated was assessed before selecting the most representative.

In vitro assays

Membrane-bound PPARy binding assay: Binding assays were performed in 96-well plate format using a classical filtration assay with a human full-length PPAR γ construct [GST–PPAR LBD (25 µg mL⁻¹)] expressed in bacteria with some modifications regarding the conditions of the experiments. Membrane-associated PPARy was used as the biological source as previously described. Binding buffer consisted of 10 mм Tris·HCl (pH 8.2) containing 50 mм KCl and 1 mм dithiothreitol. Membrane preparations (5 µg mL⁻¹) were incubated for 180 min at 4°C in the presence of [3H]rosiglitazone [BRL49653, Amersham] (4 nm) and the tested compounds. Nonspecific binding was defined by using excess unlabeled rosiglitazone (10 µm). Incubation was terminated by the addition of ice-cold 50 mM Tris-HCl buffer (pH 7.4) followed by rapid filtration under reduced pressure through Whatman GF/C filter plates presoaked with ice-cold buffer, followed by three successive washes with the same buffer. Radioactivity was measured in a TopCount apparatus (Packard). The receptor preparation used during these experiments gave a B_{max} value of 49 pmol (mg protein)⁻¹ and a K_{d} value of 5.58 nm for [³H]rosiglitazone. The compounds were solubilized in pure DMSO and diluted to the appropriate working concentrations (100 µм to 0.1 nм). For each compound tested, plots of ligand concentration versus DPM of radioligand bound were constructed, and apparent K_i values were estimated from nonlinear leastsquares fit of the data, assuming simple competitive binding. The details of this assay have been reported previously.^[32]

Gene reporter assays: cell culture and transfection: Cos-7 cells were transiently transfected with luciferase reporter plasmid (pG5-TK-pGL3) in the presence of pGal4–hPPAR γ expression vector; this vector expresses chimeric proteins containing the Gal4 DNA binding domain fused to the human PPAR γ LBD coding sequence. Plas-

2191

mids pGal4-hPPAR γ and pG5-TK-pGL3 were constructed as described previously.^{[33]} Cells were seeded in $\varnothing\!=\!60\,\,\text{mm}$ dishes at a density of 5.5×10^5 cells per dish in DMEM supplemented with 10% FCS and incubated at 37 °C for 24 h prior to transfection. Cells were transfected in OptiMEM without FCS for 3 h at 37°C using polyethylenimine (PEI) with reporter and expression plasmids. The plasmid pBluescript (Stratagene, La Jolla, CA, USA) was used as carrier DNA to set the final amount of DNA to 5.5 μ g per dish. The pCMV-\beta-galactosidase expression plasmid was co-transfected as a control for transfection efficiency. Transfection was stopped by the addition of DMEM supplemented with 10% FCS, and cells were then incubated at 37 °C. After 16 h, cells were trypsinized and seeded in 96-well plates at a density of 2×10^4 cells per well and incubated for 6 h in DMEM containing 10% FCS. Cells were then incubated for 24 h in DMEM containing 0.2% FCS and various concentrations of test compound or vehicle (DMSO). At the end of the experiment, cells were washed once with ice-cold PBS, and luciferase and β -galactosidase assays were performed as described previously.^[34] Cells were incubated for 24 h in the presence of indicated concentrations of compound. Luciferase activity was measured and normalized to internal control β-galactosidase activity. Compounds that elicited, on average, at least 80% activation of PPAR α or PPARy versus WY 14,643 or rosiglitazone, respectively, (positive controls) were considered full agonists. EC_{50} values were estimated using GraphPad Prism software. All transfection experiments were performed at least three times.

