π-Complexes of Copper(I) Halides with 3-(Allylamino)-(C₃H₅NHC₂H₄CN, Apn) and 3-(Diallylamino)-((C₃H₅)₂NC₂H₄CN, Dapn)-Propanenitrile. Syntheses and Crystal Structures of Compounds [CuCl(Apn)], [(H⁺Apn)Cu₂Cl₃], [(H⁺Dapn)CuCl₂], and [(H⁺Dapn)CuBr₂]

M. Yu. Luk'yanov, A. V. Pavlyuk, and M. G. Mys'kiv*

Ivan Franko National University, ul. Kirilla i Mefodiya 6, Lviv, 79005 Ukraine *e-mail: myskiv@franko.lviv.ua Received March 11, 2011

Abstract—The π -complexes [CuCl(C₃H₅NHC₂H₄CN)] (I), [(C₃H₅NH₂C₂H₄CN)Cu₂Cl₃] (II), [((C₃H₅)₂NHC₂H₄CN)CuCl₂] (III), and [((C₃H₅)₂NHC₂H₄CN)CuBr₂] (IV) are obtained as single crystals by the ac electrochemical synthesis on copper wire electrodes from ethanolic solutions of 3-(allylamino)propanenitrile, 3-(diallylamino)propanenitrile, and CuX₂ (X = Cl, Br). Their crystal structures are determined. The crystals of compounds I, III, and IV are monoclinic, space group $P2_1/c$, Z = 4. The crystals of compound

II are triclinic, space group $P\overline{1}$, Z = 2. The unit cell parameters are a = 11.125(4), b = 8.769(4), c = 8.570(4) Å, $\beta = 90.94(4)^{\circ}$, V = 835.9(6) Å³ (**I**); a = 6.2566(4), b = 7.5975(6), c = 11.1251(8) Å, $\alpha = 90.896(6)^{\circ}$, $\beta = 92.827(5)^{\circ}$, $\gamma = 94.340(5)^{\circ}$, V = 526.57(7) Å³ (**II**); a = 11.656(4), b = 6.992(4), c = 14.681(5) Å, $\beta = 100.89(4)^{\circ}$, V = 1174.9(9) Å³ (**III**); a = 11.845(4), b = 7.282(4), c = 14.855(5) Å, $\beta = 100.37(4)^{\circ}$, V = 1260.4(9) Å³ (**IV**). The coordination mode of the Cu(I) atom in complex **I** includes two halogen atoms, the C=C bond, and the secondary amine N atom. The coordination environment in isostructural crystals of complexes **III** and **IV** is formed by the C=C bond and three halogen atoms as in complex **I**.

DOI: 10.1134/S107032841201006X

The earlier studies of the π -complex formation of copper(I) with allyl derivatives of acyclic amines and nitriles showed differences in the influence of the donating amine N atoms and the donor-acceptor N atom of the cyano group on the formation of the coordination environment of the π -coordinated copper(I) atom [1]. The amine N atom and the C=C bond can coordinate to the same Cu(I) atom in the structures of 2CuCl · (diallylamine) [2], [Cu(diallylamine)(NO₃)] [3], and CuCl \cdot (allylamine) (V) [4], whereas the structures of copper(I) halides with allylnitriles (dienenitriles) exhibit the predominantly separate σ - and π coordination modes of Cu(I): $2CuCl \cdot (allyl cyanide)$ (VI, VII) [5, 6] and $2CuCl \cdot (1$ cyanobutadiene-1,3) [7]. Nevertheless, the cooperative coordination of Cu(I) involving the C=C bond and the CN group is observed, for example, in the structure of the π,σ complexes CuCl · (diallylcyanamide) [8], $CuCl \cdot (1-cvano-2-methylbutadiene-1.3)$ [9], and $[Cu(allyl cyanide)(NO_3)]$ [10]. Note that the protonated amine nitrogen atoms in the corresponding allyl derivatives have no possibility to coordinate to the metal atom, for instance, in the π complexes [H⁺(diallylamine)Cu(NO₃)₂] [11] and [{C₃H₅NH-C(NH₂)₂}Cu(NO₃)₂] [12].

It seemed of interest to study the coordination behavior with respect to Cu(I) of the N-allyl derivatives of aminonitriles, being ligands simultaneously containing amino and cyano groups along with C=C bonds. Therefore, we synthesized and studied by X-ray diffraction analysis single crystals of the copper(I) halide complexes with 3-(allylamino)propanenitrile (C₃H₅NHC₂H₄CN, **Apn**) and 3-(diallylamino)propanenitrile ((C₃H₅)₂NC₂H₄CN, **Dapn**): [CuCl(Apn)] (I), [(H⁺Apn)Cu₂Cl₃] (II), [(H⁺Dapn)CuCl₂] (III), and [(H⁺Dapn)CuBr₂] (IV).

