Synthesis of a (2*R*,6*R*)-2-(Hydroxymethyl)-6-propa-1,2-dienyl-2*H*-pyran-3(6*H*)-one Derivative, a New Enone for the Convergent Construction of C-Glycosides of C-Disaccharides

Yao-Hua Zhu, Pierre Vogel*

Section de Chimie de l'Université, BCH, CH-1015 Lausanne-Dorigny, Switzerland Fax +41 21 692 39 75; E-mail: pierre.vogel@ico.unil.ch *Received 22 September 2000*

Abstract: The previously unknown (2R,6R)-2[(tertbutyl)diphenylsilyloxy]-6-propa-1,2-dienyl-2H-pyran-3(6H)-one (16) was derived from tri-O-acetylglucal. Conjugate addition of PhSAlMe₂ to 16 followed by enolate trapping with 1,2-O-isopropylidene-3-O-methyl-a-D-xylo-pentodialdo-1,4-furanose and NaBH4 reduction of the intermediate aldol furnished a new C-glycoside of a C-disaccharide: 4,8-anhydro-9-O-[(tert-butyl)diphenylsilyl]-6-[(5R)-1,2-O-isopropylidene-3-O-methyl-a-D-xylo-furanos-5-C-yl]-5-S-phenyl-1,2,3,6-tetradeoxy-5-thio-D-glycero-L-gulo-nona-1,2dienitol (24). Similarly, conjugate addition of PhMe₂SiZnMe₂Li to 16, followed by cross-aldol reaction with 2,6-anhydro-1,3,4,5-tetra-O-[(tert-butyl)dimethylsilyl]-D-glycero-L-manno-heptose (27), and reduction gave either 4,8-anhydro-6-{(1S)-2,6-anhydro-3,4,5,7-tetra-O-[(tert-butyl)dimethylsilyl-D-glycero-L-manno-heptitol-1-Cyl}-9-O-[tert-butyl)diphenylsilyl]-1,2,3,5,6-pentadeoxy-5-phenyldimethylsilyl-D-glycero-D-manno-(29) or L-gulo-nona-1,2-dienitol (30).

Key words: aldol reaction, carbohydrate-derived enone, conjugate addition, C-disaccharides, C-glycosides, glycal, C-silyl substituted carbohydrate

Because of their bicyclic structure levoglucosenone $(1)^1$ and isolevoglucosenone $(2)^2$ are attractive templates for the convergent and stereoselective construction of disaccharide mimetics,3 including C-disaccharides.4-8 For instance, the conjugate addition of a nucleophile Nu⁻M⁺ to enones 1 and 2 occurs on their less sterically hindered face⁹ leading to enolate intermediates **3** and **4**, respectively. These species can add to sugar-derived carbaldehydes of type 5 to generate aldols 6^{10} and 7,^{5,8} respectively, that are precursors of $C(1\rightarrow 3)$ -disaccharides (Scheme 1). Alternatively, enolates 3 and 4 can be trapped as their trifluoromethanesulfonates 8 and 9, respectively that undergo Nozaki-Kishi couplings⁶ with aldehydes 5 giving adducts 10 and 11 that can be transformed into the corresponding $C(1\rightarrow 2)$ and $C(1\rightarrow 4)$ -disaccharides, respectively (Scheme 2).⁷

During the development of this chemistry we encountered some difficulties in the conversion of 1,6-anhydropyranose moieties into the corresponding C-pyranosides. To circumvent this problem, we proposed the substitution of templates 1 and 2 by monocyclic enones. We set out to synthesize enone 16 and explore its potential as a precursor to C-disaccharides.^{11,12} We view the allenyl group as a masked carbaldehyde, which opens up the possibility of an iterative method for the assembly of oligomers containing C-glycosidic linkages.

