The Use of Phosphite-Type Ligands in the Ir-Catalyzed Asymmetric Hydrogenation of Heterocyclic Compounds

SERGEY E. LYUBIMOV,¹ DMITRY V. OZOLIN,¹ PAVEL YU IVANOV,¹ ARTEM MELMAN,² VALERIYA S. VELEZHEVA,¹

AND VADIM A. DAVANKOV¹

¹Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia ²Clarkson University, Potsdam, NY, USA

ABSTRACT A series of chiral phosphite-type ligands was tested in asymmetric Ir-catalyzed hydrogenation of quinolines and 2,4,5,6-tetrahydro-1H-pyrazino(3,2,1-*j*,*k*)carbazole. Hydrogenation of quinaldine hydrochloride provided superior enantioselectivity up to 65% *ee* compared to quinaldine free base. The ligands were tested for the first time in the asymmetric Ir-Ircatalyzed hydrogenation of 2,4,5,6-tetrahydro-1H-pyrazino(3,2,1-*j*,*k*)carbazole yielding the antidepressant drug, pirlindole. *Chirality 26:56–60, 2013.* © 2013 Wiley Periodicals, Inc.

KEY WORDS: asymmetric hydrogenation; phosphites; quinaldine hydrochloride; pirlindole

INTRODUCTION

Synthesis of enantioenriched heterocyclic compounds has attracted increasing interest due to its significance for preparation of a variety of biologically active compounds in pharmaceutical, agrochemical, and the fine chemical industries.¹ However, use of the traditional achiral direct cyclization reactions combined with diastereomeric resolution strategies is not efficient for preparation of these compounds in enantiomerically pure form.² Direct catalytic asymmetric hydrogenation of readily available heteroaromatic precursors can constitute the most convenient route to enantiomerically pure chiral heterocyclic compounds.3 However, in comparison with asymmetric hydrogenation of unsaturated olefins, ketones, and imines, enantioselective hydrogenation of heterocyclic compounds remains a challenging task.^{4,5} There are several reasons why heterocyclic compounds are difficult substrates for the hydrogenation: first, the high stability of these compounds requires harsh conditions to destroy their aromaticity; second, the hydrogenated product contains nitrogen atoms and may deactivate the chiral catalysts due to competitive coordination; third, the lack of secondary coordinating group in simple aromatic precursors may be responsible for their insufficient involvement into coordination needed for achieving high activity and/or enantioselectivity.^{3,6} Several promising attempts in the metallocomplex asymmetric hydrogenation of heterocyclic compounds using expensive biphosphine ligands have been reported, providing acceptable results in terms of enantioselectivity and activity of catalysts.^{3,7-11} Besides chiral bisphosphine-type ligands, other types of diphosphorus ligands including phosphinephosphinites, phosphine-phosphites, diphosphinites, and diphosphonites have also been found to work well in iridiumcatalyzed asymmetric hydrogenation of heterocyclic compounds.^{12–16} Recently, Feringa and co-workers¹⁷ employed the less expensive monodentate BINOL-derived phosphoramidite (S)-PipPhos ligand to the iridium-catalyzed enantioselective hydrogenation of quinolines. A very good enantioselectivity was obtained using the catalytic system that combined both piperidine hydrochloride and tri-orthotolylphosphine. The $[Ir(COD)Cl]_2/(S)$ -PipPhos catalyst was tested in the enantioselective hydrogenation of 2- and 2,6substituted quinoxalines. In the presence of piperidine © 2013 Wiley Periodicals, Inc.

hydrochloride as additive, full conversions and very good enantioselectivities have been obtained.¹⁸ A series of spirophosphoramidite ligands were used in the Ir-catalyzed asymmetric hydrogenation of 1-alkyl 3,4-dihydroisoquinolines.¹⁹ Excellent enantioselectivities $(85 - 99\% \ ee)$ were obtained using KI as the additive. Here we report application of phosphite-type ligands in the Ir-catalyzed asymmetric hydrogenation of quinaldine, 2,4,5,6-tetrahydro-1H-pyrazino(3,2,1-*j*,*k*) carbazole and their hydrochlorides using different Ir-precursors, solvents, and additives.

