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ABSTRACT  

As bacterial biofilms display extreme tolerance to conventional antibiotic treatments, it has 

become imperative to develop new antibacterial strategies with alternative mechanisms of action. 

Herein, we report the synthesis of a series of ciprofloxacin-nitroxide conjugates and their 

corresponding methoxyamine derivatives in high yield. This was achieved by linking various 

nitroxides or methoxyamines to the secondary amine of the piperazine ring of ciprofloxacin 

using amide bond coupling. Biological evaluation of the prepared compounds on preformed P. 

aeruginosa biofilms in flow cells revealed substantial dispersal with ciprofloxacin-nitroxide 

hybrid 25, and virtually complete killing and removal (94%) of established biofilms in the 

presence of ciprofloxacin-nitroxide hybrid 27. Compounds 25-28 were shown to be non-toxic in 

both human embryonic kidney 293 (HEK 293) cells and human muscle rhabdomyosarcoma (RD) 

cells at concentrations up to 40 µM. Significantly, these hybrids demonstrate the potential of 

antimicrobial-nitroxide agents to overcome the resistance of biofilms to antimicrobials via 

stimulation of biofilm dispersal or through direct cell killing. 
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1. INTRODUCTION 

The attachment of bacteria to surfaces, and their subsequent ability to aggregate into colonies 

called biofilms, is a significant problem in healthcare systems around the world [1-3]. It has been 

estimated that biofilms are involved in around 80% of all microbial infections in humans [4], 

including those associated with medical devices [5] and chronic wounds [6]. While a variety of 

effective antimicrobial strategies exist for the treatment of planktonic bacteria, these approaches 

are rarely effective against biofilms [7, 8], which have been reported to be up to one thousand 

times more resistant to antibiotic therapies [4, 9, 10]. Accordingly, there is an urgent need to 

develop novel strategies for the treatment of established biofilms.  
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It is now well recognized that bacteria reside primarily in biofilms but can revert to 

planktonic lifestyle by modulating the expression of specific genes [11]. Thus, one approach to 

target bacteria in biofilms has involved the development of small molecules with the ability to 

inhibit and/or disperse bacterial biofilms through non-microbicidal mechanisms [12, 13]. Nitric 

oxide (NO) has been identified to play a central role in biofilm formation and dispersal [14-16] 

across a range of biofilm-forming species [17]. When used at low, non-toxic concentrations (in 

the pM to low nM range), nitric oxide is capable of dispersing a pre-formed biofilm by triggering 

the transitions of cells to the motile, planktonic state [15, 17]. Mechanistically, this effect has 

been correlated with a decrease in the intracellular levels of the secondary messenger cyclic di-

GMP, which is involved in biofilm development [11, 18]. 

The controlled delivery of nitric oxide to biological systems is challenging as it is an 

extremely reactive gas with a short half-life of 0.1-5 seconds [19]. Efforts to circumvent the 

problems associated with nitric oxide delivery have included the synthesis of NO-donor 

molecules [20], and extensive reviews on the dispersal activity of NO-donor in bacterial biofilms 

have been written recently [21]. Utilizing the NO-donor concept, a variety of anti-biofilm 

compounds have been developed [22]. However, as NO-donor molecules are also often 

inherently unstable [23], the use of nitroxides as an alternative for biofilm dispersal have recently 

been examined.  

Nitroxides are stable free radical species that possess a disubstituted nitrogen atom linked to 

a univalent oxygen atom [24]. Both nitroxides and nitric oxide are structurally similar, as both 

species possess an unpaired electron, which is delocalized over the nitrogen-oxygen bond 

(Figure 1). Furthermore, the biological effects of nitroxides can be rationalized by their nitric 

oxide-mimetic properties, with both compounds known to be efficient scavengers of protein-

derived radicals [25]. In contrast to gaseous nitric oxide, nitroxides have the advantage in that 

they are typically air-stable crystalline solids.  

 

 

Figure 1. The structure of nitric oxide and the general structure of a nitroxide. 
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Previously, we have demonstrated that nitroxides can act in a similar manner to nitric oxide 

and disperse Pseudomonas aeruginosa biofilms generated in flow cell chambers [26]. When 

applied at 20 µM concentrations, nitroxides were able to both inhibit P. aeruginosa biofilm 

formation and trigger the dispersal of established P. aeruginosa biofilms. The dispersal ability of 

nitroxides has also been documented by others using the less-sensitive crystal violet staining 

assay at higher concentrations (in the 5 mM range) [27, 28]. Nitroxides have also recently been 

shown to enhance the anti-bacterial activity of silver nanoparticles when coupled together to give 

a nitroxide-coated silver nanoparticle [29]. In addition to demonstrating the inhibiting and 

dispersal capabilities of nitroxides, we have also reported the potential for biofilm removal when 

the biofilm dispersing properties of nitroxides are utilized in combination with an antibiotic 

(ciprofloxacin) [30]. The results of this study indicate that the well-known resistance of biofilms 

to antimicrobial treatments could be alleviated by employing the dispersal ability of nitroxides. 

Furthermore, we have recently shown that combining a nitroxide and an antibiotic within a 

single molecule is an effective approach to eradicate mature P. aeruginosa biofilms [31]. These 

results demonstrate that the covalent tethering of the antibiotic to the nitroxide positions the 

antibiotic near the site of nitroxide-induced biofilm dispersal, and thereby allows the antibiotic to 

act directly on the newly dispersed cells before they resume their preferred biofilm mode of 

growth. In fact, ciprofloxacin-nitroxide hybrid 1 (Figure 2), which bears the TEMPO nitroxide 

moiety, was shown to both induce P. aeruginosa biofilm dispersal and subsequently eradicate 

the resulting dispersed cells (up to 95% removal of mature biofilms at 40 uM was observed) 

[31]. 

 

 

Figure 2. Ciprofloxacin-nitroxide hybrid 1. 
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In our present study, we explored the synthesis of ciprofloxacin-nitroxide conjugate 

molecules joined via the secondary amine of the piperazine ring of ciprofloxacin using an amide 

linkage. The rationale behind this approach was that the amide functionality may allow access to 

ciprofloxacin-nitroxide conjugates which have improved organic (DMSO) solubility to aid in 

compound delivery into aqueous biological systems compared to their tertiary amine linked 

analogues [31]. Furthermore, the use of an amide bond linkage between the two moieties 

expands the variety of carboxylic acid-bearing cyclic nitroxides that can be tethered to the 

secondary amine of ciprofloxacin allowing for the effects of nitroxide ring size on anti-biofilm 

activity to be explored. 

Herein, we report the design and synthesis of the second generation of ciprofloxacin-

nitroxide hybrid molecules together with their biological evaluation as anti-biofilm agents for the 

treatment of existing P. aeruginosa biofilms.  

 

2. RESULTS AND DISCUSSION 

 

2.1. Chemistry 

 

In line with our previous strategy to generate ciprofloxacin-nitroxide conjugates, we again 

chose to exploit the secondary amine of the piperazine ring at the 7-position of the 

fluoroquinolone based antibiotic ciprofloxacin 2 (Figure 3) as a useful handle where synthetic 

transformations could be performed without significantly altering the antimicrobial properties of 

ciprofloxacin [31].  
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Figure 3. Ciprofloxacin 2 and N-formyl ciprofloxacin derivative 3. 

 

To generate our second generation of ciprofloxacin-nitroxide hybrids, we tethered nitroxides 

to the secondary amine of the piperazine ring of ciprofloxacin 2 using amide bond coupling. The 

commercially available cyclic nitroxides 4-carboxy-2,2,6,6-tetramethylpiperidin-1-yloxyl 

(CTEMPO) 6 and 3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl (CPROXYL) 4 as well as 

the more rigid isoindoline nitroxide 5-carboxy-1,1,3,3-tetramethylisoindolin-2-yloxyl (CTMIO) 

8 [32] were selected as the nitroxide coupling partners as these systems are resistant to 

degradation through disproportionation (due to the presence of bis(tert-alkyl) groups on the 

carbon atoms α to the nitroxide) [33] and both the piperidine- and isoindoline-based systems 

have previously demonstrated dispersal activities in bacterial biofilms [26]. 

The amide coupling methodology was first optimized using CTEMPO 6. To begin the 

synthesis, the carboxylic acid of ciprofloxacin 2 was protected as an ethyl ester using previously 

documented procedures to give 16 [34]. The carboxylic acid of CTEMPO 6 was activated by 

conversion to the corresponding acid chloride 12 with thionyl chloride and then immediately 

reacted with a 1,4-dioxane solution of the protected ciprofloxacin 16 under basic conditions. 