EXPERIMENTAL

Synthesis of 3-(allylamino)propanenitrile. A mixture of acrylonitrile (6.8 mL, 0.1 mol) and allylamine (11.2 mL, 0.15 mol) was stored with cooling and continuous stirring (5 h, 20°C), preventing the temperature rise higher than 30°C [13]. Then the reaction mixture was heated for 1 h in a water bath with a reflux condenser at 60°C. The product was purified by distillation in a vacuum of a water-jet pump. The yield of Apn was 88% (15 mL).

Synthesis of 3-(diallylamino)propanenitrile. A mixture of acrylonitrile (7 mL, 0.11 mol) and diallylamine (16 mL, 0.13 mol) was heated with a reflux condenser in a water bath at 50–60°C for 8 h followed by storing at room temperature for 24 h [13]. After a small amount of unreacted starting substances was distilled off in a vacuum of a water-jet pump, the red-orange liquid was distilled at 130°C (20 mmHg). The yield of Dapn was 75% (13 mL).

Synthesis of I–VI. Colorless crystals of compound I were obtained by the ac electrochemical synthesis (U = 0.45 V, $I_{init} = 0.58$ mA) [14] on copper wire electrodes from CuCl₂ · 2H₂O (0.8 g, 4.5 mmol), Apn (0.6 mL, 5 mmol), and 95% C₂H₅OH (4.5 mL) for 4 days. Colorless crystals of complex II were obtained for 24 h under similar conditions using approximately the same amounts of reactants (an ethanolic solution of Apn was pretitrated with a concentrated aqueous solution of HCl to pH 4.5). Colorless crystals of compound III were obtained by the ac electrochemical synthesis [14] from $CuCl_2 \cdot 2H_2O(0.70 \text{ g})$, 4 mmol), Dapn (0.7 mL, 4.3 mmol), and 95% C_2H_5OH (4 mL) without HCl for 8 days. The crystals of compound III are also formed using an ethanolic solution of Dapn pretitrated with a concentrated aqueous solution of HCl to pH 4.5. Yellowish crystals of complex IV were grown for 5 days on copper electrodes under the conditions of ac electrochemical synthesis from CuBr₂ (0.67 g, 4 mmol), Dapn (0.7 mL, 4.3 mmol, was not titrated with HBr), and ethanol (4 mL). The density of crystals of I-IV was determined by the flotation method in a chloroform-bromoform mixture (Table 1).

X-ray diffraction analysis. After preliminary studies by the photomethod, diffraction sets obtained on KUMA-KM4/CCD and Rigaku AFC7 single-crystal diffractometers (CCD detector, MoK_{α} radiation, graphite monochromator, ω scan mode, low-temperature attachment) were used for structure determination of compounds I-IV. Corrections to the Lorentz and polarization factors were applied to reflection intensities. The X-ray experimental data were processed using the CrysAlisRED program [15] for compounds I, III, and IV. The Rigaku Crystal Clear program was used for processing the X-ray data for complex II [16]. Structures I-IV were solved by direct methods, and light atoms were revealed from the difference Fourier syntheses. An absorption correction was applied by the analytical method [17]. The structures of compounds I-IV were solved using the SHELX program package [18]. The hydrogen atoms in structures I-IV were found from the difference Fourier syntheses and refined in the riding model along with the non-hydrogen atoms. The crystallographic data for compounds **I**–**IV** and conditions of the diffraction experiment are collected in Table 1.

RUSSIAN JOURNAL OF COORDINATION CHEMISTRY Vol. 38 No. 2

Selected bond lengths and bonds angles are given in the captions for figures.

The coordinates of atoms and other parameters for compounds **I**–**IV** were deposited with the Cambridge Crystallographic Data Centre (nos. 811967, 811968, 811969, and 811970 for compounds **I**, **II**, **III**, and **IV**, respectively; deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk).

RESULTS AND DISCUSSION

The inorganic fragment Cu_2Cl_2 in structure I (Fig. 1) is identical to that in structure V [4]. The trigonal pyramidal coordination environment of Cu(I) is formed by the C=C bond, the amine nitrogen atom, the chlorine atom in the base of the pyramid, and the second Cl atom in the apical position. The C=C coordination bond length is 1.373(2) Å. The bridging function of the Apn molecule joins particular units Cu_2Cl_2 into a three-dimensional framework. It is surprisingly that the N atom of the cyano group of the Apn ligand is not coordinated by the metal atom.

