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Prostaglandins (PGs) are widely regarded as among the most 
important natural isolates ever discovered because of their 
broad range of bioactivities1–4 and unique structures. So far, 

more than 20 prostaglandin analogues have been marketed world-
wide5. The development of efficient methods to synthesize PGs has 
been a goal of synthetic chemists for almost 50 years5,6. However, 
current methods for the synthesis of PGs still suffer from low yields 
and lengthy steps. A concise and scalable synthetic route for more 
efficient and green production of PGs and related drugs is highly 
desirable. In this work, multiply substituted five-membered rings 
in PGs were constructed efficiently via the key enyne cycloisomer-
ization developed by our group7,8, with excellent stereoselectivity 
(>20:1 d.r., 98% e.e.). In addition, the crucial chiral centre on the 
scaffold of the PGs was efficiently installed using the asymmetric 
hydrogenation method developed by our group (with up to 98% 
yield and 98% e.e.)9. From our common intermediate, a series of PGs 
and related drugs could be produced in only two steps. Additionally, 
fluprostenol could be prepared on a 20-g scale from readily available 
starting materials.

The PGs were discovered in the 1930s by von Euler10, and 
their structures were identified in the 1960s by Bergström and 
colleagues11–13. PGs are a family of hormones that play impor-
tant roles in a wide range of essential biological processes and 
pathogeneses1–4,14. The most complex prostaglandin, PGF2α (1, Fig. 1),  
features a core cyclopentane bearing four contiguous stereocen-
tres and two aliphatic side chains (Fig. 1a). Owing to their unique 
structures and broad range of biological activities, PGs have drawn 
extensive interest in basic research and have become popular targets 
for organic chemists since the 1970s5,6. Following Corey’s pioneering 
synthesis of PGF2α

15, Woodward16, Stork17, Noyori18, Danishefsky19, 
Aggarwal20, Baran21, Grubbs22, Chen23 and many other groups24–27 
have made important contributions to the development of synthetic 
strategies for PGs5,6,28. From the perspective of applied science, PGs 
have demonstrated their importance and value in pharmaceuti-
cal chemistry. At present, there are more than 20 drugs (such as 2, 
3, 4, 5, 6, 7 and 8 in Fig. 1a) that are derived from PGs5, includ-
ing the billion-dollar drug bimatoprost (4; Fig. 1a). The syntheses 

of some PGs and related drugs29 have mainly relied on the Corey 
lactone (10)15, which is prepared from cyclopentadiene (9) in nine 
steps (Fig. 1b). However, additional multi-transformations were 
needed to access PGs from the Corey lactone (10), with some even 
requiring more than 10 steps29. In 2012, Aggarwal et al. described 
a novel short synthesis of PGF2α via a cascade aldol condensation 
that could furnish the cyclopentane framework with two adjacent 
chiral centres in one step20,30. Although remarkable progress has 
been made in the total synthesis of PGs, the development of a con-
cise and scalable route to PGs is still required. In particular, a read-
ily approachable and transformable common intermediate is very 
much needed for the divergent and flexible synthesis of the whole 
family of PGs. In this Article, we report a concise and scalable total 
synthesis of PGF2α (Fig. 1c; only six steps from 11), as well as sev-
eral PG-related drugs from readily available starting materials, with 
enyne cycloisomerization7,8 and asymmetric hydrogenation as the  
key steps.

The major challenge in the asymmetric synthesis of PGs is to 
accurately control the stereochemistry of the four contiguous chi-
ral centres on the core cyclopentane ring and arrange the appro-
priate functionalities for the installation of the two side chains. In 
contrast to some powerful ring-formation reactions, such as the 
Pauson–Khand and Nazarov reactions, that have been devised for 
furnishing five-membered rings, enyne cycloisomerization can 
promptly increase the molecule complexity and establish stereocen-
tres in a more predictable way, so it represents another efficient and 
step-economical technique for the construction of five-membered 
rings31. In 2000, the rhodium-catalysed cycloisomerization of 
1,6-enyne was reported by our group8, and the reaction was termed 
a name reaction in 2014 (Fig. 2a)7. This rhodium-catalysed cycloi-
somerization reaction has many advantages. On the one hand, 
excellent enantioselectivities could be achieved during the forma-
tion of various hetero or carbocyclic five-membered rings under 
mild conditions with inexpensive 2,2′-bis(diphenylphosphino)-
1,1′-binaphthyl (BINAP) as the ligand. On the other hand, the regio-
chemistry and geometry of exocyclic olefins could be specifically 
controlled, making further manipulations easier.
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As mentioned, we rationalized that our enyne cycloisomeriza-
tion could serve as a suitable tool for building the core cyclopen-
tane ring of PGs in a more efficient manner than previous synthetic 
techniques. Here, we propose an ideal intermediate 12 (Fig. 2b), 
primed with proper functionalities for connection of the two side 
chains. From this intermediate and with different α- and ω-chains, 
PGF2α-series compounds can be rapidly obtained through Grubbs 
cross-metathesis and Wittig olefination. Then, intermediate 12 can 
be traced back to 16 through successive reductions and deprotec-
tions. It was obvious that compound 16 is a typical product of our 
enyne cycloisomerization originating from 17. By nucleophilic 
addition, Weinreb amide 18 can be converted to compound 17. 
Enantioenriched compound 18 is readily accessible through asym-
metric hydrogenation. Furthermore, after conformational analysis, 
we conclude that the first stereogenic centre was able to induce the 
other three stereocentres in the PGs.