After heating at 60oC for 1 hour, no starting material 16 remained (TLC analysis) and the desired 

ciprofloxacin-nitroxide hybrid 19 was isolated in moderate yield (59%). A second product, 

determined to be formamide derivative 3 (Figure 3) by 2D NMR spectroscopy and mass 
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spectrometry, was also formed in the reaction (41% yield). N-Formylation of the piperazine 

residue of ciprofloxacin has been previously reported to occur in the presence formic acid [35] or 

DMF [36] but as neither of these reagents were used directly in the amide synthesis of 19, it was 

reasoned the formyl ciprofloxacin 3 may have arisen from an impurity in the commercially 

acquired 1,4-dioxane. This theory was confirmed when a 1,4-dioxane solution of protected 

ciprofloxacin 16 produced the N-formylated analogue 3 after heating at 60oC for 1 hour. The use 

of an alternative solvent (DCM) in place of 1,4-dioxane provided a facile solution to avoid 

formation of this side product. Reaction of the protected ciprofloxacin 16 and acid chloride 12 in 

DCM in the presence of N,N-diisopropylethylamine (Scheme 1) gave the desired ciprofloxacin-

nitroxide hybrid 19 in excellent yield (94%) after stirring at room temperature for 1 hour. These 

optimized conditions were then employed to generate conjugate compounds 17 and 21 in 

isolated yields of 87% and 98% respectively. Final deprotection of ethyl esters 17, 19 and 21 via 

base mediated hydrolysis furnished ciprofloxacin-nitroxide hybrids 23, 25 and 27 in excellent 

yield (73-98%). The free carboxylic acid of the fluoroquinolone core is important for 

antimicrobial activity as it binds, through magnesium, to the bacterial enzyme DNA gyrase [37, 

38]. 
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Scheme 1. Synthetic route to ciprofloxacin-nitroxide hybrids 23, 25 and 27 and their 

corresponding methoxyamines 24, 26 and 28.a 

 
aReagents and conditions: (a) SOCl2, toluene, pyridine, 0 ºC → rt, 1 h; (b) i-Pr2NEt, DCM, rt, 1 
h; (c) 2 M NaOH, MeOH, 50 ºC, 5 h. 
 

In addition to the generation of three novel ciprofloxacin-nitroxide hybrid compounds 23, 25 

and 27, methoxyamine derivatives 24, 26 and 28 were also desired as control compounds to 

enable a direct comparison of the biofilm dispersal effect of the nitroxide moiety. The 

methoxyamine functionality was introduced to the carboxy-functionalized nitroxides 4, 6 and 8 

at the beginning of the synthetic sequence such that intermediates could be well characterized by 
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NMR spectroscopy (nitroxides are paramagnetic and typically display significantly broadened 

NMR signals). Utilising well-known Fenton chemistry [39], the nitroxides 4, 6 and 8 were 

treated with methyl radicals generated from hydrogen peroxide, iron(II) sulphate heptahydrate 

and DMSO [40] to furnish methoxyamines 5, 7 and 9 in excellent yield (88-92%). Amide 

coupling via the corresponding acid chlorides 11, 13 and 15 using the methodology documented 

above gave the protected ciprofloxacin-methoxyamine conjugates 18, 20 and 22 in high yield 

(83-97%). Subsequent ethyl ester deprotection using base mediated hydrolysis afforded the 

desired ciprofloxacin-methoxyamines 24, 26 and 28 in high yield (80-85%). 

 

2.2. Biological Evaluation 

Our previous studies have indicated that pre-formed P. aeruginosa biofilms can be dispersed 

upon treatment with nitroxides [26]. Furthermore, we have documented the ability of the 

nitroxide CTEMPO 6 to almost completely remove mature P. aeruginosa and E. coli biofilms 

when used in combination with the antibiotic ciprofloxacin 2 in a flow cell assay [30]. Here, we 

employed a similar approach involving pre-formed P. aeruginosa biofilms grown in flow cell 

chambers to evaluate the dispersal and biofilm removal properties of the prepared ciprofloxacin-

nitroxide compounds 23-28. P. aeruginosa biofilms were formed in flow cell chambers for 48 h 

and then treated with 20 µM solutions of the hybrid compounds 23-28 (dissolved in DMSO and 

delivered into BM2 minimal medium supplemented with 0.4% of glucose) for 24 h. This specific 

concentration was chosen as it was previously established to be the most effective concentration 

for nitroxide-mediated biofilm dispersal [26]. Visualization of the resulting biofilms using the 

Live/Dead BacLight bacterial viability kit coupled with confocal microscopy provided the 

images shown in Figures 4, 5 and 6. From these images, we calculated the percentages of biofilm 

biomass removed by comparing the amount of biomass remaining from 3-day-old untreated 

biofilms relative to the remaining adhered biomass from flow cells treated with compounds 23-

28). We also calculated the percentage of dead cells present in each biofilm sample to assess the 

overall biofilm removal ability of the hybrid compounds. These results are displayed in Table 1.  

The results obtained from the hybrid compounds bearing the TEMPO unit (25 and 26) at 

concentrations of 20 µM were examined first. The ciprofloxacin-nitroxide 25 displayed biofilm 

removal potential (37%) without major killing of biofilm cells (6%) (Table 1 and Figure 4b). 

Intriguingly, the corresponding methoxyamine 26 also exhibited some observable removal 
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activity (17%) (Figure 4c), although it was more modest than compound 25. The dispersal of 

mature P. aeruginosa biofilms by alkoxyamines has been previously observed by others for an 

ethoxyamine derivative in a crystal violet biofilm assay, however in this previous study, the 

corresponding nitroxide compound was still more effective at inducing dispersal [27]. 

 

 

Figure 4. Confocal laser scanning microscopy images of 2-day-old pre-formed P. aeruginosa 
PA14 biofilms grown in a flow cell at 37°C, treated with (b) 20 µM of 25 and (c) 20 µM of 26 
for 24 hours and then visualized with SYTO-9 (stains live cells green) and propidium iodide 

(stains dead cells red). Panel (a) shows an untreated P. aeruginosa PA14 biofilm after 3 days. At 
least two replicates were performed per condition. The scale bars represent 40 µm in length for 

images (a) and (c), and 50 µm for image (b). Each panel also shows the xy, yz and xz dimensions. 

 

Next we analyzed the flow cell assay results from the ciprofloxacin-nitroxide compounds 

bearing PROXYL moieties (23 and 24). Both the nitroxide 23 and the methoxyamine 24 (Figures 

5b and 5c), appeared to remove mature P. aeruginosa biofilms at 20 µM. However, the degree of 

removal was greater for the nitroxide 23 (67% biofilm removal) than the corresponding 

methoxyamine 24 (24% biofilm removal), and in particular 23, unlike 24, appeared to have 

greater dispersal potential (dispersing the large dense bacterial aggregates within the flow cell 

(Figures 5b and 5c). The ciprofloxacin-PROXYL analogue 23 was also tested at 10 µM in the 
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flow cell assay against mature P. aeruginosa biofilms. Some dispersal effects along with a 50% 

reduction in biofilm mass was observed (Figure 5a), however, the anti-biofilm activity of 

compound 23 was more pronounced at 20 µM (67%, Table 1).  

 

 

Figure 5. Confocal laser scanning microscopy images of 2-day-old pre-formed P. aeruginosa 
PA14 biofilms grown in a flow cell at 37°C, treated with (a) 10 µM of 23, (b) 20 µM of 23 and 

(c) 20 µM of 24 for 24 hours and then visualized with SYTO-9 (stains live cells green) and 
propidium iodide (stains dead cells red). At least two replicates were performed per condition. 

The scale bars represent 40 µm in length for images (a)-(c). Each panel also shows the xy, yz and 
xz dimensions. 
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Lastly, the activity of the conjugate molecules bearing isoindoline moieties (27 and 28) were 

examined against mature P. aeruginosa biofilms in flow cell chambers. In the presence of 20 µM 

of ciprofloxacin-nitroxide hybrid 27, a substantial reduction in the total biofilm biovolume (85%) 

occurred (Figure 6a) and 60% of the remaining biofilm biomass was composed of dead cells. 

This represents an improvement over hybrid compound 1 (our previously most active hybrid 

conjugate), which reduced total biofilm biovolume by 80% with 50% of the remaining biofilm 

biomass containing dead cells [31]. Furthermore, compound 27 was also found to be 

substantially more effective at treating P. aeruginosa-based biofilms than the parent antibiotic, 

ciprofloxacin (use at its MIC value), which only reduced the total biofilm biovolume by 7% with 

very few dead cells (8%) detected in the remaining biofilm biomass [30]. 

 

 

Figure 6. Confocal laser scanning microscopy images of 2-day-old pre-formed P. aeruginosa 
PA14 biofilms grown in a flow cell at 37°C, treated with (a) 20 µM of 27 and (b) 20 µM of 28 
for 24 hours and then visualized with SYTO-9 (stains live cells green) and propidium iodide 

(stains dead cells red). Compound 27 led to cell filamentation, presumably via the active 
ciprofloxacin moiety. At least two replicates were performed per condition. The scale bars 
represent 40 µm in length for images (a) and (b). Each panel also shows the xy, yz and xz 

dimensions. 
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Table 1. Total live P. aeruginosa PA14 biofilm biomass eradication and biofilm dead cell values 
for 2-day-old biofilms treated with compounds 23-28 at 20 µM relative to the biomass and dead 
cell values of untreated 3-day-old biofilms. 

