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Controlled Alcohol-Carbonyl Interconversion by Nickel Catalysis**
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The ability to transform one functional group into another lies
at the heart of organic chemistry. Such functional-group
interconversions do not involve carbon—carbon bond-forming
reactions and are thus seen as less efficient for the con-
struction of complex molecules, however, these interconver-
sions are often critical to “set up” a molecule for such a
transformation. The oxidation of primary and secondary
alcohols (1 and 3) to produce aldehydes (2) and ketones (4)
prior to the addition of organometallic species is a prime
example (Scheme 1). Although this reaction is often essential
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Scheme 1. Interconversion of alcohols and carbonyl compounds
through oxidation and organometallic addition. The Ni/IPr catalyst
described here promotes all possible multistep transformations in one
pot (1—3, 1—4, 15, 2—4, 25, 3-5).

for the subsequent carbon—carbon bond-forming transforma-
tion, it does add an extra, linear step to the sequence. Thus, we
imagined that performing the two steps, oxidation and
addition, together would greatly simplify synthetic routes by
essentially eliminating the need to carry out a preliminary
oxidation before converting, for example, a primary alcohol
(1) into a secondary alcohol (3), or similarly 3 into a tertiary
alcohol (5).

Numerous practical advantages are associated with such
one-pot multistep alcohol-carbonyl interconversions, but a
uniform methodology has not been developed, partly because
of the incompatibility of the reaction conditions. Whereas
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alcohol-to-carbonyl transformations are oxidative, the
reverse processes such as carbonyl addition reactions are
reductive in nature. Herein, we report that [Ni(cod),]/IPr
(cod =1,5-cyclooctadiene, IPr=1,3-bis(2,6-diisopropylphe-
nyl)imidazol-2-ylidene) serves as a general catalyst for the
controlled one-pot oxidation—addition of alcohols and car-
bonyl compounds. We demonstrate the feasibility of all
possible multistep transformations in alcohol-carbonyl inter-
conversions (Scheme 1). A one-pot nickel-catalyzed synthesis
of flumecinol (a hepatic microsomal enzyme inducer) is also
described.

As an important progress toward controlled carbonyl-
alcohol interconversions, we recently established that the
[Ni(cod),]/TPr catalyst promotes the otherwise difficult inter-
molecular 1,2-addition of arylboronate esters to unactivated
ketones and aldehydes.”” Among the various arylboron
reagents screened, arylboronic acid neopentyl glycol ester
ArB(neo) turned out to be the most reactive. The advantage
of our [Ni-IPr] catalytic system!® over other transition-metal-
catalyzed organoboron-based 1,2-additions is obvious from
the viewpoint of the substrate scope. While other catalytic
systems are generally only applicable to aldehydes!®! and some
electronically and strain-activated ketones, our [Ni-IPr]
catalysis shows good reactivity not only toward aldehydes but
also toward diaryl, alkyl aryl, and dialkyl ketones under mild
reaction conditions.”) The high reactivity of our [Ni-IPr]
catalyst might be partly due to the unique Ni’/Ni" mechanism
(right-hand catalytic cycle, Scheme 2).

Since many transition-metal complexes are able to
mediate the oxidation of alcohols to aldehydes or ketones,”!
we envisioned that our nickel catalysis could be extended to a
controlled alcohol-carbonyl interconversion through a one-
pot oxidation—addition with an appropriate combination of
oxidant and organoboron compound. When identifiying a
suitable reagent pair that is capable of achieving this
synthetically useful process, we were particularly attracted
by the reports of Navarro and co-workers who described the
application of [Ni(cod),]/IPr, which is identical to our
organoboronate addition catalyst, in the oxidation of secon-
dary alcohols to ketones by using chlorobenzene (PhCl) as an
oxidant and KO7Bu as a promoter (left-hand catalytic cycle,
Scheme 2).[#1

We must stress that the merging of these two catalytic
cycles (Scheme 2) is not as straightforward as we initially
surmised. At the outset, there are two critical hurdles to
overcome for our strategy to provide a synthetically useful
protocol for alcohol-carbonyl interconversions: 1) the oxida-
tion of primary alcohols to aldehydes must be achieved
(Navarro and co-workers reported that primary alcohols do
not undergo oxidation under the conditions that they
described)® and 2) unwanted side-reactions such as the
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Scheme 2. Nickel catalysis for the interconversion of alcohols and
carbonyls.

