

Tetrahedron Letters 44 (2003) 5407-5409

TETRAHEDRON LETTERS

New silicon-mediated ring expansion of n-sized conjugated cycloalkenones into homoallylic n+3 lactones

Mark A. Hatcher, Kristina Borstnik and Gary H. Posner*

Department of Chemistry, School of Arts and Sciences, The Johns Hopkins University, Baltimore, MD 21218, USA

Received 11 April 2003; revised 23 May 2003; accepted 26 May 2003

Abstract—Silicon nucleophilic β -addition to various 2-cycloalkenones, followed ultimately by mild and rapid α -alkylation of the corresponding cycloalkanone enolates using diverse epoxides and BF₃·OEt₂, produces useful γ -lactols and γ -hydroxyketones. Hypervalent iodine-promoted oxidative fragmentation then yields regiospecifically unsaturated, 3-atom ring expanded, 8–10 membered homoallylic lactones with good control of alkene geometry. © 2003 Elsevier Science Ltd. All rights reserved.

Pursuing our interest^{1,2} in opening of epoxides by ketone enolate anions,^{3,4} we report here new methodology for such reactions involving β -silylenolates. HMPA-promoted Michael addition of trimethysilyllithium⁵ to 2-cyclohexenone and in situ enolate O-silylation produces bis-silylated product **1** (Scheme 1) that is stable at -20° C for several weeks and, therefore, that can be used as a stock solution. Enol silyl ether cleavage with methyllithium produces the corresponding β -silylenolate that rapidly opens monosubstituted epoxides at -78° C in the presence of BF₃·OEt₂ (Scheme 1).

Scheme 1.

0040-4039/03/\$ - see front matter @ 2003 Elsevier Science Ltd. All rights reserved. doi:10.1016/S0040-4039(03)01308-X

^{*} Corresponding author.

Several aspects of Scheme 1 are noteworthy. Direct epoxide opening by the initial β -silylcyclohexanone enolate formed in the first step of Scheme 1 in the presence of HMPA was not successful, due presumably to the undesirable Lewis base-Lewis acid interaction between HMPA and BF₃·OEt₂. Oxidative fragmentation^{6,7} of γ -hydroxysilanes 2 with hypervalent^{8a} iodobenzene diacetate and molecular iodine^{8b} proceeded stereoselectively in the absence of photochemical irradiation, presumably via a hemiketal hypoiodite intermediate,^{8c} to provide cis-lactones 3 in high yields. The cis-geometry of lactone 3a, for example, was confirmed by i-Bu₂AlH reduction into the corresponding acyclic vicinally disubstituted alkene showing a typical ¹H NMR *cis*-double bond H-H coupling constant of 10.8 Hz.⁹ The overall yields of 48-52% from 2-cyclohexenone to 9-membered cis-homoallylic lactones 3 compare favorably with our previous results (31-52%) using environmentally less desirable tin and lead chemistry¹ that generates also stereoselectively 9-membered, but isomeric, transhomoallylic lactones (Eq. (1)). In a control reaction, iodobenzene diacetate and iodine did not cause isomerization of such 9-membered *trans*-homoallylic lactones into the thermodynamically more stable *cis*-isomers.

 β -Silylcyclohexanone enolate opening of cyclohexene oxide, a 1,2-disubstituted epoxide, produces γ -hydroxy-

12, 92%

ketone **4** (rather than the corresponding cyclized hemiketal) (Scheme 1), as indicated by both ¹H NMR and IR spectroscopy.² Although iodobenzene diacetate and iodine failed to achieve oxidative fragmentation of β-ketosilane **4**, ceric ammonium nitrate (CAN)¹⁰ succeeds; at 0°C, a large excess of CAN produces *trans*homoallylic lactone **5-t** in 83% yield, whereas at 85°C, four equivalents of CAN produces *cis*-homoallylic lactone **5-c** in 85% yield. Apparently, the CAN-promoted formation of an intermediate β-silyl radical^{11,12} that then forms an alkene double bond is subject to kinetic or thermodynamic control, with formation of lactones **5-t** or **5-c**, respectively.