Compound 
Remaining  

Biomass (%) 
Removed 

Biomass (%) 

Dead Cells in  
Remaining 

Biomass (%) 

Total Live Biofilm  
Biomass 

Eradication (%)a 

Control PA14 -- -- 4 -- 
23 33 67 0 67 
24 76 24 9 31 
25 63 37 6 41 
26 83 17 16 30 
27 15 85 60 94 
28 47 53 2 54 

aCalculated by adding the amount of dead cells remaining in the biofilm biomass to the initially removed biomass 
(i.e., compound 27 had initially 85% removed biomass but as 60% of the remaining 15% of biomass was dead, the 
total live biofilm biomass eradication was 94%). 

 

The observed filamentation and cell death were typical effects in the presence of 

ciprofloxacin [41]. Thus, compound 27 led to virtually complete removal of mature biofilms 

formed by P. aeruginosa, and treated cells often exhibited filamentous phenotypes (Figure 6a). 

Interestingly, the corresponding methoxyamine 28, by comparison, was also able to reduce 

biofilm cell density by 53% at the same concentration (Table 1) but fewer cells were actually 

killed (2%) (Figure 6b). Of the three ciprofloxacin-nitroxide types examined (23, 25 and 27), the 

most effective biofilm removing agent was the isoindoline analogue 27. The TEMPO analogue 

25 was the least active. 

The minimal inhibitory concentrations (MIC) of each prepared compound were also 

measured using the broth microdilution method [42, 43]. The results shown in Table 2, revealed 

that the prepared compounds 23-28 exhibited minimal antibacterial activity, especially compared 

to free ciprofloxacin. The most effective compound with antimicrobial activity against 

planktonic bacteria was compound 23, where no bacterial growth was observed at 160 µM. The 

obtained values are, however, substantially higher than that of ciprofloxacin 2 alone which gave 

a previously reported MIC of 0.5 µM.48 Thus, the addition of nitroxide units to the piperazine 

ring of ciprofloxacin through amide bonds has resulted in decreased efficacy of the antibiotic. 

However, despite the substantially higher MIC of compounds 23-28, ciprofloxacin alone has 

been previously shown to be ineffective at biofilm removal [30], whereas the ciprofloxacin-
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nitroxide compounds 23, 25 and 27 prepared in this work display significant anti-biofilm 

activities. This is evident with our most active compound (27), which at 20 µM (10.95 µg/mL) 

resulted in substantial removal (85%) of existing P. aeruginosa biofilms (Table 1).  

 
Table 2. MIC values of ciprofloxacin-nitroxide hybrids 17-28 against P. aeruginosa PA14 
planktonic bacteria. 

Compound MIC (µM) 
23 160 
24 311 
25 312 
26 >303 
27 292 (160)a 

28 >284 (>160)a 

Ciprofloxacin 2 0.5b 

aMore accurate value determined from mechanism of action studies via CFU/mL counts (Figure 7). 
bPreviously reported value measured using the same procedure.[41] 
 

Additional killing assays of planktonic P. aeruginosa PA14 cultures showed that compound 

27 was more effective at killing P. aeruginosa PA14 planktonic cells compared with compound 

28, and led to complete killing of bacterial cultures at the higher concentration used (see 

supporting information), thus correlating with its increased ability to directly eradicate and kill 

biofilm cells (Table 1). The lower dose required for biofilm killing in flow cell assays compared 

to planktonic killing assays is not surprising, as it has been observed before for similar and other 

compounds [41]. 

Next, we aimed to investigate mechanistic insights responsible for the biofilm inhibitory 

activity of specific ciprofloxacin-nitroxide hybrid compounds (Figure 7). We chose to examine 

the most active and least active nitroxides (27 and 25) from the flow cell assays and their 

corresponding methoxyamines (28 and 26). We leveraged our viable dispersal cell assay30 

consisting of performing CFU counts from the effluent of flow cell chambers upon nitroxide 

treatment. This system allows precise monitoring of viable cell counts over time post-treatment. 

We found that compounds 25 and 26 stimulated dispersion of bacteria from biofilms over time 

cf. the untreated group (Figure 7a), with compound 25 resulting in more dispersed bacteria as 

compared to 26 (Figure 7a). As such, we believe that the increased biofilm removal activity 

observed for 25 in comparison with 26 can at least partly be attributed to the increased dispersal 

activity of compound 25 (Table 1). On the other hand, no obvious increase in bacterial dispersal 
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was observed in treatments using 27 or 28 when compared to untreated controls (Figure 7b). This 

may imply that dispersed bacteria are immediately removed or, more likely, that 27 and 28 do 

not trigger biofilm dispersal but act through direct cell killing. The minimal viable dispersed 

bacteria reported in Figure 7b suggests that dispersal is not part of the mechanism of action of 

these compounds. However both 27 and 28 are capable of removing biofilms (Table 1), which 

indicates they may kill biofilm cells as a major mechanism of action, particularly in the case of 

27 (Table 1). It is also likely that the compounds killed the dispersed cell population released 

from biofilms, as both 27 and 28 are capable of killing planktonic bacteria (see supporting 

information). 

Figure 7. Mechanism of action studies. (a) Compound 25 stimulated cell dispersal from 
biofilms. Viable biofilm dispersal cell assay done using P. aeruginosa PA14 biofilms, which 

were grown in flow cells for 2 days and subsequently treated with 20 µM of compounds 25 and 
26. Dispersed cells were collected from the effluent of the flow cell chambers upon treatment 
with the compounds at the specified times. Collected bacteria were then plated for CFU counts 

on Pseudomonas Isolation Agar (PIA) plates and incubated at 37°C. The next day, bacteria were 
counted (CFU/mL) and fold-change differences in cell counts were calculated in dispersed cells 

of treated samples compared to those from untreated P. aeruginosa PA14 samples. Note: the 
fold-change of PA14 viable dispersed cells from compound 26 at 18 h 30 min was virtually 0. 
(b) Compound 27 kills planktonic bacteria and does not induce cell dispersal from biofilms. 

Biofilm dispersal cell assay was performed as described in (a) except treating biofilms with 20 
µM of compounds 27 and 28. 

 

As biofilms are associated with a wide range of infections in humans, the cytotoxicity of a 

selection of the prepared compounds was examined in two different human cell lines using the 

lactate dehydrogenase (LDH) cytotoxicity assay. Compounds 25-28 were shown to be non-toxic 
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in both human embryonic kidney 293 (HEK 293) cells and human muscle rhabdomyosarcoma 

(RD) cells at concentrations from 5 µM to 40 µM (Figure 8). The addition of small quantities of 

DMSO as the solvent was also shown to have no significant effect on cell viability (see 

supporting information).  

 

 

Figure 8. Cell viability studies for compounds 25-28 as a function of concentration (blue = 5 

µM, red = 10 µM, green = 20 µM, purple = 40 µM): (a) HEK 293 cells, (b) RD cells. 

 

 

3. CONCLUSION 

Three ethyl ester protected ciprofloxacin-nitroxide hybrid compounds 17, 19 and 21 and 

their methoxyamine analogues 18, 20 and 22 were prepared using amide bond coupling in high 

to excellent yield (83-98%) from the corresponding acid chloride functionalized nitroxides 10, 

12 and 14 or methoxyamines 11, 13 and 15 and the ethyl ester protected ciprofloxacin 16. 

Deprotection of the amide-linked ethyl ester analogues 17-22 with base gave the corresponding 

ciprofloxacin-nitroxides 23, 25 and 27 and their methoxyamines 24, 26 and 28 in good to high 

yield (73-98 %). The synthesized compounds 23-28 exhibited modest antibacterial activities with 

MIC values ranging from 160 to >300 µM. In killing assays, both 27 and 28 exhibited anti-

planktonic activity with 27 showing increased killing. These results suggest that the nitroxide 

moiety is key to the effectiveness of analogue 27 against planktonic cells. Evaluation of the 

prepared compounds 23-28 for anti-biofilm activity against mature P. aeruginosa biofilms was 
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performed in a flow cell assay. Several of the hybrid compounds were found to have the desired 

dual-action effect against established biofilms. For instance, treatment with compounds 25 and 

26 substantially increased dispersal of bacteria from biofilms over time, particularly in the case 

of 25, which likely reflected the biofilm removal results (37% for 25 and 17% for 26) with no 

major biofilm cell killing events obtained (6% for 25 and 16% for 26). On the other hand, 

treatment with compound 27 did not result in increased cell dispersal from biofilms but led to the 

highest biofilm removal (85%) and biofilm cell-killing activity (60%) of any of the compounds 

tested and also exerted toxicity towards planktonic cells. In addition, the corresponding 

methoxyamine 28 also did not stimulate dispersal but disrupted biofilms less than 27 (53%) 

without killing biofilm cells (1.5% dead cells). From these experiments, we conclude that the 

ability of both 27 and 28 to repress biofilms is independent of dispersal events. We propose that 

these compounds likely kill biofilm cells at lower concentrations (~20 µM). The cytotoxicity of a 

selection of the prepared compounds (25-28) was also examined in both human embryonic 

kidney 293 (HEK 293) cells and human muscle rhabdomyosarcoma (RD) cells and found to be 

non-toxic at concentrations up to 40 µM.  

