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a b s t r a c t

Derivatives from the aminobenzosuberone family have been recently synthesized and recognized as
highly selective inhibitors of aminopeptidase N (APN)/CD13 (EC 3.4.11.2), an important target for cell
migration processes involved in particular in tumor invasion. We present here a much more straightfor-
ward synthesis of analogues belonging to a novel isosteric oxo series which also possesses excellent
inhibitory potential against APN. Their synthesis, as reported here, relied on an interesting iodine(III)-
mediated rearrangement originally described by Koser and Justik as the key step. This represents the sec-
ond application of this rearrangement in medicinal chemistry.

� 2011 Published by Elsevier Ltd.
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Among proteolytic enzymes, the ubiquitous aminopeptidase N
(APN)/CD13 (EC 3.4.11.2)1 has been shown to play an important role
in tumor angiogenesis and metastasis.2 Although many inhibitors of
this ectopeptidase are available, most of them are poorly selective.3

The development of highly specific and potent inhibitors remains
a challenge since most aminopeptidases are zinc-dependent en-
zymes that share a broad substrate specificity. Structural require-
ments for APN inhibition were previously determined4,5 and led
to the discovery of (±)-7-amino-6-benzosuberone scaffold 1 as a
lead structure, which demonstrated a remarkable inhibitory po-
tency and selectivity toward APN, with a Ki value of 1 lM.
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This scaffold therefore appeared as an excellent candidate for

further chemical elaboration and derivatization and we already
pointed out the outstanding inhibitory activity and selectivity to-
ward APN of (±)-1,4-difunctionalized derivatives 2. This series of
aminobenzosuberones was easily obtained from the protected
derivative 3.5 This latter compound could be synthesized in about
15 steps from L-tryptophane6 highlighting, as a key step, an iodi-
ne(III)-mediated ring expansion originally described by Justik and
Elsevier Ltd.

et).
Koser on simple 1-tetralone.7 Although our synthesis relied, for
the first time in medicinal chemistry, on this efficient rearrange-
ment, it remained somewhat tedious because of its number of steps.
We present here a much more straightforward synthesis of the 9-
oxo isostere 4 of aminobenzosuberone 1, as well as the preparation
of a key protected precursor 10 ideally substituted for the synthesis
of oxepin-4-one derivatives 5. Our strategy is described in Figure 1.
In both cases simple iodo-phenol-derivatives as well as 2-benzyl-
oxycarbonylamino-but-3-en-1-ol 6 are used as starting reagents.

In the first place, we needed an efficient preparation of 2-ben-
zyloxycarbonylamino-but-3-en-1-ol 6. This compound was readily
O

obtained in an overall yield of 41% from DL-serine methyl ester
hydrochloride as indicated in Scheme 1, taking advantage of a
new short and quick synthesis.8,9 After protection as a N-benzyl-
oxycarbonyl derivative and as a O-tert-butyldimethylsilyl deriva-
tive,10 intermediate 13 was reduced with Dibal-H. Alcohol 14
was then converted into aldehyde 15 after an oxidation with
Dess-Martin periodinane, which in turn was transformed into al-
kene 16 via a Wittig reaction in good yield.11,12 Removal of the
O-tert-butyldimethylsilyl protection was accomplished with TBAF
and yielded the desired racemic compound 6.13
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Figure 1. Retrosynthetic pathway.
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Scheme 1. Synthesis of 2-benzyloxycarbonylamino-but-3-en-1-ol 6.

Table 1
Inhibition of aminopeptidase N

Compounds Ki (lM) c log P

APN EC 3.4.11.2

O

NH2, HCl 1
l 1.08

O

O

NH2, HBr 4 l 0.39
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As shown in Scheme 2, the preparation of 3-benzyloxycarbonyl-
amino-4-methylene-chromane 714 was accomplished in good
overall yield using a Mitsunobu reaction15 between alcohol 6 and
2-iodophenol 17, followed by an intramolecular Heck reaction.16,17

The resulting methylenic derivative 7 was then treated with
[hydroxy(tosyloxy)iodo]benzene HTIB in methanol at room tem-
perature according to Koser and Justik.7 Under these conditions,
we were pleased to isolate after 20 min the desired benzo[b]oxe-
pin-4-one 8 in good yield. The removal of the N-tert-butylcarba-
mate protection was accomplished under acidic conditions (HBr
33% in acetic acid) leading the desired inhibitor 4, as a racemic
mixture.

The inhibitory activity of 4 on APN was evaluated and compared
to the one of the parent isostere 1. As presented in Table 1, both
compounds exhibited similar Ki.

Encouraged by these promising results, we then investigated
the preparation of 9-amino isostere 23, starting from 2-iodo-N-
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Scheme 2. Synthesis of 9-oxo derivative 4 and te
(methylsulfonyl)-aniline 19. As outlined in Scheme 2, although
both the Mitsunobu coupling and Heck cyclization went unevent-
fully, we could not perform the key ring expansion: by making use
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of the conditions previously described, we only got a complex
mixture.

Instead of pursuing experiments starting from other protected
anilines, we focussed our attention on the oxepinone series in view
of preparing analogues substituted on the aromatic ring. Commer-
cial 3-nitro-2-amino-phenol 24 was first submitted to a Sandmey-
er reaction leading to derivative 25.18 Like previously, the
preparation of 3-benzyloxycarbonylamino-4-methylene-5-nitro-
chromane 9 required two steps: a Mitsunobu reaction between
alcohol 6 and compound 25, followed by an intramolecular Heck
reaction (Scheme 3). The resulting methylenic derivative 9 was
then submitted to Koser and Justik’s conditions without success.
Realizing that the nitro function could be responsible for this fail-
ure, we decided to repeat the experiment starting from N-trifluoro-
acetyl derivative 28, easily obtained in two steps from 9.19,20 We
were pleased to observe that, in this case, the iodine (III)–mediated
ring expansion worked with a correct yield. Indeed, after chroma-
tography, we could isolate, in place of the expected keto derivative,
the pair of hemi-ketals 10a and 10b (Scheme 3).21

In conclusion, we synthesized 3-amino-2-hydro-5H-benzo[b]
oxepin-4-one 4 as a new lead structure for the preparation of APN
inhibitors. Indeed, compared to its 9-methylenic isostere 1, this
compound exhibited a similar inhibitory activity but could be pre-
pared in a much more efficient way from simple starting materials,
by making use of an iodine (III)-mediated ring expansion as a key-
step.7 Although we could not apply this reaction for the preparation
of the 9-aza isostere 23, the relevance of our synthetic strategy was
highlighted by its extension to the preparation of a key functional-
ized precursor 10 to substituted oxepin-4-one derivatives of type 5.
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