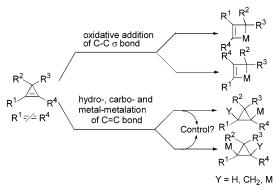


Published on Web 09/18/2003

2,3,4- or 2,3,5-Trisubstituted Furans: Catalyst-Controlled Highly Regioselective Ring-Opening Cycloisomerization Reaction of Cyclopropenyl Ketones


Shengming Ma* and Junliang Zhang

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, P. R. China

Received June 11, 2003; E-mail: masm@mail.sioc.ac.cn

Cyclopropenes,¹ highly strained but readily accessible carbocyclic molecules, have been shown to possess useful reactivity in organic synthesis.² In the past several years, more and more attention has been paid to the transition metal-catalyzed reaction of cyclopropenes. Two kinds of reaction patterns of cyclopropenes, that is, the direct oxidative addition of the C–C σ bond^{2b,3c} and metalation (hydrometalation,^{3a,b} carbometalation,^{4,5} and bismetalation^{3b}) of the C=C bond, have been disclosed for their interaction with transition metals (Scheme 1). It is obvious that there is an attractive but often troublesome regioselectivity issue when R¹ is different from R^{4,5,6}

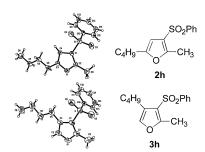
Scheme 1

After observing some interesting chemistry with methylenecyclopropanes (MCPs),⁷ we showed high interest in the transition metal halide-mediated reaction of cyclopropenes, which also have an active C=C bond in the three-membered ring. Although the chloropalladation of cyclopropenes with a stoichiometric amount of PdCl₂(CH₃CN)₂ leading to an allylpalladium species has been disclosed,⁸ no catalytic reaction has been reported. Herein, we wish to report a highly regioselective ring-opening cycloisomerization of cyclopropenyl ketones **1**, in which the subtle application of CuI and PdCl₂(CH₃CN)₂ addressed the issue of regioselectivity leading to corresponding 2,3,4- or 2,3,5-trisubstituted furans, respectively.

Initially, we tested the halometalation of cyclopropenyl ketone $1a^9$ in the presence of a number of transition metal halides (MX_n) (Table 1). NiBr₂ and CoCl₂ are less effective with low regioselectivity (entries 2–3, Table 1), while FeCl₃ showed high regioselectivity with a low yield (entry 4, Table 1). RhCl₃·3H₂O, RuCl₃· 3H₂O, PdBr₂(PhCN)₂, and PdCl₂ showed higher activity to give **2a** in good yields with high regioselectivities (entries 5–8, Table 1). After numerous screenings, we were pleased to find that the reaction applying 5 mol % PdCl₂(CH₃CN)₂ as the catalyst and CHCl₃ as the solvent (Conditions A) gave **2a** in 71% yield with very high regioselectivities in other solvents such as CH₃CN, AcOEt, and ClCH₂CH₂Cl are lower (entries 10–12, Table 1). After further

Table 1. MX_n -Catalyzed Cycloisomerization of Cyclopropenyl Ketone $1a^a$

$\begin{array}{c} O \\ EtO_2C \\ C_4H_9 \\ 1a \end{array} CH_3 MX_n(5)$		$\xrightarrow{\text{CO}_2\text{Et } C_4\text{H}_9} CO_2\text{Et}}_{\text{CO}_2\text{Et}} CO_2\text{Et} CO_2\text{Et}} CO_2\text{Et} $			
entry	catalyst	solvent/T (°C)	<i>t</i> (h)	2/3 ^b	yield (%) ^c
1	no	acetone/reflux	19		0
2	CoCl ₂	acetone/reflux	24	65:35	7
3	NiBr ₂	acetone/reflux	24	20:80	20
4	FeCl ₃	acetone/reflux	12	99:1	25
5	RuCl ₃ •3H ₂ O	acetone/reflux	14	98:2	61
6	RhCl ₃ ·3H ₂ O	acetone/reflux	12	98:2	58
7	PdCl ₂	acetone/reflux	11	94:6	60
8	PdBr ₂ (PhCN) ₂	acetone/reflux	17	94:6	53
9	PdI ₂	acetone/reflux	12		trace
10	PdCl ₂ (CH ₃ CN) ₂	CH ₃ CN/80	17	88:12	25
11	PdCl ₂ (CH ₃ CN) ₂	AcOEt/reflux	17	94:6	64
12	PdCl ₂ (CH ₃ CN) ₂	Cl(CH2) 2Cl/80	11	96:4	66
13	PdCl ₂ (CH ₃ CN) ₂	CHCl ₃ /reflux	18	98:2	71^{d}
14	CuCl ₂	acetone/reflux	12	12:88	75


^{*a*} The reaction was carried out using **1a** (0.5 mmol) and catalyst (5 mol %) in solvent (2.0 mL). ^{*b*} The ratio was determined by ¹H NMR analysis of the crude reaction mixture. ^{*c*} Unless otherwise specified, isolated yields of two isomers. ^{*d*} Isolated yield of the major isomer.