 

The results presented here demonstrate that the combination of an antibiotic and a nitroxide 

within a single molecule is an effective approach to facilitate the efficient control of mature 

biofilms via stimulation of biofilm dispersion or through direct cell killing, and thereby help 

overcome the resistance of biofilms to antimicrobials.  

 

4. EXPERIMENTAL SECTION 

4.1. General Procedures 

Reactions of an air-sensitive nature were carried out under an atmosphere of ultra-high purity 

argon. Where anhydrous THF, DMF, DCM or acetonitrile are documented, these solvents were 

obtained from the solvent purification system, pure solv micro by Innovative Technologies. 

Anhydrous toluene was dried by storage over sodium wire. Triethylamine and i-Pr2NEt were 

stored over potassium hydroxide. All other reagents were purchased from commercial suppliers 

and used without further purification. All 1H NMR spectra were recorded at either 400 or 600 

MHz on either a Varian Inova 400, a Bruker Avance 400 or a Bruker Avance 600 instrument. All 
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13C NMR spectra were recorded at either 100 or 150 on either a Varian Inova 400, a Bruker 

Avance 400 or a Bruker Avance 600 instrument. Samples were prepared in CDCl3, unless 

otherwise stated, using oven dried glassware. 1H NMR spectra in CDCl3 were referenced to the 

solvent peak at 7.27 ppm. 13C NMR spectra run in CDCl3 were referenced to the solvent peak at 

77.2 ppm. Coupling constants are reported in Hz. High-resolution ESI mass spectra were 

obtained with an Agilent Q-TOF LC high-resolution mass spectrometer, which utilized 

electrospray ionization in positive ion mode. The mass-selective detector was optimized by using 

calibration standards with reference masses at m/z 121.050873 and 922.009798. Fourier 

transform infrared (FTIR) spectra were recorded on a Nicolet 870 Nexus Fourier Transform 

Infrared Spectrometer equipped with a DTGS TEC detector and an ATR objective. Melting 

points were measured with a Variable Temperature Apparatus by the capillary method and are 

uncorrected. Analytical HPLC was carried out on an Agilent Technologies HP 1100 Series 

HPLC system using an Agilent C18 column (4.6 × 250 mm, 5 µm) or an Agilent Zorbax RX-SIL 

column (4.6 × 250 mm, 5 µm) with a flow rate of 1 mL/min. The purity of all final compounds 

was determined to be 95 % or higher using HPLC analysis or qNMR techniques. EPR spectra 

were obtained with the aid of a miniscope MS 400 Magnettech EPR spectrometer. Column 

chromatography was performed using LC60A 40–63 Micron DAVISIL silica gel. Thin-layer 

chromatography (TLC) was performed on Merck Silica Gel 60 F254 plates. TLC plates were 

visualised under a UV lamp (254 nm), and/or by development with phosphomolybdic acid 

(PMA).  

 

4.2. Materials 

5-Carboxy-1,1,3,3-tetramethylisoindolin-2-yloxyl 8 and ethyl 1-cyclopropyl-6-fluoro-4-oxo-7-

(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylate 16 were prepared according to known 

procedures [32, 34].  

 

4.3. Interference compounds 

Nitroxides are recognized quenchers of fluorescent molecules and this effect can occur through 

space with optimal separation distances in the range of 0.5-2 nm [44]. Thus, there is potential in 

the biofilm flow cell assay for nitroxides to quench the fluorescence of the SYTO-9 and 

propidium iodide dyes used during the confocal microscopy analysis if the nitroxides and 
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fluorophores are localized within the same region of the bacterial cell. However, as the 

fluorescence arising from the nitroxide containing compounds 17, 19, 21, 23, 25 and 27 was 

similar to the fluorescence emitted by the methoxyamine control compounds 18, 20, 22, 24, 26 

and 28, the potential effect of nitroxide-induced fluorescence quenching on the obtained 

biological results is minimal.  

 

4.4. Biofilm dispersal flow cell assays 

P. aeruginosa PA14 biofilms were pre-formed at 37°C over 48 h in flow chambers using 

previously established techniques [26]. The biofilms were then exposed for 24 hours to 10 or 20 

µM solutions of ciprofloxacin-nitroxide hybrid compounds 17-28 resuspended in DMSO in the 

flow cell chambers with channel dimensions of 1 × 4 × 40 mm. Flow chambers were inoculated 

with 400 µL of an overnight P. aeruginosa PA14 culture diluted to an OD600 of ~0.05. Next, 

chambers were left without flow for 2 h, after which medium was pumped through the system at 

a constant rate of 2.4 mL/h. Staining and visualisation of the resulting biofilms was performed 

using the Live/Dead BacLight bacterial viability kit and a confocal laser scanning microscope 

(Olympus, Fluoview FV1000). Three-dimensional reconstructions and residue biofilm 

biovolume calculations were achieved using Imaris software.  

 

4.5. Bacterial killing experiments 

Killing experiments involved performing 1:100 dilutions of overnight cultures of P. 

aeruginosa PA14 in the abscense or presence of increasing concentrations of nitroxides (0-160 

µM). After 24 h of treatment, 10-fold serial dilutions were performed, bacteria were plated on 

LB agar plates and allowed to grow overnight at 37 °C after which colony forming unit (CFU) 

counts were recorded. 

 

4.6. MIC assays 

The MIC assays were performed using the broth microdilution method [42, 43] in sterile 96-

well polypropylene microtiter plates. Nitroxides were added to the plate as solutions in DMSO at 

the desired concentrations, and the bacteria were inoculated at a final concentration of 5 × 105 

CFU/mL per well. The plates were incubated at 37 °C for 24 h. The MIC was defined as the 

lowest concentration of compound at which no growth was observed. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 20

 

4.7. Cytotoxicity assays 

Human embryonic kidney 293 (HEK 293) cells (ATCC, VA) and human muscle 

rhabdomyosarcoma (RD) cells (ATCC, VA) were cultured in Dulbecco's Modified Eagle 

Medium (DMEM) (ThermoFisher, MA) supplemented with 10% Fetal Bovine Serum (FBS) 

(ThermoFisher, MA) at 37°C in 5% CO2. The day before treatment, 50,000 HEK 293 cells or 

20,000 RD cells were seeded into each well in 96-well plates. The compounds were dispersed in 

DMSO at the concentration of 5 mM. Different concentrations of compounds 25-28 were added 

into the wells for another 24 hours, and 0.8% of DMSO was added in all wells to eliminate the 

effects of DMSO. The release of the lactate dehydrogenase (LDH) was then measured, following 

the manual of Pierce LDH Cytotoxicity Assay Kit (Thermofisher, MA). Untreated cells (live 

cells) and cells treated with lysis buffer for 3 hours (dead cells) were used as the reference for 

normalization. All experiments were performed in triplicate.  

 

4.8. General procedure for the synthesis of methoxyamine derivatives (5), (7) and (9) 

Iron(II) sulfate heptahydrate (FeSO4.7H2O, 2.5 equiv) was added to a solution of nitroxide 

compound (1 equiv) in DMSO. The mixture was then cooled to 0 ºC and 35 % aqueous hydrogen 

peroxide (4 equiv) was added in a dropwise manner. The resulting mixture was stirred at 0 ºC for 

10 minutes and then at room temperature for an additional 1.5 hours. The reaction mixture was 

diluted with deionized water (40 mL) and adjusted to pH ~3 using aqueous hydrochloric acid (2 

M) before being extracted with diethyl ether (3 × 20 mL). The combined organic extracts were 

washed with deionized water (200 mL) and dried over anhydrous sodium sulfate. The solvent 

was removed in vacuo to yield the desired methoxyamine product. 