Scheme 1

Scheme 2

C-Glycosidation of tri-O-acetyl glucal (12) with allylsilane¹³ and trimethylsilylmethylacetylenes¹⁴ are well known processes.^{15,16} We have found that the dropwise addition of Me₃SiOSO₂CF₃ to a 1:1.5 mixture of 12 and propargyltrimethylsilane in CH₃CN at 0 °C gives the α-Callenyl derivative 13. This α -C-allenation of glucal 12 was well precedented^{13,15} and the outcome supported by the absence of a NOE between the anomeric proton H-1 ($\delta_{\rm H}\,{=}\,4.82$ ppm) and H-5 ($\delta_{\rm H}\,{=}\,3.78$ ppm) and the observation of weak NOE's between the signals of H-1 ($\delta_{\rm H}$ = 4.82 ppm), H-4 ($\delta_{\rm H}$ = 5.25 ppm) and H-6 ($\delta_{\rm H}$ = 4.16, 3.78 ppm). Methanolysis of the acetates (MeOH, K₂CO₃) provided diol 14 in 83% yield. Subsequent selective silvlation of its primary alcohol with (t-Bu)(Ph)₂SiCl/pyridine/4-dimethylaminopyridine furnished 15 (64%), an unstable compound that was decomposed with silica gel. Hence, the above three successive reactions were performed without purification providing 15 in 67% based on glucal 12. Dess-Martin periodinane oxidation¹⁷ of **15** gave enone **16**¹⁸ in 71% yield (Scheme 3).

Our goal being to generate C-pyranosides and C-disaccharides by conjugate additions to enone 16, we examined first the possibility to introduce a protected hydroxy group following the method we had used with the bicyclic enones 1 and 2 (Scheme 1, 2). Contrary to levoglucosenone $(1)^{10}$ and isolevoglucosenone $(2)^5$ that underwent smooth addition of all kind of alcohols (including benzyl alcohol) giving the corresponding β -alkoxyketones with high exo-stereoselectivity, the treatment of monocyclic enone 16 with benzyl alcohol (Et₃N, 20 °C, no solvent) did not lead to any detectable adduct. With sodium benzylate (THF, DMF, -50 to -20 °C) 16 was transformed into an untractable mixture. Since phenylthio ethers can be converted into ketones by oxidation first into the corresponding sulfoxides, followed by Pummerer rearrangements,¹⁹ we studied the conjugate additions of thiophenol and thiophenolates to enone 16.

In the presence of an excess of thiophenol and one equivalent of Et_3N (CHCl₃, 20 °C) **16** gave a 1:2 mixture of adducts **17** and **18**. With Me₂AlSPh in CH₂Cl₂ **16** (-78 °C) generated a single aluminum enolate **19** that reacted with

n-hexanal to give a 1:1 mixture of aldols **20a** and **20b** (Oshima's reaction,²⁰ Scheme 4) in 50-60% yield. Trapping enolate **19** with aldehyde **21** led to a mixture of aldols **22** and **23** that were separated by column chromatography on silica gel and isolated in 15% and 29% yield, respectively (Scheme 5). Reduction of the major aldol **23** with NaBH₄ in MeOH/THF was highly stereoselective and provided the C-disaccharide **24** in 77% yield.²¹

83

Scheme 4

Scheme 5

Coupling constants between vicinal protons and the 2-D-NOESY ¹H NMR spectrum of **24** established the α -configuration of the C-glycoside linkage. The *trans* diaxial relationship between H-4/H-5, H-5/H-6 and H-6/H-7 proton pairs was established by the vicinal coupling constants ³*J*(H-4,H-5) = 10.2 Hz, ³*J*(H-5,H-6) = ³*J*(H-6,H-7) = 9.5 Hz.

