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Abstract: The total synthesis of (±)-adalinine, a piperidine alkaloid
from the European two-spotted ladybird Adalia bipunctata, is re-
ported. Central to this undertaking are (i) the use of an N-alkoxy-N-
acylnitrenium ion-induced spirocyclization to rapidly access the
6,6′-disubstituted piperidinone ring of the natural product and (ii)
exploitation of the cyclohexa-2,5-dienone system generated in this
process as a latent 1,6-ketoaldehyde.

Key words: adalinine, piperidine alkaloid, nitrenium ions, dearom-
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Nitrenium ions are highly reactive intermediates, which
contain a divalent, positively charged nitrogen atom. Al-
though historically the primary motivation for studying
nitrenium ions has been their proposed role in the carcino-
genesis initiated by nitro and amino-aromatic compounds,
they have also garnered attention from a synthetic stand-
point.1 Despite this interest however, the application of ni-
trenium ions to complex target-directed synthesis has
hitherto been limited,2 in part, by the harsh conditions of-
ten required for their generation and the complication of
multiple reaction pathways which can result in modest
yields.3 In this context, N-alkoxy-N-acylnitrenium ions of
general structure 2 (Scheme 1) are notable since they effi-
ciently undergo azaspirocyclization to form 1-azaspiro-
[4.5]decane and -[5.5]undecane systems 3 in excellent

yield.4 Furthermore, they can be generated under mild
conditions by the treatment of O-alkylhydroxamates 1
with iodine(III) reagents.2a,g

Having recently reported the first application of this reac-
tion to the synthesis of 1-azaspiro[4.5]decane-based natu-
ral products,5 we became attracted to the possibility that
cleavage of one, or more, of the C-C bonds in the cyclo-
hexa-2,5-dienone ring present in 3 would also provide an
expeditious means of accessing a range of α,α-disubsti-
tuted pyrolidinone and piperidinone derivatives 4, includ-
ing the natural product adalinine (5, Figure 1).

Figure 1 Adalinine (5) and adaline (6): Coccinellid alkaloids isola-
ted from Adalia bipunctata.

The piperidine nucleus is a ubiquitous structural motif
present in a diverse range of naturally occurring alkaloids
and synthetic compounds, many of which are imbued with
important biological activities.6 Adalinine (5) is an alka-
loid which was isolated from the hindquarters of the Eu-
ropean two-spotted ladybird beetle, Adalia bipunctata, in
1996.7 Although the biological activity of 5 has not been
disclosed, biosynthetic studies have revealed that this pi-
peridinone derivative is a biogenetic precursor of the ho-
motropane alkaloid adaline (6),8 which, when excreted by
the ladybird beetle, acts as an antifeedant against insects
and invertebrate predators.9 The presence of an asymmet-
ric nitrogen-bearing quaternary stereocenter in 5 coupled
with the interest in the development of methods for the
formation of such moieties has precipitated considerable
synthetic interest in this natural product.10 Herein, we re-
port the total synthesis of 5 utilizing an N-acylnitrenium
ion spirocyclization.

As illustrated in Scheme 2, we envisioned that 5 would be
accessible through chemoselective homologation of 1,6-
ketoaldehyde 7 which in turn could be accessed from 8
through a sequence involving oxidative cleavage of the
C(8′)-C(9′) bond. This spirolactam could then be prepared
through cyclization of the nitrenium ion generated from
amide 9.
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Scheme 1 Nitrenium ion spirocyclization-dienone cleavage:
A novel route to α,α-disubstituted N-heterocycles.
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Our synthetic route to adalinine (5) commenced from
known carboxylic acid 10,11 which was converted to the
corresponding mixed anhydride and coupled in situ with
O-methylhydroxylamine, to provide N-methoxyamide 9
in quantitative yield (Scheme 3). Upon treatment of a so-
lution of this compound in CH2Cl2 and MeOH with one
equivalent of phenyliodine(III) bis(trifluoroacetate) (PI-
FA), azaspirocyclization proceeded smoothly to afford di-
enone 8 in excellent yield after in situ hydrolysis of the
dimethyl acetal intermediate.5,12 Notably, this type of aza-
spirocyclization can be accomplished without recourse to
expensive non-nucleophilic solvents, such as trifluoroeth-
anol and hexafluoroisopropanol. In contrast, the oxidative
spirocyclization of phenolic substrates, such as amines
and carboxylic acids, often requires the use of such sol-
vents to prevent competitive intermolecular capture of the
arenium intermediate.13