 

4.8.1. 1-Methoxy-2,2,5,5-tetramethylpyrrolidine-3-carboxylic acid (5) 

Reagents: CPROXYL 4 (120 mg, 0.64 mmol, 1 equiv), FeSO4.7H2O (448 mg, 1.61 mmol, 2.5 

equiv), 35 % aqueous H2O2 (0.23 mL, 2.56 mmol, 4 equiv) and DMSO (2.5 mL). Data for 5: 

white solid (117 mg, 0.58 mmol, 91 %); mp 40-41 ºC. IR (ATR) νmax (cm-1) = 3100-2500 (w, br, 

O-H, COOH) and 1703 (s, C=O, COOH). 1H NMR (600 MHz, CDCl3) δ = 3.63 (s, 1 H, 

NOCH3), 2.76 (s, 1 H, C(O)CH), 2.10 (s, 1 H, C(O)CHCH2), 1.74 (dd, J = 12.8, 7.8 Hz, 1 H, 

C(O)CHCH2), 1.35 (s, 3 H, CH3), 1.23 (s, 1 H, CH3), 1.19 (s, 1 H, CH3), 1.09 (s, 1 H, CH3). 
13C 
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NMR (150 MHz, CDCl3) δ = 178.7, 65.0, 61.2, 48.3, 38.6, 33.6, 28.9, 25.8, 16.3. HRMS (ESI): 

m/z calcd for C10H19NO3 + H+ [M+H+]: 202.1428. Found 202.1428. Absolute quantitative NMR: 

98.8% pure.  
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4.8.2. 1-Methoxy-2,2,6,6-tetramethylpiperidine-4-carboxylic acid (7). 

Reagents: CTEMPO 6 (120 mg, 0.60 mmol, 1 equiv), FeSO4.7H2O (448 mg, 1.61 mmol, 2.7 

equiv), 35 % aqueous H2O2 (0.23 mL, 2.56 mmol, 4.3 equiv) and DMSO (2.5 mL). Data for 7: 

clear white solid (113 mg, 0.52 mmol, 88 %); mp 97-99 ºC. IR (ATR) νmax (cm-1) = 3100-2500 

(w, br, O-H, COOH) and 1693 (s, C=O, COOH). 1H NMR (600 MHz, CDCl3) δ = 3.62 (s, 3 H, 

NOCH3), 2.66 (t, J = 12.7 Hz, 1 H, CH), 1.75 (d, J = 11.8 Hz, 2 H, CH2), 1.66 (t, J = 12.9 Hz, 2 

H, CH2), 1.23 (s, 6 H, 2 × CH3), 1.12 (s, 6 H, CH3). 
13C NMR (150 MHz, CDCl3) δ = 180.7, 

65.7, 59.4, 41.7, 32.9, 20.3. HRMS (ESI): m/z calcd for C11H21NO3 + H+ [M+H+]: 216.1583. 

Found 216.1587. Absolute quantitative NMR: 97.0% pure. 

 

4.8.3. 2-Methoxy-1,1,3,3-tetramethylisoindoline-5-carboxylic acid (9) 

Reagents: CTMIO 8 (100 mg, 0.43 mmol, 1 equiv), FeSO4.7H2O (300 mg, 1.08 mmol, 2.5 

equiv), 35 % aqueous H2O2 (0.2 mL, 2.50 mmol, 5.8 equiv) and DMSO (2.5 mL). Data for 9: 

white solid (99 mg, 0.40 mmol, 93 %); mp 181-183 ºC. IR (ATR) νmax (cm-1) = 3100-2500 (w, 

br, O-H, COOH) and 1679 (s, C=O, COOH). 1H NMR (600 MHz, CDCl3) δ = 8.03 (dd, J = 7.9, 

1.6 Hz, 1 H, Ar-H), 7.86 (d, J = 1.2 Hz, 1 H, Ar-H), 7.20 (d, J = 7.9 Hz, 1 H, Ar-H), 3.80 (s, 3 H, 

NOCH3), 1.47 (br s, 12 H, 4 × CH3). 
13C NMR (150 MHz, CDCl3) δ = 172.1, 151.8, 146.0, 

129.8, 128.7, 123.8, 121.9, 67.5, 67.2, 65.7, 42.9, 30.2, 25.1. HRMS (ESI): m/z calcd for 

C14H19NO3 + H+ [M+H+]: 250.1443. Found 250.1440. HPLC analysis: retention time = 2.992 

min; peak area, 95.26 %; eluent A, Methanol; eluent B, H2O; isocratic (80:20) over 20 min with 

a flow rate of 1 mL min-1 and detected at 254 nm; column temperature, rt. 

 

4.9. General procedure for the synthesis of amide coupled compounds (17-22) 

Pyridine (2 equiv) was added to a solution of carboxylic acid (1 equiv) in anhydrous toluene 

under an atmosphere of argon. The resulting solution was cooled to 0 ºC in an ice-water bath and 

thionyl chloride (1.5 equiv) was added dropwise. The solution was stirred at room temperature 

for 1 hour. The solvent was then removed in vacuo and the resulting residue taken up in 

anhydrous dichloromethane (10 mL). This crude product was added to a stirring solution of the 

amine bearing compound (1.2 equiv) and i-Pr2NEt (2 equiv) dissolved in anhydrous 

dichloromethane under an atmosphere of argon. The resulting mixture then stirred at room 

temperature for 1 hour before water was added to the mixture. The organic phase was separated 
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and the aqueous phase was re-extracted with dichloromethane (3 × 20 mL). The combined 

extracts were dried over anhydrous sodium sulfate and the solvent removed in vacuo to afford a 

crude solid product. Purification was achieved via column chromatography (SiO2, gradient 

elution: 100 % chloroform to 95 % chloroform, 5 % methanol). 

 

4.9.1. Ethyl 1-cyclopropyl-6-fluoro-7-(4-(2,2,5,5-tetramethyl-1-oxy-pyrrolidine-3-

carbonyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate (17) 

Reagents for acid chloride formation: CPROXYL 4 (100 mg, 0.54 mmol, 1 equiv), anhydrous 

toluene (5 mL) and pyridine (0.1 mL, 1.20 mmol, 2.2 equiv). Reagents for amide coupling: 16 

(230 mg, 0.65 mmol, 1.2 equiv), i-Pr2NEt (0.2 mL, 1.08 mmol, 2 equiv) and anhydrous 

dichloromethane (5 mL). Data for 17: yellow solid (248 mg, 0.47 mmol, 87 %); mp 118-120 ºC. 

IR (ATR) νmax (cm-1) = 3500-3200 (w, br, N-H, amide) and 1688 (m, C=O, amide). 1H NMR 

(600 MHz, CDCl3) (*note compound is a free-radical, some signals appear broadened and other 

signals are missing) δ = 1H NMR (600 MHz, CDCl3) δ = 8.59 (s, 1 H, NCH=C), 8.11 (d, J = 

10.2 Hz, 1 H, Ar-H), 7.36 (s, 1 H, Ar-H), 4.46 (q, J = 6.3 Hz, 2 H, OCH2CH3), 4.01 (s, 2 H, 2 × 

NCH2), 3.51 (s, 2 H, 2 × NCH2), 3.36 (s, 2 H, 2 × NCH2), 3.26 (m, 1 H, C=CHNCH), 1.48 (t, J = 

5.91 Hz, 3 H, OCH2CH3), 1.42 (s, 2 H, NCHCH2), 1.23 (s, 2 H, NCHCH2). 
13C NMR (150 MHz, 

CDCl3) δ = 171.7, 164.3, 152.8, 151.2, 147.0, 142.4, 136.7, 122.4, 112.4, 112.2, 109.3, 103.9, 

59.7, 51.0, 48.4, 40.0, 33.5, 13.2, 7.1. HRMS (ESI): m/z calcd for C28H36FN4O5 + H+ [M+H+]: 

528.2758. Found 528.2753. HPLC analysis: retention time = 5.481 min; peak area, 99.52 %; 

eluent A, Methanol; eluent B, H2O; isocratic (70:30) over 25 min with a flow rate of 1 mL min-1 

and detected at 254 nm; column temperature, rt. EPR: g = 1.9975, aN = 1.4898 mT. 