It is well known that trialkylsilyl groups can be considered as masked hydroxy groups (Tamao oxidation).22 Fleming and co-workers^{23,24} have developed efficient nucleophilic silyl reagents for their conjugate additions to enones. When reacted with PhMe₂SiZnMe₂Li²⁴ in THF at -78 °C 16 gave a single adduct 25 in 87% yield. The trans relative configuration of the 4-allenyl and 5-(dimethyl)phenylsilyl substituents, as well as the conformation proposed for 25 (Scheme 6) were given by its ¹H NMR data (${}^{3}J$ (Haxial-5,Haxial-6) = 9.5 Hz). With the hope to equilibrate 25 with a diastereomer we attempted a Lewis acid promoted heterolysis of its tetrahydropyranosyl moiety. Because of the assistance by the 4-allenyl (π -conjugation) and the 5-silyl substituent (β -silyl effect²⁵) the O-C(4) σ -bond of 25 is likely to undergo S_N heterolysis. We thus treated 25 with BF₃·Et₂O in MeCN at -30 °C. A quick reaction occurred with β -elimination of the (dimethyl)phenylsilyl group giving trienone 26^{26} in 59% yield (Scheme 6). The heterolytical process, apparently, does not allow for σ -bond rotations and internal return: the elimination is too easy (β -silyl electrofugal group).

Scheme 6

Treatment of ketone **25** with $(Me_3Si)_2NLi(THF,-78^{\circ}C)$ gave an enolate that did not react with β -C-galactopyranosylformaldehyde derivative **27**.²⁷ Zincation of the lithium enolate of **25** with ZnCl₂ followed by addition of aldehyde **27** failed to give the expected aldol. Better results were obtained with the boron enolate²⁸ prepared by treatment of **25** with dicyclohexylboron chloride and Et₃N at -15 °C.²⁹ After the addition of **27** to the boron enolate of **25**

(-15 °C, 4 h), the resulting aldol-borate was oxidized with 35% H₂O₂ (pH 7, phosphate buffer) giving adduct **28** isolated in 24%, together with 30% of recovered 25 (Scheme 6). The retro-aldol reaction appears to be a problem during the work-up of these reactions. Stereoselective reduction of aldol 28 with Me₄NBH(AcO)₃³⁰ afforded diol 29 in 59% vield.³¹ The D-altro-configuration of its C-pyranosyl unit was established by its ¹H NMR spectrum that showed ${}^{3}J(\text{H-4, H-5}) = 10.8 \text{ Hz}, {}^{3}J(\text{H-5, H-6}) = 12.1 \text{ Hz}, {}^{3}J(\text{H-6, H-6}) = 12.1$ H-7) = 5.0 Hz, ${}^{3}J$ (H-7, H-8) = 5.2 Hz. Reduction of the boron-aldolate obtained from $25+27+(c-\text{Hex})_2\text{BCl/Et}_3\text{N}$ with LiBH₄ $(-30^{\circ}C)^{32}$ provided **30** as major product the structure of which was given by its ¹H NMR and 2D-NOESY-¹H NMR spectra (${}^{3}J(H-4, H-5) = 9.2 \text{ Hz}, {}^{3}J(H-5,$ H-6) = 12.2 Hz, ${}^{3}J(H-6, H-7) = 9.2 Hz, {}^{3}J(H-7, H-8) = 2.2$ Hz). The 1'S configuration of aldol 28 was not established unambigously. It is proposed to be as such by analogy with other cross-adol reactions of boron enolates known to adopt closed transition structures (Zimmerman-Traxler model).33

The new enone template **16** has been derived readily from tri-O-acetylglucal. Conjugate addition to **16** followed by cross-aldol reaction with sugar-derived carbaldehydes generate C-disaccharide precursors with high diastereose-lectivity. The systems so obtained are expected to be useful for the construction of C-glycosides of C-disaccharides and of C,C-trisaccharides.

Acknowledgement

We thank the *Swiss National Science Foundation*, the *Fonds Herbette* (Lausanne) and the "*Office Fédéral de l'Education et de la Science*" (COST D13/0001/99 project) for financial support. We are grateful also to Mr. Martial Rey and Francisco Sepulveda for their technical help.

