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A highly regioselective ortho-acetoxylation of N-(2-benzoylphenyl)benzamides has been achieved using a
catalytic amount of Pd(OAc)2 (10 mol %) and a stoichiometric amount of PhI(OAc)2 in a mixture of acetic
anhydride and acetic acid via C–H activation to produce the corresponding 2-acetoxybenzamides in good
yields. ortho-Methoxylation has been accomplished using methanol under similar conditions.

� 2011 Elsevier Ltd. All rights reserved.
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The transition metal catalyzed C–H activation has become a
powerful tool for the functionalization of unactivated carbon–
hydrogen bonds to construct carbon–carbon or carbon–heteroatom
bonds.1–5 However, direct functionalization of substrates with sim-
ilar C–H bonds tends to require a directing group.6 Generally, the
directing group possesses a lone pair which coordinates to the tran-
sition metal catalyst to direct ortho functionalization via a five- or
six-membered metallacycle.7 In particular, the oxidation of aro-
matic C–H bonds is a challenging task in organic synthesis.8 The
concept of dual activation in the acetoxylation of amides possessing
a pyridine or 8-aminoquinoline directing group has recently been
reported.9 However, there are no reports on the oxidative function-
alization of carboxamide amides via dual activation of both amide
NH and ortho-chelating carbonyl group.

In continuation of our interest on the functionalization of are-
nes via C–H activation,10 herein, we report a direct method for
the acetoxylation/methoxylation of benzamides activated by both
amide NH and ortho-carbonyl group. Initially, we attempted the
acetoxylation of simple benzamide derived from benzoic acid
and aniline with Ac2O using a catalytic amount of Pd(OAc)2 and a
stoichiometric amount of PhI(OAc)2 in acetic acid at 100 �C. The
reaction was very slow and the desired product was obtained in
40% yield after 24 h. Next, we attempted the acetoxylation of
N-(2-benzoylphenyl)benzamide (1) under similar conditions.
Interestingly, mono-acetoxylated product 3a was obtained in 80%
yield after 5 h (Scheme 1).
ll rights reserved.

).
The acetoxylation was highly ortho-selective to the amide group.
In acetoxylation reaction, Pd(OAc)2 acts as a catalyst to activate
aromatic C–H bond via an oxidative insertion. PhI(OAc)2 acts as a
co-oxidant to reoxidize Pd(0) to Pd(II). Ac2O acts as an acetoxylating
agent. The efficiency of various co-oxidants such as PhI(OAc)2,
AgOAc, Cu(OAc)2, Mn(OAc)3, and benzoquinone was tested for this
reaction. Of these, PhI(OAc)2 was found to be effective in terms of
conversion. The acetoxylation was also performed using various
amounts of Pd(OAc)2. Though the reaction proceeds with 5 mol %
of Pd(OAc)2, the reaction requires long reaction time, about 12 h,
to furnish comparable yield. Under optimized conditions, the acet-
oxylation typically requires 10 mol % Pd(OAc)2 and a stoichiometric
amount of PhI(OAc)2 to achieve good conversions. Next we have
performed the reaction at various temperatures in various solvents.
The reaction was sluggish either in toluene or in 1,4-dioxane. The
reaction proceeds smoothly at 100–110 �C in acetic acid. Notably,
sterically hindered substrates also participated effectively in acet-
oxylation (Table 1, entry f). No acetoxylation was observed on
remote sp3 C–H bond in case of methyl substituted benzamides
(Table 1, entries g, l, and m).
O
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Scheme 1. Acetoxylation of N-(2-benzoylphenyl)benzamide.
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Table 1
Pd(II)-catalyzed acetoxylation/methoxylation of aromatic carboxamides via C–H activation

Entry Substrate Nucleophile Producta Time (h) Yieldb (%)

a
NH

O

Ph
O

Ac2O NH

O

OAc

Ph
O

3a 5.0 80

b
NH

O

Ph
O

Cl Ac2O NH

O

OAc

Ph
O

Cl 3b 4.0 85

c
NH

O

Ph
O

F

Ac2O NH

O

OAc

Ph
O

F

3c 4.0 82

d
NH

O
MeO

MeO

Ph
O

Ac2O NH

O

OAc

Ph
O

MeO

MeO

3d
6.0 90

e
NH

O
PhO

Ph
O

Ac2O NH

O

OAc

Ph
O

PhO 3e
5.0 85

f
NH

ONO2

Ph
O

Ac2O NH

O

OAc

Ph
ONO2

3f
10 30

g NH

O
Ph

O

Me

Ac2O NH

O

OAc

Ph
O

Me

3g
6.0 70

h
NH

O

Ph
O

MeOH NH

O

OMe

Ph
O

4h
6.0 85

i
NH

O

Ph
O

F

MeOH NH

O

OMe

Ph
O

F

4i 6.0 80

j
NH

O

Ph
O

Cl MeOH NH

O

OMe

Ph
O

Cl 4j 6.0 82

k
NH

O

Ph
O

O

O

MeOH NH

O

OMe

Ph
O

O

O

4k 8.0 70

l
NH

O

Ph
O

Me MeOH NH

O

OMe

Ph
O

Me 4l 8.0 73

m NH

O
Ph

O

Me

MeOH NH

O

OMe

Ph
O

Me

4m
8.0 75

n
NH

O
PhO

Ph
O

MeOH NH

O

OMe

Ph
O

PhO 4n
5.0 85

a All products were characterized by 1H NMR, IR, and mass spectrometry.
b Yield refers to pure products after chromatography.
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Scheme 2. Methoxylation of N-(2-benzoylphenyl)benzamide.
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Next, we extended this method to study the methoxylation of
benzamides under similar conditions. Accordingly, we attempted
the methoxylation of N-(2-benzoylphenyl)benzamide (1) in meth-
anol using Pd(OAc)2/PhI(OAc)2. By simply changing the solvent
from acetic acid to methanol, the methoxylated product 4i was
obtained in 85% yield over 6 h (Scheme 2).

Interestingly, a variety of aromatic carboxamides bearing sub-
stitutions at ortho-, meta-, and para-positions participated well in
this reaction (Table 1). No dehalogenation was obtained in case
of halogenated substrates (Table 1, entries b, c, i, and j). Notably,
various functional groups such as amide, ketone, halides, ethers,
and methyl functionalities are well tolerated under the reaction
conditions. No acetoxylation was observed in the absence of either
Pd(OAc)2 or PhI(OAc)2. Among various oxidants such as AgOAc,
Mn(OAc)3, and Cu(OAc)2, PhI(OAc)2 was found to be effective in
terms of conversion. In all cases, the reactions were clean and
the products were obtained in excellent yields. The products were
characterized by NMR, IR, and mass spectroscopy. The scope and
generality of this process are illustrated with respect to various
benzamides bearing electron-rich as well as electron-deficient sub-
stituents on aromatic ring and the results are presented in Table
1.11

We assume that the reaction proceeds via the formation of five-
membered transition state by an oxidative insertion of Pd(II) into
aromatic C–H bond as depicted in Scheme 3. Thus formed palladac-
yle might be stabilized with carbonyl group to induce the ortho-
acetoxylation. The resulting Pd(0) could be converted into Pd(II)
by PhI(OAc)2 to complete the catalytic cycle.

In summary, we have developed a novel protocol for the oxida-
tive functionalization of benzamides bearing ortho-chelating car-
bonyl group via C–H activation. The method is very useful not
only for acetoxylation but also for methoxylation of aromatic sys-
tems. It works for both electron-rich as well as electron-deficient
substrates.
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Scheme 3. A plausible reaction pathway.
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