MATERIALS AND METHODS

Ligands L1–L4, [Ir(COD)Cl]₂, [Ir(COD)₂]BARF (BARF – {tetrakis [3,5-bis(trifluoromethyl)phenyl]borate} and 2,4,5,6-tetrahydro-1H-pyrazino(3,2,1-*j*,*k*)carbazole were prepared as published.^{20–26} Hydro-chlorides **1a**, **3a**-c, and **5a** were prepared analogously to the known procedure.²⁷

Hydrogenation Procedure for Substrates 1, 1a, and 3a-c

The hydrogenation experiments were carried out in a 10-mL stainlesssteel high-pressure reactor. The reactor was charged with [Ir(COD)Cl]₂ (2 mg, 0.003 mmol) or [Ir(COD)₂]BARF (7 mg, 0.006 mmol), ligand (0.006 mmol or 0.012 mmol), and CH2Cl2 (0.4 mL). After the mixture was stirred at room temperature for 5 min, in several cases (see Tables) an additive (0.06 mmol) was placed in the reactor and the solution was stirred additionally for 10 min, before removing the solvent in vacuo. Substrates 1 or 1a (0.6 mmol) and the corresponding solvent (2 mL) or solvent mixture (V/V = 1/1) were added to the catalyst and the reactor was pressurized with hydrogen (55 atm). Hydrogenation was performed at 20 or 50 °C for the indicated period of time. After stirring, the vessel was depressurized. In the case of substrate 1 the catalyst was removed via a short silica gel column. The filtrate was concentrated in vacuo. In the case of substrates 1a and 3a-c the reaction mixture was fully evaporated, toluene (3 mL) and 30% aqueous solution of NaOH (3 mL) were added and the mixture was stirred for 1h at room temperature. The phases were separated. The organic phase was dried with Na₂SO₄ and concentrated in vacuo to afford the target product. The conversion of 1

^{*}Correspondence to: Sergey Lyubimov, Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119991 Moscow, Russia. E-mail: lssp452@mail.ru

Received for publication 24 May 2013; Accepted 8 October 2013 DOI: 10.1002/chir.22267

Published online 22 November 2013 in Wiley Online Library (wileyonlinelibrary.com).

Scheme 1. Phosphite-type ligands.

and **1a** was determined according to integration of the corresponding peaks in ¹H NMR. Enantioselectivity of hydrogenation reactions was determined by chiral high-performance liquid chromatography (HPLC) according to literature procedures.^{8,28}

Hydrogenation Procedure of Substrates 5 and 5a

Hydrogenation of the substrates **5** and **5a** was performed analogously to **1** and **1a** using 2% mol of the corresponding catalyst. The conversion of **5** and **5a** was determined according to ¹H nuclear magnetic resonance (NMR). Enantiomeric excess (*ee*) of pirlindole **6** was determined using a Chiralcel OD-H column (0.46×25 cm); eluent: isocratic, hexane/i-PrOH/diethylamine – 95/5/0.1; flow rate: 0.9 mL/min; temperature: 25 °C; UV detection: 260 nm. Substrate **5** eluted at 10.8 min; (+)-**6** enantiomer at 14.5 min and (–)-**6** enantiomer at 16 min.

RESULTS AND DISCUSSION

Readily available chiral phosphite-type ligands L1–L4 (Scheme 1), all prepared from (*S*)-BINOL, were first screened in the asymmetric hydrogenation of quinaldine 1 (Scheme 2) as the model compound.