References and Notes

- Levoglucosenone and Levoglucosans; Chemistry and Applications, Witczak, Z.J., Ed., ATL Press, Inc. Science Publishers, Mount Prospect, IL, USA, 1994; Taniguchi, T.; Nakamura, K.; Ogasawara, K. Synlett 1996, 971.
- Horton, D.; Roski, J.P.; Norris, P. J. Org. Chem. 1996, 61, 3783; see also: Furneaux, R.H.; Gainsford, G.J.; Shafizadeh, F.; Stevenson, T.T. Carbohydr. Res. 1986, 146, 113.
- (3) Witczak, Z.J.; Chhabra, R.; Xie, X. Carbohydr. Res. 1997, 301, 167.
- (4) Witczak, Z.J.; Chhabra, R.; Chojnacki J. *Tetrahedron Lett.* 1997, 38, 2215.
- (5) a) Zhu,Y.-H.; Vogel, P. *Tetrahedron Lett.* **1998**, *39*, 31;
 b) Zhu,Y.-H.; Vogel, P. *J. Org. Chem.* **1999**, *64*, 666.
- (6) Takai, K.; Tagashira, M.; Kuroda, T.; Oshima, K.; Vtimoto, K.; Nozaki, H. J. Am. Chem. Soc. 1986, 108, 6048;
 Wessjohann, L.A.; Scheid, G. Synthesis 1999, 1; Fürstner, A. Chem. Rev. 1999, 99, 991; Avalos, M.; Babiano, R.; Cintas, P.; Jiménez, J.L.; Palacios, J.C. Chem. Soc. Rev. 1999, 28, 169.
- (7) Zhu, Y.-H.; Vogel P. J. Chem. Soc., Chem. Commun. 1999, 1873.
- (8) Zhu, Y.H.; Demange, R.; Vogel, P. *Tetrahedron: Asymmetry* 2000, 11, 263.