 

4.9.2. Ethyl 1-cyclopropyl-6-fluoro-7-(4-(1-methoxy-2,2,5,5-tetramethylpyrrolidine-3-

carbonyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate (18) 

Reagents for acid chloride formation: 5 (120 mg, 0.60 mmol, 1 equiv), anhydrous toluene (5 

mL) and pyridine (0.1 mL, 1.20 mmol, 2 equiv). Reagents amide coupling: 16 (276 mg, 0.77 

mmol, 1.2 equiv), i-Pr2NEt (0.2 mL, 1.08 mmol, 1.8 equiv) and anhydrous dichloromethane (5 

mL). Data for 18:  pale yellow solid (317 mg, 0.58 mmol, 97 %); mp 132-134 ºC. IR (ATR) νmax 

(cm-1) = 3500-3200 (w, br, N-H, amide) and 1689 (m, C=O, amide).1H NMR (600 MHz, CDCl3) 

δ = 8.50 (s, 1 H, NCH=C), 8.01 (d, J = 13.1 Hz, 1 H, Ar-H), 7.25 (d, J = 7.0 Hz, 1 H, Ar-H), 4.37 
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(q, J = 7.1 Hz, 2 H, OCH2CH3), 3.89 (s, 2 H, NCH2), 3.83 (s, 2 H, NCH2), 3.66 (s, 3 H, NOCH3), 

3.43 (m, 1 H, C=CHNCH), 3.23 (d, J = 4.9 Hz, 2 H, 2 × NCH2), 3.22 (m, 2 H, 2 × NCH2), 3.10 

(br, s, 1 H, NC(O)CH), 2.38 (br, s, 1 H, NC(O)CH2), 1.60 (dd, J = 12.6, 7.4 Hz, 1 H, 

NC(O)CHCH2), 1.40 (t, J = 7.1 Hz, 3 H, OCH2CH3), 1.33 (s, 2 H, NCHCH2), 1.31 (s, 3 H, CH3), 

1.26 (s, 3 H, CH3), (br, s, 3 H, CH3), 1.14 (dd, J = 8.9, 5.9 Hz, 2 H, NCHCH2), 1.06 (br, s, 3 H, 

CH3). 
13C NMR (100 MHz, CDCl3) δ = 173.1, 165.8, 154.6, 152.2, 148.3, 144.1, 144.0, 138.1, 

123.7, 123.6, 113.7, 113.4, 110.6, 105.2, 65.0, 61.0, 50.9, 49.9, 46.4, 42.1, 34.7, 14.6, 8.3. 

HRMS (ESI): m/z calcd for C29H39FN4O5 + H+ [M+H+]: 543.2991. Found 543.2990. HPLC 

analysis: retention time = 3.286 min; peak area, 99.70 %; eluent A, Methanol; over 25 min with a 

flow rate of 1 mL min-1 and detected at 254 nm; column temperature, rt. 

 

4.9.3. Ethyl 1-cyclopropyl-6-fluoro-7-(4-(2,2,6,6-tetramethyl-1-oxy-piperidine-4-

carbonyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate (19)  

Reagents for acid chloride formation: CTEMPO 6 (100 mg, 0.50 mmol, 1 equiv), anhydrous 

toluene (5 mL) and pyridine (0.1 mL, 1.20 mmol, 2.4 equiv). Reagents amide coupling: 16 (216 

mg, 0.60 mmol, 1.2 equiv), i-Pr2NEt (0.3 mL, 1.0 mmol, 2 equiv) and anhydrous 

dichloromethane (5 mL). Data for 19: light orange powder (255 mg, 0.47 mmol, 94 %); mp 241 

ºC decomposed. IR (ATR) νmax (cm-1) = 3500-3200 (w, br, N-H, amide) and 1690 (m, C=O, 

amide). 1H NMR (600 MHz, CDCl3) (*note compound is a free-radical, some signals appear 

broadened and other signals are missing) δ = 8.57 (s, 1 H, NCH=C), 8.12 (d, J = 12.1 Hz, 1 H, 

Ar-H), 7.33 (br, s, 1 H, Ar-H), 4.43 (q, J = 7.0 Hz, 2 H, OCH2CH3), 3.94 (br, s, 4 H, 2 × NCH2), 

3.46 (br, s, 2 H, NCH2), 3.40 (br, s, 1 H, NCH), 3.32 (br, s, 2 H, NCH2), 1.60-1.48 (br, s, 12 H, 

CH3), 1.45 (t, J = 7.0 Hz, 3 H, OCH2CH3), 1.37 (br, s, 2 H, NCHCH2), and 1.19 (br, s, 2 H, 

NCHCH2). 
13C NMR (150 MHz, CDCl3) δ = 172.7, 165.4, 153.8, 152.1, 147.9, 143.5, 123.4, 

113.4, 110.4, 104.7, 60.7, 50.4, 49.1, 44.7, 42.1, 34.2, 14.1, 7.9. HRMS (ESI): m/z calcd for 

C29H38FN4O5 + H+ [M+H+]: 542.2905. Found 542.2902. HPLC analysis: retention time = 6.206 

min; peak area, 99.90 %; eluent A, Methanol; eluent B, H2O; isocratic (80:20) over 25 min with 

a flow rate of 1 mL min-1 and detected at 254 nm; column temperature, rt. EPR: g = 1.9989, aN = 

1.5751 mT. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 25

4.9.4. Ethyl 1-cyclopropyl-6-fluoro-7-(4-(1-methoxy-2,2,6,6-tetramethylpiperidine-4-

carbonyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate (20) 

Reagents for acid chloride formation: 7 (100 mg, 0.46 mmol, 1 equiv), anhydrous toluene (5 

mL) and pyridine (0.1 mL, 1.20 mmol, 2.6 equiv). Reagents for amide coupling: 16 (216 mg, 

0.60 mmol, 1.3 equiv), i-Pr2NEt (0.3 mL, 1.0 mmol, 2.2 equiv) and anhydrous dichloromethane 

(5 mL). Data for 20: off-white powder (231 mg, 0.41 mmol, 90 %); mp 218-219 ºC. IR (ATR) 

νmax (cm-1) = 3500-3200 (w, br, N-H, amide) and 1645 (m, C=O, amide). 1H NMR (600 MHz, 

CDCl3) δ = 8.50 (s, 1 H, NCH=C), 8.02 (d, J = 13.1 Hz, 1 H, Ar-H), 7.26 (d, J = 7.0 Hz, 1 H, Ar-

H), 4.38 (q, J = 7.1 Hz, 2 H, OCH2CH3), 3.84 (br, s, 2 H, NCH2), 3.71 (br, s, 2 H, NCH2) 3.62 (s, 

3 H, NOCH3), 3.42 (m, 1 H, C=CHNCH), 3.30 (br, s, 2 H, NCH2), 3.21 (br, s, 2 H, NCH2), 2.87 

(m, 1 H, NC(O)CH), 1.80 (m, 2 H, CHCH2), 1.51 (m, 2 H, CHCH2), 1.40 (t, J = 7.1 Hz, 3 H, 

OCH2CH3), 1.33 (q, J = 6.6 Hz, 2 H, NCHCH2), 1.23 (s, 6 H, 2 × CH3), 1.15 (s, 6 H, 2 × CH3), 

and 1.14 (m, 2 H, NCHCH2). 
13C NMR (150 MHz, CDCl3) δ = 173.7, 173.2, 154.3, 152.6, 148.4, 

144.2, 144.1, 138.1, 123.7, 113.7, 110.7, 106.2, 66.7, 61.1, 59.5, 50.9, 49.7, 45.5, 42.3, 41.6, 

34.7, 33.0, 31.5, 20.6, 14.6, 8.3. HRMS (ESI): m/z calcd for C30H41FN4O5 + Na+ [M+Na+]: 

579.2933. Found 579.2933. HPLC analysis: retention time = 3.355 min; peak area, 99.73 %; 

eluent A, Methanol; over 25 min with a flow rate of 1 mL min-1 and detected at 254 nm; column 

temperature, rt. 

 

4.9.5. Ethyl 1-cyclopropyl-6-fluoro-7-(4-(1,1,3,3-tetramethylisoindolin-2-yloxyl-5-

carbonyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate (21) 

Reagents for acid chloride formation: 9 (120 mg, 0.51 mmol, 1 equiv), anhydrous toluene (5 

mL) and pyridine (0.1 mL, 1.20 mmol, 2.4 equiv). Reagents for amide coupling: 16 (218 mg, 

0.61 mmol, 1.2 equiv), i-Pr2NEt (0.3 mL, 1.0 mmol, 2 equiv) and anhydrous dichloromethane (5 

mL). Data for 21: light yellow powder (286 mg, 0.50 mmol, 98 %); mp 126-128 ºC. IR (ATR) 

νmax (cm-1) = 3500-3200 (w, br, N-H, amide) and 1688 (m, C=O, amide). 1H NMR (600 MHz, 

CDCl3) (*note compound is a free-radical, some signals appear broadened and other signals are 

missing) δ = 8.57 (s, 1 H, NCH=C), 8.09 (d, J = 12.3 Hz, 1 H, Ar-H), 7.34 (br, s, 1 H, Ar-H), 

4.44 (q, J = 6.5 Hz, 2 H, OCH2CH3), 4.12 (br, s, 2 H, NCH2), 3.85 (br, s, 2 H, NCH2), 3.47 (s, 1 

H, C=CHNCH), 3.39 (br, s, 4 H, 2 × NCH2), 2.87 (m, 1 H, NC(O)CH ), 1.56 (br, s, 12 H, 4 × 

CH3), 1.46 (t, J = 6.8 Hz, 3 H, OCH2CH3), 1.38 (br, s, 2 H, NCHCH2), 1.20 (s, 2 H, NCHCH2). 
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13C NMR (150 MHz, CDCl3) δ = 172.2, 164.9, 153.4, 151.7, 147.5, 143.2, 137.2, 125.4, 122.9, 

112.7, 109.9, 104.4, 60.2, 33.9, 13.7, 7.5. HRMS (ESI): m/z calcd for C32H36FN4O5 + H+ 

[M+H+]: 576.2717. Found 576.2713. HPLC analysis: retention time = 2.867 min; peak area, 

99.90 %; eluent A, Methanol; over 20 min with a flow rate of 1 mL min-1 and detected at 254 

nm; column temperature, rt. EPR: g = 1.9981, aN = 1.4793 mT. 

