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Abstract: The NIS-mediated iodocyclization of 1,6-enynes is de-
scribed. While 1,6-enynes with a cation-stabilizing substituent at
C2 position undergo 6-exo cyclization in poor yields, 1,6-enynes
with donor substituents at C1 position favor the 5-exo mode of cy-
clization. The resulting five-membered carbocycles are obtained in
moderate to good yields, thus demonstrating another facet in the
iodocyclization of enynes.
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The electrophilic iodocyclization of alkynes has emerged
as a powerful tool to efficiently synthesize small molecule
targets. In particular, the iodonium-induced cyclization of
heteroatom nucleophiles with tethered alkynes is useful to
accomplish direct carbon–heteroatom bond formation for
the synthesis of a variety of carbo- and heterocycles.1,2

Despite a groundbreaking report by Barluenga et al. in
1988,3 the analogous iodonium-induced cyclization of
carbon nucleophiles remained mostly restricted to arenes4

and malonates.5 In 2010, we6 and others7 then showed
how simple olefins can act as internal carbon nucleophiles
in the iodocyclization of 1,5-enynes. In the presence of
carbocation-stabilizing substituents at the C2 position,
we6a and Shin7a et al. observed exclusive 6-endo cycliza-
tion converting 1,5-enynes into six-membered cyclic
products of high value including highly substituted ben-
zenes, 1,4-cyclohexadienes, and 4-fluoro cyclohexenes8

(Scheme 1). For 1,5-enynes with carbocation-stabilizing
substituents at the C1-alkenyl terminus, a 5-endo mode

was reported as an alternative mode of cyclization.7b,c

Here we show that 1,6-enynes are also substrates in iodo-
nium-induced carbocyclizations yielding both six-mem-
bered and five-membered carbocycles depending on the
position of cation-stabilizing substituents.

As transition-metal-catalyzed cycloisomerizations of 1,6-
enynes are of exceptionally broad use to construct various
carbocycles,9,10 we expected that the corresponding io-
docyclization also has the potential to deliver carbocyclic
products of high complexity.11 Due to the incorporation of
I rather than H at the final product, further functionaliza-
tion is made easy by use of classical cross-coupling meth-
odologies.12 To this end, 1,6-enyne 1 bearing a methyl
donor at C2 position was treated with of N-iodosuccinim-
ide (NIS) in CH2Cl2. The initial attempt employing three
equivalents of NIS at room temperature produced only
18% of the desired six-membered ring system 2, along
with a large number of trace products not further analyzed
(Scheme 2). The yield was slightly improved to 38% by
using 1.1 equivalents of NIS at 50 °C in a sealed tube. As
shown through NOESY studies, diene 2 was obtained as a
single diastereoisomer resulting from anti addition onto
the iodonium-activated triple bond. Other iodonium
sources (e.g., I2/K3PO4, IBr) did not provide better yields
neither did other solvents (EtOAc, MeCN, toluene, THF,
DMF). Notably, the 6-exo cyclization mode proved re-
stricted to 1,6-enynes with a terminal alkyne moiety as as-
sessed by reacting internal alkyne 3 with NIS to give
lactone 4.13

Scheme 1 Iodocyclization modes of 1,5-enynes
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Scheme 2 6-Exo cyclization of 1,6-enynes

In order to investigate the alternative 5-exo cyclization,
we sought to examine the reactivity of 1,6-enynes that
possess two donor substituents at the C1-alkenyl termi-
nus. We were pleased to find that acetonide 5a indeed
gave the expected cyclization product 6a in up to 68%
yield when employing NIS as the iodonium source in
CH2Cl2 (Scheme 3). To rapidly convert the starting 1,6-
enyne 5a, heating to 50 °C was not required; the highest
yield was obtained at room temperature after six hours.
Surprisingly, significantly faster reaction times were real-
ized when adding stoichiometric amounts of acetic acid.
The origin of this effect, and why acetic acid was not in-
corporated under the reaction conditions,6a,7c is currently
under investigation. Most likely, the Brønsted acid en-
hances the halogenating ability by activation of the suc-
cinimide carbonyl.14 In the presence of other iodonium
sources (e.g., I2/K3PO4), we mostly observed rapid and
complete decomposition to untraceable products.

The substrate scope was briefly examined utilizing NIS in
dichloromethane at either 23 °C or at 50 °C. As shown in
Scheme 3, a variety of 1,6-enynes with two substituents at
C1 position underwent iodonium-induced cyclization to
afford the five-membered carbocycles 6b–f in moderate
yields.15 Notably, in all cases 5-exo carbocyclization oc-
curred selectively over competing modes of cyclization. A
major limitation stems again from the fact that internal
alkynes do not react in the expected way.16

A plausible mechanism accounting for the observations
reported herein is based on the intermediacy of cyclic car-
bocations. Accordingly, iodonium activation of the triple
bond initiates the nucleophilic attack in an anti fashion.
Since the reaction favors the carbon–carbon bond forma-
tion that, upon cyclization, leads to the more stable cation-
ic intermediate, a substituent at C2 renders the C1 carbon
of the alkene moiety more nucleophilic (6-exo cycliza-
tion). In sharp contrast, a disubstituted C1-alkenyl termi-
nus generates five-membered cyclic cations via bond
formation between the alkynyl C6 and the alkenyl C2 (5-
exo cyclization). In both cases, proton abstraction (by the
succinimide anion) finally delivers the diene product con-
taining a vinyl iodide moiety. In accordance with this
consideration, 1,6-enyne 7, not bearing additional substit-

uents at the alkene, was not converted at all when NIS was
employed at various temperatures (Scheme 4).

Scheme 4 Attempted reaction of unsubstituted alkene 7

In summary, we have investigated the reactivity of 1,6-
enynes in the presence of electrophilic iodine sources. It
was shown that the carbocyclization favors a pathway that
proceeds through the more stabilized carbocation. A 6-exo
process was realized in poor yields when enynes with a
stabilizing substituent at the C2 position were reacted in
the presence of NIS. In the case of 1,6-enynes with car-
bocation-stabilizing substituents at the C1-alkenyl termi-
nus, the more rapid 5-exo cyclization yields the
corresponding five-membered carbocycles in moderate to
good yields. The transition-metal-free processes are ex-
perimentally simple to perform and demonstrate another
facet of the still underdeveloped potential of electrophilic
enyne cyclizations for the synthesis of diverse carbocyclic
scaffolds.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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