In vivo models

The glucose- and triglyceride-lowering activities of the compounds prepared were then tested using 10-12-week-old male ob/ob mice. The mice were housed in a temperature-controlled room (21.8-24.0 °C) at a relative humidity of 45-65%, and a 12 h light-dark cycle (light period 5:30-17:30). Mice had access to filtered $(0.22 \ \mu m)$ tap water ad libitum and irradiated pelleted laboratory chow (transbreed, Special Diet Services, England) throughout the study. Compounds were prepared as a suspension in 1% hydroxyethylcellulose (HEC) for oral administration (10 mL kg⁻¹). The mice (n=8-12 per group) were dosed by gavage daily between 15:00 and 17:00 for four days. Randomization was performed based on glycemia values. The body weight gain (ΔBW in grams) of the animals was determined by measuring the difference between body weight at the beginning and end of the study for each mouse. At day 5 between 9:00 and 11:00 the mice were weighed, and blood samples were collected into heparin-containing tubes by retro-orbital puncture (500 µL per mouse). All procedures complied with International European Ethical Standards (86/609-EEC), the French National Committee (décret 87/848) for the care and use of laboratory animals and were approved by our institutional ethical committee. Plasma samples were prepared by centrifugation (2000 gfor 10 min), and stored at -20 °C. For triglycerides and insulin determination, the percent change in plasma level in the treated group was calculated relative to the mean plasma level in the vehicle-treated group. ANOVA, followed by Dunnett's comparison test (one-tailed) was used to estimate significant differences between the plasma glycemia, triglycerides, insulin, and ΔBW values between the control group and the individual compound-treated groups. The compound is considered active at the specific dosage administered if the difference in plasma levels has p < 0.05; all compounds with p > 0.05 were reported as inactive.

Acknowledgements

We gratefully acknowledge Ghislaine Zanirato for technical assistance with the in vivo experiments and the determination of plasmatic biochemical parameters.

Keywords: 2-ethoxypropionic acid \cdot diabetes \cdot docking \cdot drug design \cdot PPAR