Hydrogenation experiments were performed in CH_2Cl_2 at 55 atm of hydrogen pressure and 20 °C using catalyst prepared in situ from 0.5 mol% of $[Ir(COD)Cl]_2$ and

Scheme 2. Asymmetric hydrogenation of quinaldine and its hydrochloride.

corresponding chiral ligand. After 20 hours full conversion was obtained only with monodentate ligand L3 (Table 1, entries 1-4). Moreover, the asymmetric hydrogenation of 1 resulted in very low ee in all cases. Considering the remarkable impact of the additive on catalytic activity and enantioselectivity in the asymmetric hydrogenation of heterocyclic compounds,³ we then examined the additive effect. Addition of iodine (10 mol%) had a positive effect on the enantioselectivity (Table 1, entries 5-8). Remarkably, product **2** was obtained in the opposite absolute configuration in all these cases, probably because of oxidation of Ir(I) catalysts to Ir(III) species, which changes the hydrogenation pathway.²⁹ Recently, the superiority of a Brønsted acid or the corresponding salt as an additive has been demonstrated in asymmetric hydrogenation.^{17,18} The addition of 10 mol% piperidine hydrochloride increased the *ee* in the case of L1; however, the reaction was slowed down (Table 1, see entries 1, 5, and 9). The ligands L2-LA showed low conversion and enantioselectivity (Table 1, entries 10-12). We also tested hydrogenation of 1 using $[Ir(COD)_2]BARF/L1$ as the catalyst with addition of 10 mol% piperidine hydrochloride, but again low conversion and *ee* were obtained (Table 1, entry 13).

Recently, a novel observation for the Ir-catalyzed hydrogenation of heterocyclic compounds using phosphine ligands was described. It have been found that the use of prochiral 3,4-dihydroisoquinoline and isoquinoline hydrochlorides as the substrates produce increased enantioselectivity

TABLE 1. Asymmetric Ir-catalyzed hydrogenation of quinaldine (P H_2 = 55 atm, 20 h)

Entry	Catalyst	Solvent	Additive	T, °C	Conversion (%)	ee (%)
1	$[Ir(COD)Cl]_2/2L1$	CH ₂ Cl ₂		20	38	11 (S)
2	$[Ir(COD)Cl]_2/2L2$	CH_2Cl_2	_	20	18	8 (S)
3	$[Ir(COD)Cl]_2/4L3$	CH_2Cl_2	_	20	100	0
4	$[Ir(COD)Cl]_2/2LA$	CH_2Cl_2	_	20	56	2(S)
5	$[Ir(COD)Cl]_2/2L1$	CH_2Cl_2	I_2	20	85	35 (R)
6	$[Ir(COD)Cl]_2/2L2$	CH ₂ Cl ₂	$\tilde{I_2}$	20	68	15(R)
7	$[Ir(COD)Cl]_2/4L3$	CH ₂ Cl ₂	$\tilde{I_2}$	20	54	$4(\vec{R})$
8	$[Ir(COD)Cl]_2/2L4$	CH ₂ Cl ₂	$\tilde{I_2}$	20	100	20(R)
9	$[Ir(COD)Cl]_2/2L1$	CH ₂ Cl ₂	$\tilde{C}_5H_{10}N*HCl$	20	15	39 (S)
10	$[Ir(COD)Cl]_2/2L2$	CH ₂ Cl ₂	C ₅ H ₁₀ N*HCl	20	10	27 (S)
11	$[Ir(COD)Cl]_2/4L3$	CH ₂ Cl ₂	C ₅ H ₁₀ N*HCl	20	42	0
12	$[Ir(COD)C]]_2/2IA$	CH ₂ Cl ₂	$C_5H_{10}N*HCl$	20	1	
13	[Ir(COD)] ₂ BARF/L1	CH_2Cl_2	C ₅ H ₁₀ N*HCl	20	18	10 (S)