<1:99

9

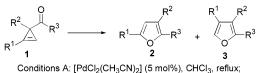
91^d

CH₃CN/80

Figure 1.

15

CuI

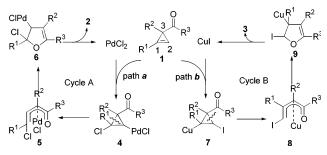

study, we were excited to find that the reaction of **1a** in CH₃CN at 80 °C under the catalysis of 5 mol % CuI (Conditions B) for 9 h gave **3a** with an excellent regioselectivity (>99:1) in 91% yield (entry 15, Table 1).

Some typical examples for this regioselective transformation are summarized in Table 2. Several types of substituents such as 1-alkyl, *tert*-butyl, and phenyl groups could be introduced (entries 1-8, Table 2). The introduction of the PhSO₂ group as R² provided us further evidence for the regioselectivity, since we established the structures of **2h**¹⁰ and **3h**¹¹ by X-ray diffraction studies (Figure 1).

A possible rationale for this regioselectivity is depicted in Scheme 2. In the presence of a catalytic amount of $PdCl_2(CH_3CN)_2$ (cycle A), the regioselective chloropalladation⁸ of the C=C bond of the

 Table 2.
 Regioselective Cycloisomerization of Cyclopropene

 Ketones 1 under Conditions A and B



Conditions A. [PdCl₂(CH₃CN)₂] (5 mol%), CHCl₃, reliax Conditions B: [Cul] (5 mol%), CH₃CN, reflux.

	cyclopropenyl ketones 1		
entry	R ¹ /R ² /R ³	cond./ <i>t</i> (h)	yield ^a (2:3) ^b
1	TBSO(CH ₂) ₂ /CO ₂ Et/CH ₃ (1b)	A ^c /3	(2b) 65 (95:5)
2	1b	B/10	(3b) 85 (<1:99)
3	TBSOCH ₂ /CO ₂ Et/CH ₃ (1c)	A/3	(2c) 60 (96:4)
4	1c	B/10	(3c) 83 (<1:99)
5	t-Bu/CO ₂ Et/CH ₃ (1d)	A/13	(2d) 66 (98:2)
6	1d	B/4.5	(3d) 80 (<1:99)
7	$Ph/CO_2Et/CH_3(1e)$	A/10	(2e) 73 (99:1)
8	1e	B/2.5	(3e) 89 (1:99)
9	<i>n</i> -C ₅ H ₁₁ /CO ₂ Et/Ph (1f)	A ^c /24	(2f) 50 (98:2) ^d
10	1f	B/10	(3f) 80 (<1:99)
11	<i>n</i> -C ₄ H ₉ /COMe/CH ₃ (1g)	A ^c /3	(2g) 78 (95:5)
12	1g	B/6	(3g) 80 (<1:99)
13	$n-C_4H_9/SO_2Ph/CH_3(1h)$	$A^c/5$	(2h) 88 (99:1)
14	1h	B/10	(3h) 96 (<1:99)

^{*a*} Isolated yield of the major isomer. ^{*b*} The ratio was determined by ¹H NMR analysis of the crude reaction mixture. ^{*c*} CH₂Cl₂ was used as the solvent. ^{*d*} Unidentified product was also formed.

Scheme 2

cyclopropenyl ketone **1** (path *a*) would afford the palladium intermediate **4**, which would undergo β -decarbopalladation to afford delocalized intermediate **5**. Subsequent intramolecular *endo*-mode insertion of the C=C bond into the oxygen-palladium bond of intermediate **5** would afford a cyclic palladium intermediate **6**, which would undergo β -halide elimination to afford **2** and regenerate palladium(II) species. On the other hand, in the presence of a catalytic amount of CuI, it would proceed according to cycle B. The opposite regioselective iodocupration of the C=C bond of **1** (path **b**) and subsequent β -decarbocupration gave delocalized intermediate **8**. The intramolecular *endo*-mode insertion of the C=C bond into the oxygen-copper bond of intermediate **8** and subsequent β -halide elimination of intermediate **9** afforded **3** and regenerated CuI.

In conclusion, we have developed a regioselective cycloisomerization of cyclopropenyl ketones **1** leading to 2,3,4-trisubstituted furans or 2,3,5-trisubstituted furans by using the catalyst CuI or PdCl₂(CH₃CN)₂, respectively. Further studies into the scope, mechanism, and synthetic applications of this transformation are being carried out in our laboratory.