- (9) Shafizadeh, F; Furneaux, R.H.; Pang, D.; Stevenson, T.T. *Carbohydr. Res.* 1982, 100, 303; Samet, A.V.; Niyazymbetov, M.E.; Semenov, V.V.; Laikhter, A.L.; Evans, D.H. J. Org. *Chem.* 1996, 61, 8786; Rao, B.; Chan, J.B.; Moskowitz, N.; Fraser-Reid, B. Bull. Soc. Chim. Fr. 1993, 130, 428; see also: Blake, A.J.; Cook, T.A.; Forsyth, A.C.; Gould, R.O.; Paton, R.M. Tetrahedron 1992, 48, 8053.
- (10) Marquis, C. Ph.D. thesis, University of Lausanne, 1999.
- (11) To our knowledge this type of nona-4,7,8-trieno-5-ulose derivative have never been reported. Related to it, (2R,6R)-2[dimethyl-(1,1,2-trimethylpropyl)silanoxymethyl]-6-propyl-2H-pyran-3(6H)-one has been described recently: Ponten, F.; Magnusson, G. J. Org. Chem. 1997, 62, 7972.
- (12) For related 2,6-dialkyl substituted-2H-pyran-3(6H)-ones, see: Ireland, R.E.; Daub, J.P. J. Org. Chem. 1981, 46, 479, Ireland, R.E.; Daub, J.P. J. Org. Chem. 1983, 48, 1303; Cheng, J.C-Y.; Daves, G.D. Jr. J. Org. Chem. 1987, 52, 3083; Herscovici; J.; Muleka, K.; Boumaîza, L.; Antonakis, K. J. Chem. Soc. Perkin Trans 1 1990, 1995; Herscovici; J.; Boumaîza, L.; Antonakis, K. J. Org. Chem. 1992, 57, 2476; Ferrier, R.J.; Petersen, P.M. J. Chem. Soc., Perkin Trans. 1 1992, 2023; Tsukiyama, T.; Isobe, M. Tetrahedron Lett. 1992, 33, 7911; Uriel, C.; Egron, M.-J.; Santarromana, M.; Scherman, D.; Antonakis, K.; Herscovici, J. Bioorg. Med. Chem. 1996, 4, 2081.
- (13) Nicolaou, K.C.; Hwang, C.K.; Duggan, M.E. J. Chem. Soc., Chem. Commun. 1986, 925; Ichikawa, Y.; Isobe, M.; Konobe, M.; Goto, T. Carbohydr. Res. 1987, 171, 193; de Raddt, A.; Stütz, A.E. Ibid. 1991, 220, 101; Ghosh, R.; De, D.; Shown, B.; Maiti, S.B. Carbohydr. Res. 1999, 321, 1
- (14) Tanaka, S.; Tsukiyama, T.; Isobe, M. *Tetrahedron Lett.* 1993, 34, 5757; Isobe, M.; Nishizawa, R.; Hosokawa, S.; Nishikawa, T. J. Chem. Soc., Chem. Commun. 1998, 2665; Isobe, M.; Saeeng, R.; Nishizawa, R.; Konobe, M.; Nishikawa, T. Chem. Lett. 1999, 467.
- (15) Levy, D.E.; Tang, C. *The Chemistry of C-Glycosides*, Pergamon, Elsevier Science Ltd., Oxford, U.K. **1995**; Postema, M.H.D. "C-Glycoside Synthesis" CRC Press, Boca Raton, USA, 1995.
- (16) See also: Toshima, K.; Ishizuka, T; Matsuo, G.; Nakata, M. *Tetrahedron Lett.* **1994**, *35*, 5673; Hoberg J.O. *Carbohydr. Res.* **1997**, *300*, 365.
- (17) Dess, D.B.; Martin, J.C. J. Org. Chem. 1983, 48, 4155.
- (18) Data for **16**: colorless oil; ¹H NMR (400MHz, CDCl₃) $\delta_{\rm H}$ 7.70 (m, 4H), 7.41 (m, 6H), 7.04 (dd, 1H, ³*J*(H-4,H-5) = 10.3 Hz, ³*J*(H-5,H-6) = 3.0 Hz, H-5), 6.18 (dd, 1H, ³*J*(H-4,H-5) = 10.3 Hz, ⁴*J*(H-4,H-6) = 1.8 Hz, H-4), 5.36 (q, 1H, ³*J*(H-6,H-1") = ⁴*J*(H-1",H-3a") = ⁴*J*(H-1",H-3"b) = 6.4 Hz, H-1'), 5.46 (m, 1H, H-6), 4.94 (ddd, 1H, ²*J* = 11.5 Hz, ⁴*J*(H-1",H-3"a) = 6.4 Hz, ⁵*J*(H-6,H-3"a) = 2.7 Hz, H-3"a), 4.89 (ddd, 1H, ²*J* = 11.5 Hz, ⁴*J*(H-1",H-3"b) = 6.4 Hz, ⁵*J*(H-6,H-3"b) = 2.7 Hz, H-3"b), 4.34 (dd, 1H, ³*J*(H-1'a,H-2) = 4.5 Hz, ³*J*(H-1'b,H-2) = 3.0 Hz, H-2), 4.10 (dd, 1H, ²*J* = 11.2 Hz, ³*J*(H-1'a,H-2) = 4.5 Hz, H-1'a), 4.06 (dd, 1H, ²*J* = 11.2 Hz, ³*J*(H-1'b,H-2) = 3.0 Hz, H-1'b), 1.09 (s, 3H, Me), 1.03 (s, 6H, 2Me); ¹³C NMR (100.6 MHz, CDCl₃): $\delta_{\rm C}$ 209.1, 194.6, 135.7, 135.6, 134.8, 129.7, 129.6, 127.7, 126.9, 88.8, 78.5, 77.7, 69.8, 64.5, 26.7, 19.2.
- (19) De Lucchi, O.; Miotta, U.; Modena, G. Org. Reactions 1991, 40, 157.
- (20) Itoh, A.; Ozawa, S.; Oshima, K.; Nozaki, H. *Tetrahedron Lett.* 1980, 21, 361; Itoh, A.; Ozawa, S.; Oshima, K.; Nozaki, H. *Bull. Chem. Soc. Jpn.* 1981, 54, 274.
- (21) Data for **24**: colorless oil; ¹H NMR (400MHz, CDCl₃): $\delta_{\rm H}$ 7.68-7.63 (m,4H), 7.51-7.37 (m, 8H), 7.26-7.20 (m, 3H), 5.81 (d, 1H, ³*J*(H-1',H-2') = 3.8 Hz, H-1'), 5.13 (q, 1H, ⁴*J*(H-3,H-1a) = ⁴*J*(H-3,H-1b) = ³*J*(H-3,H-4) = 6.7 Hz, H-3), 4.85 (td,