Both 5- and 7-membered conjugated cycloalkenones also undergo this silicon-mediated 3-atom ring expansion process (Schemes 2 and 3). Cyclopentenone-

PhI(OAc)₂ I₂, CH₂CI₂ 0 °C

Scheme 2.

derived β -silvl enol silvl ether **6** is stable at -20°C for several days. Hemiketals 7 are rapidly formed via BF₃·OEt₂ promoted opening of several monosubstituted epoxides at -78°C. Iodobenzene diacetate and iodine stereoselectively convert γ -lactols 7 into 8-membered cis-homoallylic lactones 8 in 52-66% overall yields (Scheme 2). Cycloheptenone-derived β -silyl enol ether 9, like 6, is stable at -20° C for several days. γ -Lactols 10 are easily formed via BF₃·OEt₂ promoted epoxide opening. Iodobenzene diacetate and iodine transform γ -lactols 10 into 10-membered homoallylic lactones 11 as a 1:1 mixture of double bond geometric isomers (Scheme 3). Reduction of the double bond in 10-membered homoallylic lactols 11d produces fragrant natural product (\pm) -phoracantholide (12) in four steps and in 30% overall yield from 2-cycloheptenone.^{1,13}

In summary, using silicon and hypervalent iodine rather than toxic tin and lead reagents allows 3-step 3-atom ring expansion of 5-7 membered cycloalkenones into more complex and thus more valuable 8-10 membered homoallylic lactones on gram scale and in overall 36-66% yields from stock solutions of bis-silylated intermediates 1, 6, and 9.14 An unusual but reliable and useful temperature effect was observed in the CAN-promoted oxidative fragmentation of β -silylketones 4; low temperature kinetic control generates trans-homoallylic lactone 5-t, whereas high temperature thermodynamic control produces the more stable *cis*-homoallylic lactone 5-c. Study of the mechanism, the scope and limitations, and some complex natural product applications of these overall homologous Baeyer-Villiger⁷ reactions will be reported in a full article.

Acknowledgements

We thank Johns Hopkins University and the NSF for seed support of this project.

References

- Posner, G. H.; Wang, Q.; Halford, B. A.; Elias, J. S.; Maxwell, J. P. *Tetrahedron Lett.* 2000, 41, 9655–9659.
- Posner, G. H.; Maxwell, J. P.; Kahraman, M. J. Org. Chem. 2003, 68, 3049–3054.
- 3. Taylor, S. K. Tetrahedron 2000, 56, 1149-1163.
- 4. Hudrlik, P. F.; Wan, C.-N. J. Org. Chem. 1995, 40, 2693–2695.
- (a) Jisheng, L.; Gallardo, T.; White, J. B. J. Org. Chem. 1990, 55, 5426–5428; (b) Still, C. W. J. Org. Chem. 1976, 41, 3063–3064.
- 6. Hesse, M. *Ring Enlargement in Organic Chemistry*; VCH: Weinheim; Germany, 1991.
- 7. Krow, G. R. Org. React. 1993, 43, 251-798.
- (a) Varvoglis, A. *Tetrahedron* 1997, 53, 1179–1255; (b) Concepcion, J. I.; Francisco, C. G.; Hernandez, R.; Salazar, J. A.; Swarez, E. *Tetrahedron Lett.* 1984, 25, 1953–1956; (c) Courtneidge, J. L.; Lusztyk, J.; Pagé, D. *Tetrahedron Lett.* 1994, 35, 1003–1006.