Acknowledgment. Financial support from the National Science Foundation of China, the Major State Basic Research Development Program (Grant No. G2000077500), and the Chinese Academy of Sciences is greatly appreciated. S.M. is the recipient of the 1999 Qiu Shi Award for Young Chinese Scientific Workers issued by the Hong Kong Qiu Shi Foundation of Science and Technology (1999–2003). This work is dedicated to Professor Xian Huang on the occasion of his 70th birthday.

Supporting Information Available: Experimental procedures and characterization data of all new compounds (PDF and CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- For a review, see: Baird, M. S. Cyclopropenes: Synthesis: By Construction of the System. *Houben-Weyl*; Thieme: Stuttgart, Germany, 1997; E17d/2, p 2695.
- (2) For reviews, see: (a) Binger, P.; Büch, H. M. Top. Curr. Chem. 1987, 135, 77. (b) Jennings, P. W.; Johnoson, L. L. Chem. Rev. 1994, 94, 2241. (c) Baird, M. S. Cyclopropenes: Transformations. Houben-Weyl; Thieme: Stuttgart, Germany, 1997; E17d/2, p 2781. (d) Nakamura, M.; Isobe, H.; Nakamura, E. Chem. Rev. 2003, 103, 1295.
- (3) (a) Nakamura, I.; Bajracharya, G. B.; Yamamoto, Y. J. Org. Chem. 2003, 68, 2297. (b) Liao, L.; Fox, J. M. J. Am. Chem. Soc. 2002, 124, 14322. (c) Cho, S. H.; Liebeskind, L. S. J. Org. Chem. 1987, 52, 2631.
- (4) (a) Nakamura, M.; Hirai, A.; Nakamura, E. J. Am. Chem. Soc. 2000, 122, 978.
 (b) Kubota, K.; Mori, S.; Nakamura, M.; Nakamura, E. J. Am. Chem. Soc. 1998, 120, 13334.
 (c) Section IV.B.1 in ref 2d.
- (5) For a ligand effect on switching the regioselectivity in allylzincation of 1-trimethylsilyl (Ge, Sn)-cyclopropenone acetals, see: Nakamura, M.; Inoue, T.; Sato, A.; Nakamura, E. Org. Lett. 2000, 2, 2193.
- (6) For control of regioselectivity by the metallic complexes of different oxidation states, see: Padwa, A.; Kassir, J. M.; Xu, S. L. J. Org. Chem. 1991, 56, 6971.
- (7) Ma, S.; Zhang, J. Angew. Chem., Int. Ed. 2003, 42, 184.
- (8) (a) Mushak, P.; Battiste, M. A. J. Organomet. Chem. 1969, 17, P46. (b) Battiste, M. A.; Friedrich, L. E.; Fiato, R. A. Tetrahedron Lett. 1975, 45.
- (9) The starting materials 1 were prepared in moderate yields by the rhodiumcatalyzed cyclopropanation reaction of alkynes according to the following reference except that the corresponding diazo compounds were used instead of iodonium ylides, see: Batsila, C.; Kostakis, G.; Hadjiarapoglou, L. P. *Tetrahedron Lett.* 2002, *43*, 5997.
- (10) X-ray data for compound **2h**: $C_{15}H_{18}O_{3}S$, MW = 278.35, orthorhombic, space group *Pca2*(1), Mo K α , final R indices $[I > 2\sigma(I)]$, R1 = 0.0446, wR2 = 0.0598, a = 12.0416 (9) Å, b = 15.7116 (11) Å, c = 15.1600 (11) Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, V = 2868.2 (4) Å³, T = 293 (2) K, Z = 8, reflections collected/unique: 16 943/6492 ($R_{int} = 0.0555$), no observation $[I > 2\sigma(I)]$ 3776, parameters 425. CCDC 211695 contains the supplementary crystallographic data.
- (11) X-ray data for compound **3h**: $C_{15}H_{18}O_{35}$, Mw = 278.35, triclinic, Space group P-1, Mo K α , final R indices $[I > 2\sigma(I)]$, R1 = 0.0488, wR2 = 0.1119, a = 7.9303 (11) Å, b = 9.6961 (13) Å, c = 11.1246 (11) Å, α = 68.445 (2)°, $\beta = 81.980$ (3)°, $\gamma = 66.606$ (2)°, V = 730.16 (17) Å³, T = 293 (2) K, Z = 2, reflections collected/unique: 4497/3261 ($R_{int} =$ 0.0589), No Observation $[I > 2\sigma(I)]$ 2119, parameters 245. CCDC 211696 contains the supplementary crystallographic data.

JA036616G