1H, ${}^{3}J(H-4',H-5') = {}^{3}J(H-5',OH) = 9.2 Hz, {}^{3}J(H-3,H-5') = 3.5$ Hz, H-5'), 4.78 (ddd, 1H, ${}^{2}J = 11.1$ Hz, ${}^{4}J$ (H-3,H-1a) = 6.7 Hz, ${}^{5}J(\text{H-4,H-1a}) = 2.2 \text{ Hz}, \text{H-1a}), 4.73 \text{ (ddd, 1H, }{}^{2}J = 11.1 \text{ Hz},$ ${}^{4}J(\text{H-3,H-1b}) = 6.7 \text{ Hz}, {}^{5}J(\text{H-4,H-1b}) = 2.2 \text{ Hz}, \text{H-1b}), 4.56$ $(d, 1H, {}^{3}J(H-1',H-2') = 3.8 \text{ Hz}, H-2'), 4.46 (dd, 1H, {}^{3}J(H-4',H-1'))$ 5') = 8.9 Hz, ${}^{3}J(H-3',H-4') = 3.2$ Hz, H-4'), 4.36 (ddd, 1H, ${}^{3}J(\text{H-6,H-7}) = 9.5 \text{ Hz}, {}^{3}J(\text{H-7,H-8}) = 4.8 \text{ Hz}, {}^{4}J(\text{H-7,H-8})$ 9) = 1.6 Hz, H-7), 4.13-4.06 (m, 3H, H-4,8,9), 3.95 (d, 1H, ${}^{3}J(H-3',H-4') = 3.2 \text{ Hz}, H-3'), 3.83 (m, 1H, H-9), 3.52 (d, 1H, H-9)$ ${}^{3}J(\text{H-5',OH}) = 9.2 \text{ Hz, OH}$, 3.46 (s, 3H, OMe), 3.45 (dd, 1H, ${}^{3}J(\text{H-4,H-5}) = 10.2 \text{ Hz}, {}^{3}J(\text{H-5,H-6}) = 9.5 \text{ Hz}, \text{H-5}), 2.34 \text{ (td,}$ 1H, ${}^{3}J(H-5,H-6) = {}^{3}J(H-6,H-7) = 9.5$ Hz, ${}^{3}J(H-6,H-5') = 3.5$ Hz, H-6), 1.51, 1.34 (2s, 6H, Me₂Si), 1.04 (s, 9H, *t*-Bu); ¹³C NMR (100.6 Hz, CDCl₃): δ_c 209.1, 171.1, 135.5, 133.8, 134.4, 132.2, 130.0, 128.6, 127.4, 111.7, 105.4, 91.1, 84.7, 80.9, 80.6, 74.3, 72.2, 70.3, 68.2, 62.3, 60.3, 58.0, 49.1, 46.5, 27.0, 26.7, 26.3, 21.0, 19.0, 14.1.

