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The enantio- and diastereoselective cross-annulation of
cinnamaldehyde (6) and 2,2,2-trifluoroacetophenone (7) was
examined to evaluate the performance of newly developed
chiral bicyclic imidazolium salts 3 and 4 as catalyst precursors.
The reaction proceeded to give desired γ-lactone 8 with high
diastereoselectivities (up to 10/1) and moderate enantioselectiv-
ities (up to 71% ee) when the sterically demanding catalyst
precursors were used.
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Chiral N-heterocyclic carbenes (NHCs) have become an
indispensable tool in the fields of coordination chemistry and
asymmetric catalysis.1,2 In 2010, we reported a modular synthe-
sis of chiral bicyclic imidazolium salts 35 based on the
alkylation of newly prepared imidazoles 1 and 2 with the intent
of applying them to NHC/metal-catalyzed asymmetric reactions
(Figure 1).3 One of the advantages of the method is the rapid
preparation of a diverse array of imidazolium salts simply by
changing the combinations of imidazoles and alkylating agents.
In fact, very recently, we have synthesized many NHC/Ir
complexes by using this method and succeeded in finding an
excellent catalyst precursor for the asymmetric transfer hydro-
genation of ketones.4

Although NHCs generated from structurally similar bicyclic
triazolium salts and imidazolium salts to 3 and 4 are well-known
chiral organocatalysts,2,5 most of them have aryl groups on the
nitrogen atom.6 The use of analogs having alkyl groups on the
nitrogen atom is rather limited.7 In 2008, Ishida and Saigo
prepared various chiral N-alkyl bicyclic imidazolium salts by
the alkylation of their own morpholine-fused imidazole, and
reported that one of those salts could be used as a catalyst
precursor for the asymmetric cross-annulation of cinnamalde-
hyde (6) and 2,2,2-trifluoroacetophenone (7).8 Since the seminal
reports by the groups of Glorius9a and Bode,9b the chemistry of
NHC-catalyzed homoenolates has greatly developed, enabling
the synthesis of many useful molecules.2,10 However, the
asymmetric version of the reaction between enals and carbonyl

compounds to afford γ-lactones still presents a challenge.11 Here,
we report our investigation of this reaction to form γ-lactone
8 catalyzed by N-alkyl bicyclic NHCs generated from newly
prepared imidazolium salts (S)-3 and (R)-4.

At the outset, we synthesized chiral imidazolium salts (S)-3
and (R)-4 having flexibility at substituents R1 and R3 from
pyrrolidine-fused imidazoles 1, which were prepared from
urocanic acid, and oxazolidine-fused imidazole 2, which was
prepared from amino acids, with various electrophiles (R3X)
(Figure 2).12

According to the reaction conditions reported by Ishida and
Saigo,8 we first carried out the cross-annulation of cinnamalde-
hyde (6) and 2,2,2-trifluoroacetophenone (7) in the presence of
imidazolium salt (S)-3at (20mol%) and KN(SiMe3)2 (20mol%)
in THF at room temperature (Table 1, Entry 1). However, the
desired γ-lactone was not generated under those conditions.
Then, we screened bases DBU, Cs2CO3, and t-BuOK and
found that t-BuOK was the best option, generating 8 in 49%
isolated yield with good diastereoselectivity (8a/8b = 5.7/1)
and enantioselectivity (55% ee (8a), 50% ee (8b)) (Entries 24).

Figure 1. Modular synthesis of chiral bicyclic imidazolium
salts 35.

Figure 2. Structures of chiral bicyclic imidazolium salts 3 and
4 for enantio- and diastereoselective cross-annulation.
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Lowering the reaction temperature to 0 °C improved both
diastereo- and enantioselectivities, but the isolated yields of
the products decreased (Entry 4 vs. 5). Further lowering of the
temperature to ¹40 °C worsened the situation: Not only the
isolated yield but also the selectivities decreased (Entry 4 vs. 6).
Several solvents were then screened to further optimize the
reaction conditions. With Et2O as the solvent, the reaction
proceeded with better diastereoselectivity, whereas the enantio-
selectivity of 8b decreased (Entry 4 vs. 7). Other solvents,
toluene, CH2Cl2, and MeOH, were found to significantly
decrease the isolated yields of the products (Entries 810).

The results of catalyst screening for the enantio- and
diastereoselective cross-annulation are shown in Table 2, in
which all reactions were performed in the presence of t-BuOK as
the base at room temperature in THF.13 First, using the structure
of (S)-3at (Entry 1), the influence of the steric hindrance of
substituent R3 was inspected. It was found that neither
decreasing (Entries 24) nor increasing (Entries 57) the steric
hindrance improved the enantioselectivity of 8a. On the other
hand, in regard to diastereoselectivity, (S)-3az, which has a
rather bulky R3 substituent, the di(2-naphthalenyl)methyl group
showed the best result (8a/8b = 10/1) (Entry 7). Unfortunately,
oxazolidine-fused imidazolium salts (R)-4 were found to be
inferior to pyrrolidine-fused imidazolium salts (S)-3 in terms of
both diastereo- and enantioselectivities (Entry 2 vs. 8; Entry 3
vs. 9). A measurable improvement in enantioselectivity was