 

4.9.6. Ethyl 1-cyclopropyl-6-fluoro-7-(4-(2-methoxy-1,1,3,3-tetramethylisoindoline-5-

carbonyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate (22) 

Reagents for acid chloride formation: 9 (90 mg, 0.36 mmol, 1 equiv), anhydrous toluene (5 

mL) and pyridine (0.1 mL, 1.20 mmol, 3.3 equiv). Reagents for amide coupling: 16 (155 mg, 

0.43 mmol, 1.2 equiv), i-Pr2NEt (0.2 mL, 0.7 mmol, 2 equiv) and anhydrous dichloromethane (5 

mL). Data for 22: white foamy solid (178 mg, 0.30 mmol, 83 %); mp 124-126 ºC. IR (ATR) νmax 

(cm-1) = 3500-3200 (w, br, N-H, amide) and 1689 (m, C=O, amide). 1H NMR (600 MHz, 

CDCl3) δ = 8.53 (s, 1 H, NCH=C), 8.05 (d, J = 13.0 Hz, 1 H, Ar-H), 7.31 (dd, J = 7.7, 1.3 Hz, 1 

H, Ar-H), 7.28 (d, J = 7.0 Hz, 1 H, Ar-H), 7.20 (s, 1 H, Ar-H), 7.15 (d, J = 7.7 Hz, 1 H, Ar-H), 

4.39 (q, J = 7.1 Hz, 2 H, OCH2CH3), 4.01 (br, s, 2 H, NCH2), 3.79 (s, 3 H, NOCH3), 3.71 (br, s, 

2 H, NCH2), 3.42 (ddd, J = 10.8, 7.1, 3.9 Hz, 1 H, C=CHNCH), 3.30 (br, s, 2 H, NCH2), 3.24 

(br, s, 2 H, NCH2), 1.69 (s, 6 H, 2 × CH3), 1.45 (br, s, 6 H, 2 × CH3), 1.41 (t, J = 7.1 Hz, 3 H, 

OCH2CH3), 1.33 (q, J = 6.6 Hz, 2 H, NCHCH2), 1.15 (q, J = 6.5 Hz, 2 H, NCHCH2). 
13C NMR 

(150 MHz, CDCl3) δ = 173.3, 171.0, 166.6, 154.4, 152.7, 148.4, 147.7, 146.1, 144.3, 138.2, 

134.4, 126.4, 123.9, 123.8, 121.9, 120.9, 113.8, 113.7, 110.8, 105.3, 67.3, 65.7, 61.1, 34.7, 14.6, 

8.4. HRMS (ESI): m/z calculated for C33H39FN4O5 + H+ [M+H+]: 591.2956. Found 591.2955. 

HPLC analysis: retention time = 3.268 min; peak area, 99.61 %; eluent A, Methanol; over 25 

min with a flow rate of 1 mL min-1 and detected at 254 nm; column temperature, rt. 

 

4.10. General procedure for ester hydrolysis (compounds 23-28) 

2 M aqueous sodium hydroxide (7 equiv) was added to a solution of the specific ethyl ester (1 

equiv) in HPLC grade methanol and the resulting solution was stirred at 50 ºC for 5 hours. The 

reaction mixture was cooled to room temperature and diluted with deionized water (50 mL). The 

pH was adjusted to ~6 using 2 M aqueous hydrochloric acid and the mixture extracted with 
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dichloromethane (3 × 20 mL). The combined organic extracts were dried over anhydrous sodium 

sulfate and the solvent was removed in vacuo to afford the pure solid product. 

4.10.1. 1-Cyclopropyl-6-fluoro-7-(4-(2,2,5,5-tetramethyl-1-oxy-pyrrolidine-3-

carbonyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (23) 

Reagents: 17 (57 mg, 0.10 mmol, 1 equiv), 2 M aqueous NaOH (0.35 mL, 0.70 mmol, 7 equiv) 

and HPLC grade methanol (2.5 mL). Data for 23: pale yellow powder (47 mg, 0.09 mmol, 87 

%); mp 229 ºC decomposes. IR (ATR) νmax (cm-1) = 3500-3200 (w, br, N-H, amide), 3100-2500 

(w, br, O-H, COOH) and 1649 (m, C=O, amide). 1H NMR (600 MHz, CDCl3) (*note compound 

is a free-radical, some signals appear broadened and other signals are missing) δ = 14.87 (s, 1 

H, COOH), 8.81 (s, 1 H, NCH=C), 8.10 (d, J = 11.7 Hz, 1 H, Ar-H), 7.41 (br, s 1 H, Ar-H), 3.98 

(br, s, 4 H, 2 × NCH2), 3.57 (br, s, 1 H, C=CHNCH), 3.27 (m, 4 H, 2 x NCH2), 1.44 (m, 2 H, 

NCHCH2), 1.26 (br, d, J = 17.3, 2 H, NCHCH2). 
13C NMR (150 MHz, CDCl3) δ = 177.1, 166.8, 

147.7, 139.0, 108.4, 105.2, 49.4, 35.3, 8.4. HRMS (ESI): m/z calcd for C26H32FN4O5 + H+ 

[M+H+]: 500.2440. Found 500.2440. HPLC analysis: retention time = 4.392 min; peak area, 

99.90 %; eluent A, DCM; eluent B, THF; isocratic (70:30) over 20 min with a flow rate of 1 mL 

min-1 and detected at 254 nm; column temperature, rt. EPR: g = 1.9992, aN = 1.5024 mT. 

 

4.10.2. 1-Cyclopropyl-6-fluoro-7-(4-(1-methoxy-2,2,5,5-tetramethylpyrrolidine-3-

carbonyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (24) 

Reagents: 18 (78 mg, 0.15 mmol, 1 equiv), 2 M aqueous NaOH (0.5 mL, 1.05 mmol, 7 equiv) 

and HPLC grade methanol (3 mL). Data for 24: pale yellow powder (60 mg, 0.12 mmol, 80 %); 

mp 196-198 ºC. IR (ATR) νmax (cm-1) = 3500-3200 (w, br, N-H, amide), 3100-2500 (w, br, O-H, 

COOH) and 1626 (m, C=O, amide). 1H NMR (600 MHz, CDCl3) δ = 14.90 (s, 1 H, COOH), 

8.76 (s, 1 H, NCH=C), 8.03 (d, J = 12.4 Hz, 1 H, Ar-H), 7.37 (d, J = 5.1 Hz, 1 H, Ar-H), 3.92 (s, 

2 H, NCH2), 3.86 (s, 2 H, NCH2), 3.62 (s, 3 H, NOCH3), 3.56 (br, s, 1 H, C=CHNCH), 3.38 (s, 2 

H, NCH2), 3.31 (s, 2 H, NCH2), 3.11 (br, s, 1 H, NC(O)CH), 2.39 (br, s, 1 H, NC(O)CH2), 1.61 

(dd, J = 16.9, 11.7 Hz, 1 H, NC(O)CHCH2), 1.41 (s, 3 H, CH3), 1.33 (s, 2 H, NCHCH2), 1.27 (s, 

3 H, CH3), 1.26 (s, 3 H, CH3), 1.22 (s, 2 H, NCHCH2), 1.07 (br, s, 3 H, CH3). 
13C NMR (150 

MHz, CDCl3) δ = 177.0, 166.8, 154.9, 152.4, 147.6, 145.5, 145.4, 139.1, 120.2, 120.1, 112.6, 

112.3, 108.1, 105.2, 65.0, 50.5, 49.6, 46.2, 41.9, 35.5, 29.8, 8.4. HRMS (ESI): m/z calcd for 

C27H35FN4O5 + H+  [M+H+]: 515.2651. Found 515.2651. HPLC analysis: retention time = 3.711 
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min; peak area, 99.90 %; eluent A, DCM; eluent B, THF; isocratic (70:30) over 20 min with a 

flow rate of 1 mL min-1 and detected at 254 nm; column temperature, rt. 