- (22) Buncel, E.; Davies, A.G. J. Chem. Soc. 1958, 1550; Tamao, K, In "Organosilicon and Bioorganosilicon Chemistry", Sakurai, H. Ed. Ellis Horwood, Chichester, 1985, p. 231, Fleming, I. Ibid. 1985, p.197; Tamao, K. J. Synth. Org. Chem. Jpn. 1988, 46, 861; Kumada, M.; Tamao, K.; Yoshida, J. J. Organomet. Chem. 1982, 239, 115; Colvin, E.W. in Comprehensive Organic Synthesis", Trost, B.M.; Fleming, I, Eds; Pergamon Press 1991, Oxford, Vol.7, Chapt. 4.3, p. 641.
- (23) Ager, D.J.; Fleming, I.; Patel, S.K. J. Chem. Soc., Perkin Trans 1 1981, 2520; see also: Sharma, S.; Oehschlager, A.C. Tetrahedron 1991, 47, 1177.
- (24) Crump, R.A.N.C.; Fleming, I.; Urch, C.J. J. Chem. Soc. Perkin Trans. 1 1994, 701.
- (25) Eaborn, C.; Feichtmayr, F.; Horn, M.; Murrell, J.N. J. Org. Chem. 1974, 77, 39; Pople, J.A.; Apeloig, Y.; Schleyer, P. v. R. Chem. Phys. Lett. 1982, 85, 489; Mayr, H.; Pock, R. Tetrahedron Lett. 1986, 42, 4211; Lambert, J.B.; Wang, G.-t.; Teramura, D. H. J. Org. Chem. 1988, 53, 5422.
- (26) Data for **26**: colorless oil; ¹H NMR (400MHz, CDCl₃): $\delta_{\rm H}$ 7.70-7.59 (m, 4H), 7.49-7.34 (m, 6H), 5.94 (dd, 1H, ³*J*(H-5,H-6) = 15.4 Hz, ³*J*(H-6,H-7) = 10.2 Hz, H-6), 5.84 (dt, 1H, ³*J*(H-6,H-7) = 10.2 Hz, ⁴*J*(H-7,H-9) = 6.6 Hz, H-7), 5.73 (dt, 1H, ³*J*(H-5,H-6) = 15.4 Hz, ³*J*(H-4,H-5) = 6.9 Hz, H-5), 4.93 (br.d, 2H, ⁴*J*(H-7,H-9) = 6.6 Hz, H-9), 4.27 (dt, 1H, ³*J*(H-2,OH) = 6.0 Hz, ³*J*(H-1a,H-2) = ³*J*(H-1b,H-2) = 3.3 Hz, H-2), 4.03 (dd, 1H, ²*J* = 11.0 Hz, ³*J*(H-1a,H-2) = 3.3 Hz, H-1a), 3.92 (dd, 1H, ²*J* = 11.0 Hz, ³*J*(H-1b,H-2) = 3.3 Hz, H-1b), 3.65 (d, 1H, ³*J*(H-2,OH) = 6.0 Hz, OH), 3.43 (dd, 1H, ²*J* = 17.6 Hz, ³*J*(H-4a,H-5) = 6.9 Hz, H-4b), 1.05 (s, 9H, *t*-Bu).
- (27) Zhu, Y-H.; Vogel, P. Synlett 2001, 79.
- (28) Swiss, K.A.; Choi, W.-B.; Liotta, D.C.; Abdel-Magid, A.F.; Maryanoff, C.A. J. Org. Chem. **1991**, 56, 5978.
- (29) Evans, D.A.; Ng, H.P.; Clark, J.S.; Rieger, D.L. *Tetrahedron* 1992, 48, 2127.
- (30) Evans, D.A.; Chapman, K.T.; Carreira, E.M. J. Am. Chem. Soc. **1988**, 110, 3560.
- (31) Data for **29**: colorless oil; ¹H NMR (400MHz, CDCl₃): $\delta_{\rm H}$ 7.75-7.65 (m, 4H), 7.59-7.53 (m, 2H), 7.40-7.28 (m, 9H), 5.31 (td, 1H, ⁴*J*(H-1a,H-3) = ⁴*J*(H-1b,H-3) = 6.6 Hz, ³*J*(H-3,H-4) = 5.8 Hz, H-3), 4.83, 4.76 (2ddd, 2H, ²*J* = 10.6 Hz, ⁴*J*(H-1,H-3) = 6.6 Hz, ⁵*J*(H-1,H-4) = 2.2 Hz, H-1), 4.72 (m, 1H, H-4), 4.28 (m, 1H, H-7), 4.14 (dd, 1H, ³*J*(H-5',H-6') = 6.6 Hz, ³*J*(H-6',H-7') = 2.5 Hz, H-6'), 4.12 (dd, 1H, ³*J*(H-2',H-3') = 12.4 Hz, ³*J*(H-3',H-4') = 9.5 Hz, H-3'), 3.94 (m, 1H, H-5'), 3.92 (dd, 1H, ²*J* = 11.7 Hz, ³*J*(H-8,H-9a) = 7.7 Hz, H-9a), 3.82 (m, 1H, H-8), 3.81 (dd, 1H, ²*J* = 11.7 Hz, ³*J*(H-8,H-9b) = 2.6 Hz, H-9b), 3.80 (m, 1H, H-4'), 3.71 (m, 1H, H-1'), 3.66 (d, 1H, ³*J*(H-2',H-3') = 12.4 Hz, H-2'), 3.65 (dd, 1H,