Suzuki-Miyaura coupling of organoboron species with PhCl
must be suppressed.”’!

We first investigated conditions for converting primary
alcohols 1 to secondary alcohols 3 through oxidation—addition
using a single Ni catalyst. Gratifyingly, we were able to find
suitable conditions after extensive screening. The reaction of
benzyl alcohol (1a, 1.0 equiv) and PhB(neo) (6a, 3.0 equiv) in
the presence of [Ni(cod),] (10 mol %), IPr-HCI (10 mol %),
PhCl (2.4 equiv), and CsF (6.0 equiv) in toluene/1,4-dioxane
at 60°C furnished the desired secondary alcohol 3aa and
ketone 4aa in 51 % and 32 % yield, respectively (Scheme 3;
see Ref. [10] for details regarding the numbering of com-
pounds). The formation of benzaldehyde (2a) was not
observed under these conditions. Notably, the formation of
biphenyl resulting from the Suzuki-Miyaura coupling of 6a
and PhCl was suppressed under these conditions (<2 %

oo
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Scheme 3. a) Nickel-catalyzed oxidation—addition of primary alcohol 1a
with PhCl and 6a. b) Reaction without the boron reagent shows its
critical role in the oxidation step.
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yield). The key to this discovery is the use of both a toluene/
1,4-dioxane solvent system and an excess of 6a and CsF.
Although the issue of product selectivity (3aa/4aa) remained
to be addressed, we were delighted to observe the feasibility
of the desired one-pot process.

As already reported by Navarro and co-workers, a system
consisting of the [Ni-IPr] catalyst and PhCl cannot oxidize
primary alcohols.’! We confirmed that the reaction of 1a in
the absence of boron reagent 6 a does not give rise to 2a under
our conditions (Scheme 3). Therefore, the arylboronate is
likely to play a secondary role in the oxidation of primary
alcohols, but its mode of action is debatable and unclear at
present.!!!]

Nevertheless, with a method for the oxidation—addition of
primary alcohols 1 established, we next investigated con-
ditions for making both secondary alcohols 3 and ketones 4 in
a controlled manner. The amounts of arylboronate, PhCl, and
CsF were examined in greater detail by using the oxidation—
phenylation of 2-methylpropanol (1b) as a model reaction
(Table 1). It was found that secondary alcohol 3ab could be

Table 1: Controlled one-pot synthesis of secondary alcohol 3ab and
ketone 4ab from primary alcohol 1b and arylboronate 6a.”

PhB(neo) (6a)
\HOH m \H\Q
b

[Ni(cod),] (10 mol%)
IPr HCI (10 mol%)

PhCI CsF
toluene/1,4-dioxane
60 °C, 12-24 h
(1.0 equiv)

Entry 6a PhCl CsF 3ab 4ab

[equiv] [equiv] [equiv] [%6] [%0]
1 1.2 1.2 1.0 12 <5
2 1.2 1.2 4.0 18 14
3 1.2 2.4 4.0 15 1
4 2.0 2.4 6.0 22 32
5 3.0 1.0 4.0 42 0
6 3.0 0 6.0 0 0
7 3.0 1.0 0 0 0
8 3.0 2.0 6.0 0 77
9! 3.0 2.4 10 0 83
10t 3.0 2.4 10 0 74

[a] Conditions: 1b (0.25 mmol, 1.0 equiv), 6a, [Ni(cod),] (25 umol, 10
mol %), IPr-HCl (25 umol, 10 mol %), PhCl, CsF, toluene (1 mL), 1,4-
dioxane (1 mL), 60°C, 12-24 h. [b] 15 mol % of [Ni(cod),] and 15 mol %
of IPr-HCl were employed. [c] PhB(OH), was employed instead of 6a.

selectively obtained when 1b (1.0 equiv) was treated with 6a
(3.0 equiv), PhCl (1.0 equiv), and CsF (4.0 equiv) in the
presence of [Ni-IPr] catalyst (10 mol %; Table 1, entry 5).0%7]
Both PhClI and CsF are necessary for this reaction to occur
(Table 1, entries 6 and 7). By increasing the amounts of PhCl
(2.0-2.4 equiv) and CsF (6.0-10 equiv), ketone 4ab was
produced selectively (Table 1, entries 8 and 9).*! We also
found that phenylboronic acid can be used as an arylating
agent in this catalytic reaction (Table 1, entry 10).
Encouraged by the success of the oxidation—addition and
oxidation—addition—oxidation sequences from primary alco-
hols 1, we next investigated the addition—oxidation and
addition—oxidation—addition sequences from aldehyde 2b
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Scheme 4. Controlled one-pot synthesis of ketone 4ab and tertiary
alcohol 5aab from aldehyde 2b and arylboronate 6a.