Chirality DOI 10.1002/chir

Entry	Catalyst	Solvent	T, °C	t, h	Conversion (%)	ee, (%)
1	$[Ir(COD)Cl]_2/2L1$	CH ₂ Cl ₂	20	20	0	-
2	$[Ir(COD)Cl]_2/2L1$	MeOH	20	20	18	5 (S)
3	$[Ir(COD)Cl]_2/2L1$	EtOH	20	20	22	12 (S)
4	$[Ir(COD)Cl]_2/2L1$	CH ₂ Cl ₂ /EtOH	20	20	40	16 (S)
5	$[Ir(COD)Cl]_2/2L1$	CH ₂ Cl ₂ /EtOH	50	6	53	22 (S)
6	$[Ir(COD)Cl]_2/2L2$	CH ₂ Cl ₂ /EtOH	50	6	42	31 (S)
7	$[Ir(COD)Cl]_2/4L3$	CH ₂ Cl ₂ /EtOH	50	6	60	60 (S)
8	$[Ir(COD)Cl]_2/2LA$	CH ₂ Cl ₂ /EtOH	50	6	75	62 (S)
9	$[Ir(COD)Cl]_2/2LA$	CH ₂ Cl ₂ /MeOH	50	6	46	41 (S)
10	$[Ir(COD)Cl]_2/2LA$	$CH_2Cl_2/iPrOH$	50	6	44	30(S)
11	$[Ir(COD)_2]BARF/2L3$	CH ₂ Cl ₂ /EtOH	50	6	72	65 (S)
12	$[Ir(COD)_2]BARF/LA$	CH ₂ Cl ₂ /EtOH	50	6	86	50 (S)
13	[Ir(COD) ₂]BARF/2L3	CH ₂ Cl ₂ /EtOH	50	12	100	64 (S)

TABLE 2. Asymmetric Ir-catalyzed hydrogenation of quinaldine hydrochloride 1a (P H₂ = 55 atm)

compared to a 3,4-dihydroisoquinolines and isoquinolines as a free base.^{27,30} We chose to run a set of experiments using quinaldine hydrochloride 1a (Scheme 2) as the substrate. Using the catalyst prepared in situ from 0.5 mol% of $[Ir(COD)Cl]_2$ and L1 in CH_2Cl_2 showed no conversion (Table 2, entry 1). In protic solvents such as MeOH and EtOH better conversions in 20h were obtained, but low $(5-12\% \ ee)$ enantiomeric excess of the product 2 was observed (Table 2, entries 2,3). A significant increase in the reaction rate was obtained when the reaction was performed in the mixture of CH₂Cl₂/EtOH (Table 2, entry 4). To evaluate the effect of temperature and to increase the reaction rate the temperature was raised from 20 to 50 °C. In that case, 53% conversion was reached in 6 h and superior enantioselectivity was observed (Table 2, entry 5). Following these exploratory experiments, the improved protocol was applied to ligands L2-L4 (Table 2, entries 6–8). With the use of ligand L2 moderate conversion and 31% ee was obtained (Table 2, entry 6). Furthermore, monodentate phosphite ligand L3 and diamidophosphite L4 demonstrated a very good conversion in 6h while providing 60% and 62% ee, respectively (Table 2, entries 7 and 8). Using diamidophosphite L4, which gave the best result, we also tested MeOH and iPrOH as cosolvents yet lower ee's and conversion were obtained (Table 2, entries 9 and 10). We also checked the hydrogenation of hydrochloride 1a using ligands L3, L4, and $[Ir(COD)_2]BARF$ as a cationic iridium precursor. [Ir(COD)₂]BARF was found to give a better conversion, compared to [Ir(COD)Cl]2, and very good enantioselectivities were observed (Table 2, entries 7, 8 and 11, 12). With increasing reaction time from 6 to 12h a complete conversion and 64% ee were obtained using [Ir(COD)₂]BARF/2L3 as the catalyst (Table 2, entry 13).

The asymmetric hydrogenation of other quinaldine hydrochloride derivatives (Scheme 3) using $[Ir(COD)_2]$ BARF/2 L3 catalyst was also carried out in the CH₂Cl₂/EtOH

Scheme 3. Asymmetric hydrogenation of quinaldine hydrochloride derivatives with ligand L3.

mixture and the results are summarized in Table 3. Good enantioselectivities and conversion were achieved in the hydrogenation of hydrochlorides **3 a**–**c**. It should be noted that the hydrochloride **3c** with an electron-withdrawing group gave lower enantioselectivity compared to substrates **1a** and **3a**,**b**.