$$\label{eq:solution} \begin{split} ^2J &= 4.1~\text{Hz},~^3J(\text{H-6',H-7'a}) = 2.5~\text{Hz},~\text{H-7'a}),~3.33~\text{(d, 1H,} \\ ^2J &= 4.1~\text{Hz},~\text{H-7'b}),~1.92~\text{(dd, 1H, }^3J(\text{H-5,H-6}) = 12.1~\text{Hz}, \\ ^3J(\text{H-6,H-7)}) &= 5.0~\text{Hz},~\text{H-6}),~1.68~\text{(dd, 1H, }^3J(\text{H-5,H-6}) = 12.1~\text{Hz}, \\ ^3J(\text{H-4,H-5}) &= 10.6~\text{Hz},~\text{H-5}),~1.04,~0.92,~0.88,~0.83,~0.70~\text{(5s, 45H)},~0.39,~0.29,~0.08,~0.06,~0.05,~0.03,~0.00,~-0.01,~-0.09, \\ -0.10~\text{(10s, 30H, 5~Me_2Si);}~^{13}\text{C}~\text{NMR}~\text{(100.6~MHz},~\text{CDCl}_{3)};~\delta_{\text{C}} \\ 209.2,~138.9,~135.7,~135.6,~133.9,~129.3,~129.2,~127.7,~127.5, \\ 94.1,~79.6,~73.7,~72.8,~72.3,~72.2,~67.1,~66.6,~66.3,~64.8,~58.6, \\ 48.4,~26.8,~26.0,~25.9,~25.8,~25.7,~23.6,~19.3,~18.1,~18.0,~17.9, \\ -1.2,~-1.8,~-3.4,~-4.4,~-4.6,~-4.7,~-4.8,~-5.1,~-5.3,~-5.4. \end{split}$$

- (32) Paterson, I.; Perkins, M.V. Tetrahedron Lett. 1992, 33, 801.
- (33) Zimmerman, H.E.; Traxler, M.D. J. Am. Chem. Soc. **1957**, 59, 1920.

Article Identifier:

1437-2096,E;2001,0,01,0082,0086,ftx,en;G20400ST.pdf