[Ni(cod),] (10 mol%)

(Scheme 4). By adjusting the amounts of phenylboronate 6a,
PhCl, and CsF, both ketone 4ab and tertiary alcohol 5Saab
were selectively synthesized from 2b in good yields.!"’!

We subsequently investigated the two-step oxidation—
addition reaction to form synthetically more challenging
tertiary alcohols 5 from secondary alcohols 3 (Scheme 5).1"!
By tuning the reaction temperature and the amounts of PhCl
and CsF, we were able to establish general conditions for this
challenging reaction. As shown in Scheme 5, a range of
structurally diverse tertiary alcohols 5 can be synthesized in
good yields. Aryl alkyl (acyclic and cyclic), diaryl, and dialkyl
(acyclic and cyclic) carbinols 3 are all potential substrates for
this present nickel-catalyzed reaction. Both electron-rich and
electron-deficient arylboronates 6 displayed good reactivity.

As an ultimate one-pot multistep reaction, we finally
investigated whether a four-step oxidation—addition—oxida-
tion—addition sequence to produce tertiary alcohols § from
primary alcohols 1 would be possible with the [Ni-IPr]
catalyst (Scheme 6).11 We also tried to introduce two differ-
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Scheme 5. Controlled one-pot synthesis of tertiary alcohols 5 from
secondary alcohols 3 and arylboronates 6.
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Scheme 6. Controlled one-pot synthesis of tertiary alcohols 5 from
primary alcohols 1 and arylboronates 6.

5ain (44%)
flumecinol

ent aryl groups into the final tertiary alcohol structure by
applying two arylboronates 6 in a sequential fashion. Gratify-
ingly, the following procedure was identified to realize this
four-step transformation with reasonable efficiency. A pri-
mary alcohol 1 (1.0 equiv) was treated with an arylboronate 6
(3.0 equiv) in the presence of [Ni(cod),] (15 mol % ), IPr-HCl
(15 mol %), PhCl (2.4 equiv), and CsF (10 equiv) in toluene/
1,4-dioxane at 60°C for 10 h to furnish the corresponding
arylated ketone 4 insitu."” Then, a second arylboronate 6
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(3.0 equiv) was added to the same flask and the resultant
mixture was further heated at 80°C for 14 h. After aqueous
workup, the target tertiary alcohol 5§ was obtained in
reasonable overall yield (Scheme 6).*! Moreover, to show-
case this unprecedented multistep transformation, we suc-
cessfully demonstrated the one-pot synthesis of flumecinol
(5ain), a hepatic microsomal enzyme inducer.

In summary, we have developed a general synthetic
platform for the interconversion of alcohols and carbonyl
compounds in a predictable and controlled fashion in one pot.
Under the action of the [Ni-IPr] catalyst, PhCl, CsF, and
arylboronates, all possible multistep alcohol-carbonyl inter-
conversions (1—3, 1—4, 1—5, 2—4, 2—5, 3—5) have been
achieved with good overall efficiency.'’”) An unexpected role
of arylboronates in the oxidation of primary alcohols has been
shown. Furthermore, we applied our methodology to the one-
pot synthesis of a hepatic microsomal enzyme inducer. These
fundamental yet previously unachieved one-pot multistep
interconversions of alcohols and carbonyl compounds should
greatly streamline chemical syntheses.
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Communications

to the substrate; 2) the oxidation step requires one equivalent of ~ [15] Other organometallic reagents could be applied in the present

chlorobenzene relative to the substrate; 3) arylboronate addi- multistep alcohol-carbonyl interconversion. While attempts to
tion to the ketone requires a reaction temperature of 80°C; apply organozinc reagents were so far unsuccessful, some
4) arylboronate decomposes at 60°C in parallel to its participa- Grignard reagents could be used, for example, in the synthesis
tion in oxidation and addition. of tertiary alcohols from primary or secondary alcohols. How-

[14] J. T. Lahtela, B. Gachalyi, S. Eksymi, A. Hiamildinen, E. A. ever, the carbonyl addition steps are most likely not catalyzed by
Sotaniemi, Br. J. Clin. Pharmacol. 1986, 21, 19. nickel. Details will be reported in due course.
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