The above-mentioned approach was further extended to asymmetric Ir-catalyzed hydrogenation of 2,4,5,6-tetrahydro-1H-pyrazino(3,2,1-*j*,*k*)carbazole **5** (Scheme 4). The reaction constitutes a new one-step approach to enantiomerically enriched form of the antidepressant drug pirlindole (8-methyl-2,3,3a,4,5,6-hexahydro-Hl-pyrazino[3,2,1-j,k]carbazole **(6)**).^{2,31}

Ir-catalyzed asymmetric hydrogenation of carbazole 5 in the presence of ligands L2 and L4 showed complete conversion in 20 h using $[Ir(COD)Cl]_2$ (1 mol%) as a precatalyst, while phosphites L1 and L3 were less effective (Table 4, entries 1–4). In all these cases enantioselectivities were low. When [Ir(COD)₂]BARF was used as the metal precursor, complete conversion in 20 h was obtained in the case of L3 as well as L4 (Table 4, entries 5-8). Interestingly, monodentate phosphite L3 showed a good ee. The ligand L3 was also tested in the hydrogenation of hydrochloride 5a (Scheme 4). Good conversion was observed in both the neat EtOH and CH₂Cl₂/EtOH mixture; in CH₂Cl₂ substrate 5a was found to have limited solubility (Table 4, entries 9-11). It should be noted that the phosphite L3 gave lower enantioselectivity in the hydrogenation of 5a, compared to that obtained with the free base 5. The use of

TABLE 3. Asymmetric Ir-catalyzed hydrogenation of 3a-c (P H₂ = 55 atm)

Entry	Substrate	Solvent	T, °C	t, h	Conversion (%)	ee (%)
1	3a	CH ₂ Cl ₂ /EtOH	50	6	75	64 (S)
2	3b	CH ₂ Cl ₂ /EtOH	50	6	71	65 (S)
3	3c	CH ₂ Cl ₂ /EtOH	50	6	80	58 (S)

Scheme 4. Ir-catalyzed asymmetric hydrogenation of 5 and its hydrochloride.

TABLE 4. Asymmetric Ir-catalyzed hydrogenation of carbazole 5 and its hydrochloride 5a in the presence of ligands L1-L4(P H₂ = 55 atm, 20 h, 20°C)

Entry	Catalyst	Substrate	Solvent	Conversion (%)	ee (%)
1	$[Ir(COD)Cl]_2/2L1$	5	CH ₂ Cl ₂	15	17 (-)
2	[Ir(COD)Cl] ₂ /2 L2	5	CH_2Cl_2	100	15 (-)
3	[Ir(COD)Cl] ₂ /4L3	5	CH_2Cl_2	68	5 (-)
4	$[Ir(COD)Cl]_2/2L4$	5	CH_2Cl_2	100	5 (-)
5	$[Ir(COD)]_2BARF/L1$	5	CH_2Cl_2	25	10 (-)
6	$[Ir(COD)_2]BARF/L2$	5	CH_2Cl_2	53	15 (-)
7	$[Ir(COD)_2]BARF/2L3$	5	CH_2Cl_2	100	42 (-)
8	$[Ir(COD)_2]BARF/LA$	5	CH_2Cl_2	100	13 (-)
9	$[Ir(COD)_2]BARF/2L3$	5a	CH_2Cl_2	8	3 (-)
10	$[Ir(COD)_2]BARF/2L3$	5a	EtOH	55	4 (-)
11	$[Ir(COD)_2]BARF/2L3$	5a	CH ₂ Cl ₂ /EtOH	86	10 (-)
12	[Ir(COD) ₂]BARF/L4	5a	CH ₂ Cl ₂ /EtOH	100	21 (-)

diamidophosphite L4 in the hydrogenation of 5a in CH₂Cl₂/EtOH mixture showed complete conversion and 21% *ee* (Table 4, entry 12).