results and discussion
As depicted in Fig. 3, we initiated our synthesis of PGs with the 
asymmetric hydrogenation of the easily available Weinreb amide 
11. Nevertheless, the potential obstacles exceeded those anticipated 
due to the low reactivity of compound 11 and the instability of the 

reduced product under certain basic conditions. One apparent side 
reaction was the retro aldol-type reaction, which released croton-
aldehyde. After an extensive screening of the reaction conditions 
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(Supplementary Table 1 provides details), Ir(i)/f-amphox was found 
to be the best catalyst, and compound 11 could be hydrogenated 
and protected by TBS in one pot to produce compound 18 in 70% 
yield and 94% e.e. (substrate/catalyst = 1,000). In the next step, the 

nucleophilic addition of lithiated 19 to Weinreb amide 18 provided 
1,6-enyne 17 in 96% yield. Four other 1,6-enyne substrates bear-
ing different alkyne moieties (for example, diethylacetal propiolal-
dehyde, triethylsilyl propargyl alcohol, trimethylsilylacetylene and 
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free acetylene) were also obtained (see Supplementary Fig. 3 for 
details). Under the standard protocol, only the cycloisomerization 
of substrate 17 proceeded smoothly to afford the desired product 

in high yield. (S)-BINAP matched better with the enyne substrate 
by delivering 16 in 85% yield and 98% e.e. By contrast, (R)-BINAP 
could only give 16 with <10% yield and 40% e.e. Key intermediates 
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12 and 20 could be obtained from 16 in one pot by a sequential 
reduction in the presence of Ph2SiH2 and LiBEt3H, followed by full 
or partial deprotection. This one-pot reaction could also proceed in 
a stepwise manner (see Supplementary Fig. 2 for details). In the con-
jugate 1,4-reduction, Ph2SiH2 and Sn(nBu)3H both have similar per-
formance in gaining excellent diastereoselectivity (d.r. > 20:1). In 
the later stereocontrolled 1,2-reduction, inexpensive super hydride 
was found to be the best reductant upon screening. Finally, the TBS 
and the acetal groups could be removed simultaneously with aque-
ous HCl solution to afford 12, or TBS was selectively detached in the 
presence of tetrabutylammonium fluoride (TBAF) to give 20. The 
relative configuration of these two key intermediates was further 
determined by X-ray crystallographic analysis. The single crystal 
analysis of compound (±)-21 derived from racemic 20 showed that 
all stereocentres exactly matched those of PGF2α (Fig. 3; for details 
see Supplementary Fig. 4).

We customized different synthetic methods for various ω side 
chains (Fig. 4). Compounds 22 and 23 could be hydrogenated enan-
tioselectively on a gram scale with the protocol developed by our 
group9, with excellent yields and enantioselectivity. The resulting 
diols 24 and 25 were then transformed into corresponding epoxides 
26 and 27 through mono-tosylation and intramolecular nucleo-
philic substitution. Treatment of the epoxides with deprotonated 
trimethyl sulfonium iodide led to allylic alcohols 28 and 29, respec-
tively (Fig. 4a). The chiral tertiary allylic alcohol 32 was conveniently 
obtained from 30 via Sharpless epoxidation and a subsequent reduc-
tive ring-opening reaction (Fig. 4b). Another synthetic route for 
the ω side chains bearing different aromatic rings was also devised. 
Substituted phenols 33 and 34 were subjected to epichlorohydrin in 
the presence of K2CO3, affording epoxides 35 and 36 in high yields. 
Afterwards, following the same operations as employed for 26 and 
27, epoxides 35 and 36 were converted to the relevant allylic alcohols 
37 and 38 in 90% and 91% yields, respectively (Fig. 4c).