- Niwa, H.; Wakamatsu, K.; Yamada, K. Tetrahedron Lett. 1989, 30, 4543–4546.
- (a) Trahanovsky, W. S.; Himstedt, A. L. J. Am. Chem. Soc. 1974, 92, 7974–7976; (b) Wilson, S. R.; Zucker, P. A.; Kim, C.-W.; Villa, C. A. Tetrahedron Lett. 1985, 26, 1969–1972.
- Chatgilialoglu, C.; Schiesser, C. H. In *The Chemistry of* Organic Silicon Compounds; Ruppaport, Z.; Apeloig, Y., Eds.; Silyl radicals; John Wiley: New York, NY, 2001; Vol. 3.
- 12. Masterson, D. S.; Porter, N. A. Org. Lett. 2002, 4, 4253-4356.
- 13. Suginome, H.; Yamada, S. *Tetrahedron Lett.* **1985**, *26*, 3715–3718.
- 14. A typical gram-scale experimental protocol follows: Hemi-ketal 2a. To a 10 mL flask was added silvlenolether 1^5 (1.05 g, 4.33 mmol) and THF (6 mL). The solution was cooled to 0°C and MeLi (2.78 mL, 4.43 mmol, 1.60M in Et₂O) was added dropwise. After 10 min, the solution was cooled to -78°C and 4-phenylbutene oxide (0.320 g, 0.320 µL 2.16 mmol) was added via syringe. The reaction was stirred for another 5 min at -78°C and BF3 Et2O (0.275 mL, 2.16 mmol, neat) was added very slowly (1 drop/5 s), while cooling the needle with a piece of dry ice. The reaction was quenched after 25 min with phosphate buffer (2 mL, pH 7.0) and warmed to rt. The mixture was extracted with Et_2O (3×30 mL). The ether fractions were combined, dried over MgSO₄ and the solvent was removed under reduced pressure. The remaining oil was purified by silica gel chromatography (85% hexanes, 15% ethyl acetate, Et₃N \sim 3%) to give desired hemi-ketal **2a** (0.415 g) as a white solid (60% yield). Mp 91–92°C; ¹H NMR (CDCl₃) δ 7.30-7.26 (m, 2H), 7.21-7.18 (m, 3H), 4.24-4.17 (m, 1H), 2.77-2.61 (m, 1H), 2.14-1.97 (m, 4H), 1.88-1.75 (m, 2H), 1.68–1.54 (m, 5H), 1.43–1.34 (m, 1H), 1.09–1.99 (m, 1H), 0.59–0.51 (m, 1H), 0.01 (s, 9H); ¹³C NMR (CDCl₃) δ 142.04, 128.36, 128.30, 125.72, 105.26, 78.24, 44.82, 40.02, 37.25, 36.04, 32.57, 26.72 26.11, 24.33, -1.91; HRMS (CI) m/z (M+Na) calcd. 341.1907 for C₁₉H₃₀O₂SiNa⁺, found 341.1894.

Lactone 3a. Hemi-ketal 2a (0.415 g, 1.303 mmol) was placed in a 25 mL flask with CH₂Cl₂ (8 mL, anhydrous) and cooled to 0°C. To this was added PhI(OAc)₂ (0.462 g, 1.433 mmol) and then I_2 (0.330 mg, 1.303, crystals). The reaction, which immediately turned a dark purple color, was stirred until starting material was consumned (TLC, ~ 4 h). The reaction was quenched with a saturated solution of sodium thiosulfate (5 mL) and stirred until colorless (\sim 30 min). The mixture was diluted with Et₂O (25 mL) and the organics were washed with H₂O (2×, 25 mL) and dried over MgSO₄. The ether was removed under reduced pressure (no heat) and the remaining oil was purified by silica gel chromatography (90% hexanes, 10% ethyl acetate) to give lactone 3a (0.284 g) as a colorless oil (89% yield). ¹H NMR (CDCl₃) δ 7.31-7.26 (m, 2H), 7.21-7.17 (m, 3H), 5.52-5.44 (m, 2H), 4.85–4.79 (m, 1H), 2.78–2.61 (m, 2H), 2.50 (m, 1H), 2.43-2.25 (m, 3H), 2.11-1.93 (m, 4H), 1.89-1.75 (m, 2H); ¹³C NMR (CDCl₃) δ 174.58, 141.59, 134.51, 128.40, 128.38, 125.89, 124.72, 72.92, 36.45, 34.14, 33.65, 32.13, 26.54, 25.29. IR (Et₂O, cm⁻¹) 3010, 2948, 2859, 1740, 1603, 1496, 1134; HRMS (CI) m/z (M+Na) calcd. 267.135548 for C₁₆H₂₀O₂Na⁺, found 267.134601.