4.10.3. 1-Cyclopropyl-6-fluoro-7-(4-(2,2,6,6-tetramethyl-1-oxy-piperidine-4-carbonyl)piperazin-

1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (25) 

Reagents: 19 (84 mg, 0.16 mmol, 1 equiv), 2 M aqueous NaOH (0.6 mL, 1.12 mmol, 7 equiv) 

and HPLC grade methanol (3 mL). Data for 25: orange powder (78 mg, 0.15 mmol, 98 %); mp 

245 ºC decomposes. IR (ATR) νmax (cm-1) = 3500-3200 (w, br, N-H, amide), 3100-2500 (w, br, 

O-H, COOH) and 1624 (m, C=O, amide). 1H NMR (600 MHz, CDCl3) (*note compound is a 

free-radical, some signals appear broadened and other signals are missing) δ = 14.92 (s, 1 H, 

COOH), 8.78 (s, 1 H, NCH=C), 8.06 (d, J = 10.9 Hz, 1 H, Ar-H), 7.45 (br, s 1 H, Ar-H), 4.00 

(br, s, 4 H, 2 × NCH2), 3.63 (s, 2 H, NCH2), 3.54 (s, 1 H, NCH), 3.44 (s, 2 H, NCH2), 1.49 (br, s, 

2 H, NCHCH2), and 1.29 (br, s, 2 H, NCHCH2). 
13C NMR (150 MHz, CDCl3) δ = 176.0, 165.8, 

153.4, 151.8, 146.6, 144.3, 138.0, 119.3, 111.7, 111.6, 107.2, 104.1, 49.4, 48.5, 44.0, 40.5, 34.6, 

7.6. HRMS (ESI): m/z calcd for C27H34FN4O5 + H+ [M+H+]: 514.2575. Found 514.2587. HPLC 

analysis: retention time = 4.283 min; peak area, 99.90 %; eluent A, DCM; eluent B, THF; 

isocratic (70:30) over 20 min with a flow rate of 1 mL min-1 and detected at 254 nm; column 

temperature, rt. EPR: g = 1.9995, aN = 1.6108 mT. 

 

4.10.4. 1-Cyclopropyl-6-fluoro-7-(4-(1-methoxy-2,2,6,6-tetramethylpiperidine-4-

carbonyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (26) 

Reagents: 20, (78 mg, 0.14 mmol, 1 equiv), 2 M aqueous NaOH (0.4 mL, 1.00 mmol, 7 equiv) 

and HPLC grade methanol (3 mL). Data for 26: White powder (61 mg, 0.12 mmol, 82 %); mp 

259 ºC decomposes. IR (ATR) νmax (cm-1) = 3500-3200 (w, br, N-H, amide), 3100-2500 (w, br, 

O-H, COOH) and 1627 (m, C=O, amide). 1H NMR (600 MHz, CDCl3) δ = 14.89 (s, 1 H, 

COOH), 8.77 (s, 1 H, NCH=C), 8.04 (d, J = 12.9 Hz, 1 H, Ar-H), 7.38 (d, J = 6.9 Hz, 1 H, Ar-

H), 3.87 (br, s, 2 H, NCH2), 3.75 (br, s, 2 H, NCH2) 3.63 (s, 3 H, NOCH3), 3.56 (m, 1 H, 

C=CHNCH), 3.40 (br, s, 2 H, NCH2), 3.30 (br, s, 2 H, NCH2), 2.88 (t, J = 12.5 Hz, 1 H, 

NC(O)CH ), 1.82 (s, 2 H, CHCH2), 1.52 (d, J = 12.9 Hz, 2 H, CHCH2), 1.41 (d, J = 6.5 Hz, 2 H, 

NCHCH2), 1.24 (s, 6 H, 2 x CH3), 1.22 (m, 2 H, NCHCH2), 1.16 (s, 6 H, 2 × CH3). 
13C NMR 

(100 MHz, CDCl3) δ = 177.2, 177.1, 166.9, 155.0, 152.5, 147.7, 145.5, 139.2, 120.4, 112.8, 

112.5, 108.3, 105.3, 65.8, 59.6, 49.5, 45.3, 41.4, 35.5, 31.5, 20.7, 8.4. HRMS (ESI): m/z calcd for 
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C28H37FN4O5 + H+ [M+H+]: 529.2807. Found 529.2806. HPLC analysis: retention time = 4.187 

min; peak area, 99.90 %; eluent A, DCM; eluent B, THF; isocratic (70:30) over 20 min with a 

flow rate of 1 mL min-1 and detected at 254 nm; column temperature, rt. 

 

4.10.5. 1-Cyclopropyl-6-fluoro-7-(4-(1,1,3,3-tetramethylisoindolin-2-yloxyl-5-

carbonyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (27) 

Reagents: 21 (80 mg, 0.14 mmol, 1 equiv), 2 M aqueous NaOH (0.4 mL, 1.00 mmol, 7 equiv) 

and HPLC grade methanol (3 mL). Data for 27: bright yellow powder (55 mg, 0.10 mmol, 73 

%); mp 258-259 ºC decomposes. IR (ATR) νmax (cm-1) = 3500-3200 (w, br, N-H, amide), 3100-

2500 (w, br, O-H, COOH) and 1626 (m, C=O, amide). 1H NMR (600 MHz, CDCl3) (*note 

compound is a free-radical, some signals appear broadened and other signals are missing) δ = 

14.91 (s, 1 H, COOH), 8.80 (s, 1 H, NCH=C), 8.06 (d, J = 12.0 Hz, 1 H, Ar-H), 7.43 (s, 1 H, Ar-

H), 4.12 (br, s, 2 H, NCH2), 3.87 (br, s, 2 H, NCH2), 3.59 (s, 1 H, C=CHNCH), 3.44 (br, s, 4 H, 2 

× NCH2), 1.29 (s, 2 H, NCHCH2), 1.27 (s, 2 H, NCHCH2). 
13C NMR (150 MHz, CDCl3) δ = 

176.6, 166.3, 154.0, 152.4, 147.2, 144.9, 138.5, 120.0, 112.3, 112.2, 107.8, 104.7, 35.0, 7.9. 

HRMS (ESI): m/z calcd for C30H32FN4O5 + H+ [M+H+]: 548.2409. Found 548.2410. HPLC 

analysis: retention time = 4.295 min; peak area, 99.90 %; eluent A, DCM; eluent B, THF; 

isocratic (70:30) over 20 min with a flow rate of 1 mL min-1 and detected at 254 nm; column 

temperature, rt. EPR: g = 1.9982, aN = 1.4833 mT. 

 

4.10.6. 1-Cyclopropyl-6-fluoro-7-(4-(2-methoxy-1,1,3,3-tetramethylisoindoline-5-

carbonyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (28) 

Reagents: 22, (70 mg, 0.12 mmol, 1 eq), 2 M aqueous NaOH (0.4 mL, 1.00 mmol, 8.3 equiv) 

and HPLC grade methanol (3 mL). Data for 28: light yellow powder (57 mg, 0.10 mmol, 85 %); 

mp 301-302 ºC decomposes. IR (ATR) νmax (cm-1) = 3500-3200 (w, br, N-H, amide), 3100-2500 

(w, br, O-H, COOH) and 1623 (m, C=O, amide). 1H NMR (600 MHz, CD2Cl2) δ = 14.94 (s, 1 H, 

COOH), 8.81 (s, 1 H, NCH=C), 8.08 (d, J = 13.0 Hz, 1 H, Ar-H), 7.46 (d, J = 7.1 Hz, 1 H, Ar-

H), 7.38 (dd, J = 7.7, 1.4 Hz, 1 H, Ar-H), 7.26 (s, 1 H, Ar-H), 7.23 (d, J = 7.8 Hz, 1 H, Ar-H), 

4.02 (br, s, 2 H, NCH2), 3.93 (s, 3 H, NOCH3), 3.75 (br, s, 2 H, NCH2), 3.59 (m, 1 H, 

C=CHNCH), 3.37 (br, s,4 H, 2 × NCH2), 1.57 (br, s, 12 H, 4 × CH3), 1.43 (br, s, 2 H, 2 × 

NCHCH2), 1.23 (m, 2 H, NCHCH2). 
13C NMR (100 MHz, CDCl3) δ = 177.8, 170.9, 167.1, 
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148.3, 148.0, 146.4, 139.7, 135.0, 129.9, 126.8, 124.0, 122.3, 122.2, 121.2, 112.9, 112.7, 108.8, 

106.2, 67.6, 65.9, 36.0, 8.7. HRMS (ESI): m/z calcd for C31H35FN4O5 + H+ [M+H+]: 563.2633. 

Found 563.2637. HPLC analysis: retention time = 3.868 min; peak area, 99.90 %; eluent A, 

DCM; eluent B, THF; isocratic (70:30) over 20 min with a flow rate of 1 mL min-1 and detected 

at 254 nm; column temperature, rt. 

 

SUPPORTING INFORMATION 

1H NMR and 13C NMR spectra, HPLC chromatograms and EPR spectra for all novel 

compounds. Plots showing planktonic cell killing for 27 and 28, and cell viability studies for 

various DMSO concentrations.  
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HIGHLIGHTS 

• Amide-linked ciprofloxacin-nitroxide conjugates were synthesized in high yield. 
• Hybrid 25 caused dispersal of P. aeruginosa biofilms. 
• Hybrid 27 caused virtually complete killing and removal of P. aeruginosa biofilms. 
• Compounds 25-28 were shown to be non-toxic in two human cell lines (up to 40 µM). 