Having established the piperidinone ring and nitrogen-
bearing quaternary center, we now directed our attention
to converting 8 to advanced intermediate 7, by way of ole-
fin 14. Thus, atmospheric hydrogenation of 8 in the pres-
ence of Adams catalyst (PtO2) furnished cyclohexanone
12 as a chromatographically inseparable 4:1 mixture of C-
8′ epimers (1H NMR). Smaller quantities of phenol 11
(20%) and alcohol 13 (10%) were also isolated from this
reaction. While 11 presumably arises through reductive
rearomatization of spirodienone 8,14 compound 13 ap-
pears to be formed from reduction of 12. Hydrogenation
of 8 for extended periods led to an increase in the yield of
alcohol 13 with a concomitant drop in the yield of 12. Al-
though in the context of our planned route to 14, the direct
formation of 13 from 8 was fortuitous, efforts to optimize
this process failed to yield satisfactory results. Hydroge-
nation of the ketone proved to be impractically slow with
PtO2, while other heterogeneous catalysts, including Pd/
C, Pd(OH)2, and Raney nickel, favored the rearomatiza-
tion process. Accordingly, ketone 12 was simply reduced
with sodium borohydride in MeOH to provide 13 as a
complex mixture of diastereomers. Given that the stere-
ochemistry of the C-8′ and C-9′ stereocenters did not have

a direct bearing on our synthesis, this material was carried
forward and converted to the corresponding mixture of
mesylate esters with MsCl and Et3N. Upon thermolysis
(100 °C) in a solution of DMSO, this mixture of com-
pounds underwent regioselective elimination to provide
trisubstituted olefin 14 together with a small amount of its
disubstituted regioisomer (ca. 10%). Ozonolytic cleavage
of 14, followed by reductive workup with Me2S provided
ketoaldehyde 7 (Scheme 2) as a single compound. The re-
maining carbon atoms present in the natural product were
then installed via chemoselective Takai ethylidenation us-
ing the gem-dichromium reagent generated by the reac-
tion of 1,1-diiodoethane with chromium(II) chloride.15

Pd-catalyzed hydrogenation of 15 now served to reduce
the C-6 pentenyl side chain, but failed to cleave the N-
methoxyl substituent. Selective reduction of the N-O bond
was, however, efficiently accomplished by heating the hy-
drogenation product with one equivalent of Mo(CO)6 in
aqueous acetonitrile.16 Although slow; this reaction pro-
ceeded smoothly to provide (±)-adalinine (5) in excellent
yield. The spectroscopic and  physical data (1H NMR, 13C
NMR, MS) of this synthetic material were identical to
those previously reported.17

In summary, we report a total synthesis of the ladybird al-
kaloid adalinine (5), which proceeds in ten steps and with
a 13% overall yield. The central features of this work

Scheme 2 Retrosynthetic analysis of adalinine.
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Scheme 3 Total synthesis of (±)-adalinine. Reagents and conditi-
ons: (a) i-BuOCOCl, Et3N, –20 °C to 0 °C; MeONH2⋅HCl, Et3N,
0 °C, 1 h (quant.); (b) 9, PIFA, CH2Cl2–MeOH (1:1), –78 °C to
15 °C, 1.5 h then H2O, 10 min (90%); (c) H2 (1 atm.), PtO2 (1%, w/
w), EtOAc, 24 h (70%); (d) NaBH4, MeOH, –30 °C to 0 °C (95%);
(e) CH3SO2Cl, Et3N, CH2Cl2, 30 min (90%); (f) 100 °C, DMSO, 24
h (64%); (g) O3/O2, CH2Cl2, –78 °C, 5 min; Me2S, r.t., 24 h (74%);
(h) CrCl2 (4.1 equiv), CH3CHI2 (1.1 equiv), DMF (1 equiv), THF,
r.t., 4 h (53%); (i) H2 (1 atm.), 10% Pd/C, EtOAc, r.t., 6 h (100%);
(j) Mo(CO)6, CH3CN–H2O (15:1), reflux, 30 h (98%).
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include i) construction the 6,6′-disubstituted piperidinone
ring using an N-alkoxy-N-acylnitrenium ion-induced spi-
rocyclization and ii) exploitation of the cyclohexa-2,5-di-
enone generated in this transformation as a latent 1,6-
dicarbonyl. Further application of the nitrenium ion spiro-
cyclization-dienone cleavage strategy outlined herein is
now underway in this laboratory. Our progress will be re-
ported in due course.
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