With the enantioenriched key intermediates 12 and 28, the 
cross-metathesis reaction was tested with the assistance of the 
Hoveyda–Grubbs second-generation catalyst (Fig. 5a)24. The desired 
product 15 was furnished in 66% yield. Finally, hemiacetal 15 under-
went a Wittig reaction with phosphonium salt 39 to afford PGF2α 
in 55% yield. Starting from readily available material 11, the total 
synthesis of PGF2α was thus accomplished in six steps from 11 in 15% 
overall yield. From versatile building block 12, the synthesis of latano-
prost (3), carboprost (5) and cloprostenol (40) were also achieved 
(Fig. 5b). Latanoprost (3) was synthesized in 5.7% overall yield after 
eight steps from 11 (additional hydrogenation and esterification 
steps were needed for latanoprost; Supplementary Fig. 6). Carboprost 
(5) and cloprostenol (40) were synthesized in 23% and 19% overall 
yields, respectively, in six steps from 11. According to our investiga-
tion, intermediate 20 was more stable under cross-metathesis condi-
tions and usually resulted in higher yields than 12. A one-more-step 
longer yet more scalable route was thus invented based on interme-
diate 20. Taking the cross-metatheses of 20 and 38 as representa-
tive, 26 g of acetal 41 could be obtained in 81% yield (93% based on 
recovered starting material) from 23 g of intermediate 20. Hydrolysis 
of the acetal 41 in aqueous HCl followed by Wittig olefination  
gave 23.1 g of fluprostenol (42) in 81% yield. Travoprost (6) was then 
gathered in 74% yield after a simple esterification.

In addition, the formal synthesis of PGE2 (2) from 16 was also 
established (Fig. 5d). Another useful intermediate (43) possessing 
a carbonyl group was obtained by conjugated 1,4-reduction and 
simultaneous deprotection in one pot. Following cross-metathesis 
of 43 and allylic alcohol 28, compound 44 was produced in 67% 
yield. This precursor renders PGs containing carbonyl groups, such 
as PGA, PGB and PGE6, relatively easier to access. In an effort to 
obtain PGE2 directly, 44 was subjected to phosphonium salt 39, 
adhering to many classic Wittig olefination protocols. However, 
all attempts failed and only resulted in the decomposition of 44. 

Fortunately, the aldehyde could be converted to terminal alkene 
(45) with moderate yield. PGE2 (2) could be obtained after one-step 
cis-cross-metathesis of 45 according to the reported procedure27.

Conclusion
In summary, we have successfully achieved the short, highly enan-
tioselective and scalable syntheses of PGs with our enyne cycloi-
somerization as the key step from readily available starting materials. 
In this synthesis, the asymmetric hydrogenation protocol developed 
by our group played a critical role in introducing key stereogenic 
centres. All reactions could be carried out on a multi-gram scale and 
most on a decagram scale. Additionally, our common intermedi-
ates in this work, alongside various α and ω side chains, facilitated 
the divergent synthesis of PGs. These versatile common precursors 
will help to expand the existing chemical space of PGs and pro-
vide access to more promising therapeutic analogues. We have also 
shown that the key enyne cycloisomerization could offer a strategic 
insight into designing synthetic routes towards multi-functionalized 
five-membered rings. In particular, this work has a high possibility 
to be developed into industrial production.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41557-021-00706-1.
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Methods
Procedure for the rhodium-catalysed decagram-scale enyne cycloisomerization. 
In an argon-filled glovebox, to a solution of 17 (17.3 g, 53.4 mmol) in degassed 
1,2-dichloroethane (900 ml) at room temperature we successively added 
[Rh(COD)Cl]2 (1.3 g, 2.67 mmol), (S)-BINAP (3.3 g, 5.34 mmol) and AgSbF6 (2.2 g, 
6.41 mmol). The mixture was stirred for 5 min at room temperature. The resulting 
mixture was filtered over a pad of silica gel then concentrated in vacuo. The 
crude residue was purified by silica gel column chromatography (8:1 petroleum 
ether:ethyl acetate) to give 16 (14.8 g, 45.4 mmol, 85%, 98% e.e.) as a light-yellow 
oil. The e.e. of the product was determined by HPLC on a Chiralpak OD-H column 
with hexane:isopropanol = 99:1; flow rate = 1.0 ml min−1; UV detection at 254 nm; 
tR = 8.39 min (major), tR = 10.25 min (minor).

Data availability
Crystallographic data for the structures reported in this Article have been 
deposited at the Cambridge Crystallographic Data Centre, under deposition 
no. CCDC 2013314 (compound 21). Copies of the data can be obtained free of 
charge via https://www.ccdc.cam.ac.uk/structures/. The experimental procedures 
and characterization of all new compounds are provided in the Supplementary 
Information. All other data supporting the findings of this study are available 
within this Article and its Supplementary Information.
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