CONCLUSION

The Ir-catalyzed asymmetric hydrogenation of quinaldine as a free base and quinaldine hydrochloride was examined in the presence of phosphite-type ligands. We found that the use of the hydrochloride salt as the substrate gave increased enantioselectivity, compared to the usual approach to the hydrogenation of quinaldine by using iodine or piperidine hydrochloride as additives. Moreover, mixture of $CH_2Cl_2/EtOH$ as a solvent gave better enantioselectivity and conversion in the hydrogenation of quinaldine hydrochloride, compared to neat solvents. The ligands were tested for the first time in the asymmetric Ir-catalyzed hydrogenation of 2,4,5,6tetrahydro-1H-pyrazino(3,2,1-*j*,*k*) carbazole yielding an antidepressant drug, pirlindole.

ACKNOWLEDGMENTS

The authors gratefully acknowledge support from the Ministry of Science and Education (Grants No. 8435 and 8531).

LITERATURE CITED

- Von Nussbaum F, Spiteller P. Highlights in bioorganic chemistry: Methods and applications. Schmuck C, Wennemers H, editors. Weinheim: Wiley-VCH; 2004.
- De Tullio P, Felikidis A, Pirotte B, Liegeois J-F, Stachow M, Delarge J, Ceccato A, Hubert F, Crommen J, Gekzy J. First preparative enantiomer resolution of pirlindole, a potent antidepressant drug. Helv Chim Acta 1998;81:539–547.
- Wang D-S, Chen Q-A, Lu S-M, Zhou Y-G. Asymmetric hydrogenation of heteroarenes and arenes. Chem Rev 2012;112:2557–2590.
- Ager D J, de Vries A H M, de Vries J G. Asymmetric homogeneous hydrogenations at scale. Chem Soc Rev 2012;41:3340–3380.
- Xie J-H, Zhu S-F, Zhou Q-L. Transition metal-catalyzed enantioselective hydrogenation of enamines and imines. Chem Rev 2011;111:1713–1760.

- Gridnev ID, Imamoto T. On the mechanism of stereoselection in Rh-catalyzed asymmetric hydrogenation: A general approach for predicting the sense of enantioselectivity. Acc Chem Res 2004;37:633–644.
- Ye Z-S, Chen M-W, Chen Q-A, Shi L, Duan Y, Zhou Y-G. Iridium-catalyzed asymmetric hydrogenation of pyridinium salts. Angew Chem Int Ed 2012;51:10181–10184.
- Tang W-J, Sun Y, Xu L-J, Wang T-L, Fan Q-H, Lam K-H, Chan A S C. Highly efficient and enantioselective hydrogenation of quinolines and pyridines with Ir-Difluorphos catalyst. Org Biomol Chem 2010;8:3464–3471.
- 9. Tang W-J, Tan J, Xu L-J, Lam K-H, Fan Q-H, Chan A S C. Highly enantioselective hydrogenation of quinoline and pyridine derivatives with iridium-(P-Phos) catalyst. Adv Synth Catal 2010;352:1055–1062.
- Zhao D, Glorius F. Enantioselective hydrogenation of isoquinolines. Angew Chem Int Ed 2013;52:9616–9618.
- Ye Z-S, Guo R-N, Cai X-F, Chen M-W, Shi L, Zhou Y-G. Enantioselective iridium-catalyzed hydrogenation of 1- and 3-substituted isoquinolinium salts. Angew Chem Int Ed 2013;52:3685–3689.
- Fernandez-Perez H, Etayo P, Panossian A, Vidal-Ferran A. Phosphine phosphinite and phosphine – phosphite ligands: Preparation and applications in asymmetric catalysis. Chem Rev 2011;111:2119–2176.
- Nunez-Rico J L, Fernandez-Perez H, Benet-Buchholz J, Vidal-Ferran A. Asymmetric hydrogenation of heteroaromatic compounds mediated by iridium – (P-OP) complexes. Organometallics 2010;29:6627–6631.
- Lam K H, Xu L-J, Feng, L-C, Fan Q-H, Lam FL, Lo W-H, Chan ASC. Highly enantioselective iridium-catalyzed hydrogenation of quinoline derivatives using chiral phosphinite H₈-BINAPO. Adv Synth Catal 2005;347:1755–1758.
- Reetz MT, Li XG. Asymmetric hydrogenation of quinolines catalyzed by iridium complexes of BINOL-derived diphosphonites. Chem Commun 2006:2159–2160.
- Tang W-J, Zhu S-F, Xu L-J, Zhou Q-L, Fan Q-H, Zhou H-F, Lam K-H, Chan ASC. Asymmetric hydrogenation of quinolines with high substrate/catalyst ratio. Chem Commun 2007;613–615.
- Mrsic N, Lefort L, Boogers JAF, Minnaard AJ, Feringa BL, de Vries JG. Asymmetric hydrogenation of quinolines catalyzed by iridium complexes of monodentate BINOL-derived phosphoramidites. Adv Synth Catal 2008;350:1081–1089.
- Mrsic N, Jerphagnon T, Minnaard AJ, Feringa BL, de Vries JG. Asymmetric hydrogenation of quinoxalines catalyzed by iridium/PipPhos. Adv Synth Catal 2009;351:2549–2552.