- [1] C. Pirat, A. Farce, N. Lebegue, N. Renault, C. Furman, R. Millet, S. Yous, S. Speca, P. Berthelot, P. Desreumaux, P. Chavatte, J. Med. Chem. 2012, 55, 4027–4061.
- [2] I. Issemann, S. Green, *Nature* **1990**, *347*, 645–650.
- [3] D. J. Mangelsdorf, R. M. Evans, Cell 1995, 83, 841-850.
- [4] L. Michalik, W. Wahli, Curr. Opin. Biotechnol. 1999, 10, 564-570.
- [5] G. Rogler, *Gut* **2006**, *55*, 1067–1069.
- [6] a) Y. Liu, A. R. Miller, Drug Discovery Today 2005, 2, 165–169; b) J. P. Berger, T. E. Akiyama, P. T. Meinke, Trends Pharmacol. Sci. 2005, 26, 244–251.
- [7] B. G. Shearer, A. N. Billin, Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2007, 1771, 1082–1093.
- [8] P. B. Watkins, R. W. Whitcomb, N. Engl. J. Med. 1998, 338, 916-917.
- [9] S. O. Rzonca, L. J. Suva, D. Gaddy, D. C. Montague, B. Lecka-Czernik, Endocrinology 2004, 145, 401–406.
- [10] a) M. Vázquez, M. Merlos, T. Adzet, J. C. Laguna, Br. J. Pharmacol. 1996, 117, 1155–1162; b) E. Chaput, R. Saladin, M. Silvestre, A. D. Edgar, Biochem. Biophys. Res. Commun. 2000, 271, 445–450.
- [11] G. Chinetti-Gbaguidi, J. C. Fruchart, B. Staels, Curr. Opin. Pharmacol. 2005, 5, 177–183.
- [12] E. Adeghate, A. Adem, M. Y. Hasan, K. Tekes, H. Kalasz, Open Med. Chem. J. 2011, 5, 93–98.
- [13] M. Le Naour, C. Pirat, N. Lebegue, V. Leclerc, P. Berthelot, C. Dacquet, A. Ktorza, D. H. Caignard, FR Patent 07.06713, 2007.
- [14] L. McElweewhite, W. A. Goddard, D. A. Dougherty, J. Am. Chem. Soc. 1984, 106, 3461–3466.
- [15] C. J. Moody, E. Sie, J. J. Kulagowski, Tetrahedron 1992, 48, 3991-4004.
- [16] M. Regitz, W. Anschutz, A. Liedhegener, Chem. Ber. 1968, 101, 3734– 3743.
- [17] D. Haigh, H. C. Birrell, B. C. C. Cantello, R. M. Hindley, A. Ramaswamy, H. K. Rami, N. C. Stevens, *Tetrahedron: Asymmetry* **1999**, *10*, 1335–1351.
 [10] W. G. W. J. et al. C. P. et **1277**, 25, 72, 257.
- [18] W. S. Wadsworth, Org. React. **1977**, 25, 73–253.
- [19] N.-J. Kim, K. O. Lee, B. W. Koo, F. Li, J. K. Yoo, H. J. Park, K. H. Min, J. I. Lim, M. K. Kim, J. K. Kim, Y. G. Suh, *Bioorg. Med. Chem. Lett.* **2007**, *17*, 3595–3598.
- [20] M. P. Moyer, J. F. Shiurba, H. Rapoport, J. Org. Chem. 1986, 51, 5106– 5110.
- [21] K. Cherry, N. Lebegue, V. Leclerc, P. Carato, S. Yous, P. Berthelot, *Tetrahe*dron Lett. 2007, 48, 5751–5753.
- [22] Y. H. Yang, A. R. Martin, D. L. Nelson, J. Regan, *Heterocycles* 1992, 34, 1169–1175.
- [23] V. J. Demopoulos, I. Nicolaou, Synthesis 1998, 1519-1522.
- [24] B. Kuhn, H. Hilpert, J. Benz, A. Binggeli, U. Grether, R. Humm, H. P. Maerki, M. Meyer, P. Mohr, *Bioorg. Med. Chem. Lett.* 2006, 16, 4016– 4020.
- [25] L. C. Pickavance, M. Tadayyon, P. S. Widdowson, R. E. Buckingham, J. P. Wilding, Br. J. Pharmacol. 1999, 128, 1570–1576.
- [26] D. J. Parks, N. C. O. Tomkinson, M. S. Villeneuve, S. G. Blanchard, T. M. Willson, *Bioorg. Med. Chem. Lett.* **1998**, *8*, 3657–3658.
- [27] K. Andersson, US Patent 6258850, 2001.
- [28] M. Clark, R. D. Cramer, N. Van Opdenbosch, J. Comput. Chem. 1989, 10, 982-1012.
- [29] U. Grether, A. Benardeau, J. Benz, A. Binggeli, D. Blum, H. Hilpert, B. Kuhn, H. P. Märki, M. Meyer, P. Mohr, K. Püntener, S. Raab, A. Ruf, D. Schlatter, *ChemMedChem* **2009**, *4*, 951–956.
- [30] P. Sauerberg, I. Pettersson, L. Jeppesen, P. S. Bury, J. P. Mogensen, K. Wassermann, C. L. Brand, J. Sturis, H. F. Woldike, J. Fleckner, A.-S. T. Andersen, S. B. Mortensen, L. A. Svensson, H. B. Rasmussen, S. V. Lehmann,

Z. Polivka, K. Sindelar, V. Panajotova, L. Ynddal, E. M. Wulff, *J. Med. Chem.* **2002**, *45*, 789–804.

- [31] G. Jones, P. Willett, R. C. Glen, A. R. Leach, R. Taylor, J. Mol. Biol. 1997, 267, 727-748.
- [32] G. Ferry, V. Bruneau, P. Beauverger, M. Goussard, M. Rodriguez, V. Lamamy, S. Dromaint, E. Canet, J. P. Galizzi, J. A. Boutin, *Eur. J. Pharmacol.* 2001, 417, 77–89.
- [33] B. Staels, W. Koenig, A. Habib, R. Merval, M. Lebret, I. P. Torra, P. Delerive, A. Fadel, G. Chinetti, J. C. Fruchart, J. Najib, J. Maclouf, A. Tedgui, *Nature* 1998, 393, 790–793.
- [34] S. A. Kliewer, K. Umesono, D. J. Noonan, R. A. Heyman, R. M. Evans, *Nature* **1992**, *358*, 771–774.

Received: June 25, 2012 Revised: September 13, 2012 Published online on October 9, 2012