observed when substituent R1 of (S)-3 was changed. Although
the introduction of two tert-butyl groups on the 3,5-positions of
the phenyl ring decreased both diastereo- and enantioselectiv-
ities (Entry 1 vs. 10), the introduction of bulkier substituents
on the 2,6-positions of the phenyl ring clearly led to higher
enantioselectivity in 8a (Entry 1 vs. 11, 14, and 16; Entry 2 vs.
12; Entry 3 vs. 13; Entry 7 vs. 15 and 17). In these cases,
however, the reaction rates tended to slow down and a certain
amount of starting cinnamaldehyde (6) was recovered.14 The
highest enantioselectivity of 8a (71% ee) was observed when
(S)-3ez, which has a 2,4,6-tricyclohexylphenyl group as the
R1 substituent and a di(2-naphthalenyl)methyl group as the R3

substituent, was used (Entry 17).15

In conclusion, we have conducted the enantio- and
diastereoselective cross-annulation of cinnamaldehyde (6) and
2,2,2-trifluoroacetophenone (7), which is known as a challeng-

Table 1. Optimization of reaction conditions for enantio- and
diastereoselective cross-annulation of cinnamaldehyde (6) and
2,2,2-trifluoroacetophenone (7) with (S)-3ata

Entry Base Solvent
Temp
/°C

Yieldb

/%
drc

(8a/8b)
eed

(8a/8b)

1 KN(SiMe3)2 THF rt 0 ®/® ®/®
2 DBU THF rt 17 5.3/1 51/51
3 Cs2CO3 THF rt 34 5.3/1 39/67
4 t-BuOK THF rt 49 5.7/1 55/50
5 t-BuOK THF 0 33 6.7/1 58/65
6 t-BuOK THF ¹40 16 3.6/1 35/38
7 t-BuOK Et2O rt 50 7.3/1 57/16
8 t-BuOK toluene rt 13 4.0/1 52/36
9 t-BuOK CH2Cl2 rt 14 6.7/1 46/38

10 t-BuOK MeOH rt 12 3.8/1 35/26
aThe cross-annulation was carried out with cinnamaldehyde (6)
and 2,2,2-trifluoroacetophenone (7) (4 equiv) in the presence of
imidazolium salt (S)-3at (20mol%) and base (20mol%) in
solvent (0.1molL¹1) for 24 h. bIsolated yield. cDiastereomeric
ratios were determined by 1HNMR analysis of the crude
reaction mixture. dDetermined by HPLC analysis using a chiral
stationary phase column (Chiralcel AS-H).

Table 2. Enantio- and diastereoselective cross-annulation of
cinnamaldehyde (6) and 2,2,2-trifluoroacetophenone (7) with
various imidazolium salts (S)-3 and (R)-4a

Entry 3 or 4
Yieldb

/%
drc

(8a/8b)
eed

(8a/8b)

1 (S)-3at 49 (0) 5.7/1 55/50
2 (S)-3au 56 (1) 5.7/1 34/31
3 (S)-3av 44 (2) 3.2/1 35/50
4 (S)-3aw 64 (0) 4.0/1 18/40
5 (S)-3ax 47 (0) 6.3/1 50/54
6 (S)-3ay 23 (0) 4.3/1 33/24
7 (S)-3az 27 (1) 10/1 49/40
8 (R)-4au 51 (0) 4.9/1 25/20
9 (R)-4av 60 (13) 2.0/1 22/26

10 (S)-3bt 62 (6) 4.8/1 33/18
11 (S)-3ct 31 (1) 6.7/1 61/30
12 (S)-3cu 42 (1) 4.8/1 45/24
13 (S)-3cv 53 (10) 2.9/1 42/27
14 (S)-3dt 52 (12) 7.7/1 62/37
15 (S)-3dz 35 (8) 8.3/1 62/72
16 (S)-3et 39 (24) 10/1 64/28
17 (S)-3ez 39 (19) 7.1/1 71/36

aThe cross-annulation was carried out with cinnamaldehyde (6)
and 2,2,2-trifluoroacetophenone (7) (4 equiv) in the presence
of imidazolium salt (S)-3 or (R)-4 (20mol%) and t-BuOK
(20mol%) in THF (0.1molL¹1) at room temperature for 24 h.
bIsolated yield and numbers in parenthesis indicate the yield
of recovered 6. cDiastereomeric ratios were determined by
1HNMR analysis of the crude reaction mixture. dDetermined
by HPLC analysis using a chiral stationary phase column
(Chiralcel AS-H).
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ing asymmetric reaction, to evaluate the performance of newly
developed NHC precursors (S)-3 and (R)-4. Although the cross-
annulation was not entirely successful in terms of satisfying all
requirements, namely, yield, diastereoselectivity, and enantio-
selectivity, some NHC catalysts produced desired γ-lactone 8
with good diastereo- and enantioselectivities.
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