- Xie J-H, Yan PC, Zhang Q-Q, Yuan K-X, Zhou Q-L. Asymmetric hydrogenation of cyclic imines catalyzed by chiral spiro iridium phosphoramidite complexes for enantioselective synthesis of tetrahydroisoquinolines. ACS Catal 2012;2:561–564.
- Yang M, Chan ACS. Enantioselective conjugate addition of diethylzinc to cyclic enones with chiral aryl diphosphite-copper catalysts. Tetrahedron Lett 1999;40:6645–6648.
- Sakai N, Nozaki K, Mashima K, Takaya H. Asymmetric hydroformylation of vinyl acetate by use of chiral bis(triarylphosphite)-rhodium(I) complexes. Tetrahedron: Asymmetry 1992;3:583–586.
- Sole C, Bonet A, de Vries AHM, de Vries JG, Lefort L, Gulyas H, Fernandes E. Influence of phosphoramidites in copper-catalyzed conjugate borylation reaction. Organometallics 2012;31:7855–7861.
- Reetz MT, Mehler G, Bondarev O. Chiral diphosphites and diphosphoramidites as cheap and efficient ligands in Rh-catalyzed asymmetric olefin hydrogenation. Chem Commun 2006;21:2292–2294.
- Herde JL, Lambert JC, Senoff CV. Cyclooctene and 1,5-cyclooctadiene complexes of iridium(I). Inorg Synth 1974;15:18–20.
- Semeniuchenko V, Khilya V, Groth U. Nucleophilic homogeneous hydrogenation by iridium complexes. Synlett 2009;20:271–275.

- Bender H, Beyerle R, Keil K-H, Greve HG, Reh K. 6-Substituted-9-(2hydroxyethyl)-1,2,3,4-tetrahydrocarbazol-1-one. US patent 4271073 A; 1981.
- Ruzic M, Pecavar A, Prudic D, Kralj D, Scriban C, Zanotti-Gerosa A. The development of an asymmetric hydrogenation process for the preparation of solifenacin. Org Process Res Dev 2012;16:1293–1300.
- Zhang D-Y, Wang D-S, Wang M-C, Yu C-B, Gao K, Zhou Y-G. Synthesis of electronically deficient atropisomeric bisphosphine ligands and their application in asymmetric hydrogenation of quinolines. Synthesis 2011;17:2796–2802.
- Wang D-W, Wang X-B, Wang D-S, Lu S-M, Zhou Y-G, Li Y-H. Highly enantioselective iridium-catalyzed hydrogenation of 2-benzylquinolines and 2-functionalized and 2,3-disubstituted quinolines. J Org Chem 2009;74:2780–2787.
- Iimuro A, Yamaji K, Kandula S, Nagano T, Kita Y, Mashima K. Asymmetric hydrogenation of isoquinolinium salts catalyzed by chiral iridium complexes: Direct synthesis for optically active 1,2,3,4-tetrahydroisoquinolines. Angew Chem Int Ed 2013;52:2046–2050.
- Macedo A, Leiria E, Filipe A. Pirlindole in the treatment of depression: a meta-analysis. Clin Drug Invest 2011;31:61–71.