The protonation of the amine N atom changes the coordination behavior of the Apn molecule: in the structure of π complex II, the N atom of the cyano group enters into the coordination environment of Cu(I). The structure of this compound consists of infinite ribbons $(Cu_2Cl_3)_n^{n-}$, similar to those described in the structures of $[H^+(diallylamine)Cu_2Br_3]$ [19] and π,σ complex VI [5]. The inorganic fragments are joined into the three-dimensional framework by the bridging cations H⁺Apn (Fig. 2). Unlike structure I, the trigonal pyramidal environment of one of the independent metal atoms in structure II contains the C=C bond and the Cl atoms, whereas the second Cu(I) atom is inside the slightly deformed tetrahedron with the nitrile N atom and three Cl atoms in the vertices. The structure of complex II is close to that of π,σ complex VI [5].

Isostructural π complexes III and IV substantially differ in structure from compounds I and II. They were formed during the synthesis in a medium of protonogenic ethanol, and the acidic medium appeared due to the solvolysis of CuCl₂ · 2H₂O or CuBr₂. The pronation of the amine nitrogen atom of Dapn imparts the cationic state H⁺Dapn to the ligand molecule and, hence, in structures III and IV it is coordinated to the Cu(I) atom by the C=C bond only (unlike II, where both the cyano group and the C=C bond are coordinated by the copper(I) atom). Owing to the bridging function of the halogen atoms, the polymeric anion

 $(CuX_2)_n^{n-}$, appears in which the Cu(I) atom coordinates the C=C bond and three X atoms (X = Cl, Br) (Fig. 3).

The C=C bond coordinated by copper(I) is elongated to 1.374(3) Å in **III** and to 1.365(5) Å in **IV**. Another double bond in the H⁺Dapn cation, which

2012

Value	Value						
I II III	IV						
Empirical formula $C_6H_{10}N_2ClCu$ $C_6H_{11}N_2Cl_3Cu_2$ $C_9H_{15}N_2Cl_2Cu$ $C_9H_{15}N_2Cl_2Cu$	I ₁₅ N ₂ Br ₂ Cu						
<i>FW</i> 210 344.62 285.69	374.59						
Crystal size, mm $0.31 \times 0.30 \times 0.27$ $0.12 \times 0.1 \times 0.08$ $0.44 \times 0.21 \times 0.09$ $0.24 \times 0.21 \times 0.09$	× 0.23 × 0.15						
Temperature, K 110(2) 200(1) 160(2)	240(1)						
Shape Prizms Blocks Prizms	Prizms						
Diffractometer KUMA-KM4/CCD Rigaku AFC7 KUMA-KM4/CCD KUMA	A-KM4/CCD						
Crystal system Monoclinic Triclinic Monoclinic M	onoclinic						
Space group $P2_1/c$ $P\overline{1}$ $P2_1/c$	$P2_{1}/c$						
Unit cell parameters:							
<i>a</i> , Å 11.125(4) 6.2566(4) 11.656(4)	11.845(4)						
b, Å 8.769(4) 7.5975(6) 6.992(4)	7.282(4)						
c, Å 8.570(4) 11.1251(8) 14.681(5)	14.855(5)						
α, deg 90 90.896(6) 90	90						
β, deg 90.94(4) 92.827(5) 100.89(4)	100.37(4)						
γ, deg 90 94.340(5) 90	90						
<i>V</i> , Å ³ 835.9(6) 526.57(7) 1174.9(9) 1	260.4(9)						
Z 4 2 4	4						
$\rho_{calcd}, g/cm^3$ 1.662 2.179 1.615	1.974						
$\rho_{\text{meas}}, \text{g/cm}^3$ 1.66 2.19 1.72	1.98						
μ, mm ⁻¹ 2.86 4.76 2.28	8.05						
F(000) 424 340 584	728						
Index range hkl $-20 < h < 20$ $-8 < h < 8$ $-15 < h < 15$ -3	19 < <i>h</i> < 19						
-15 < k < 16 $-10 < k < 9$ $-9 < k < 9$ $-10 < k < 9$ $-9 < k < 9$ $-10 < 10 < 10$ $-10 < k < 9$ $-10 < 10 < 10$ $-10 < 10 < 10$ $-10 < 10 < 10$ $-10 < 10 < 10$ $-10 < 10 < 10$ $-10 < 10 < 10$ $-10 < 10 < 10$ $-10 < 10 < 10$ $-10 < 10 < 10$ $-10 < 10 < 10$ $-10 < 10 < 10$ $-10 < 10 < 10$ $-10 < 10 < 10$ $-10 < 10 < 10$ $-10 < 10 < 10$ $-10 < 10 < 10$ $-10 < 10 < 10$ $-10 < 10 < 10$ $-10 < 10 < 10$ $-10 < 10 < 10$ $-10 < 10 < 10$ $-10 < 10 < 10$ $-10 < 10 < 10$ $-10 < 10 < 10$ $-10 < 10 < 10$ $-10 < 10 < 10$ $-10 < 10 < 10$ $-10 < 10 < 10$ $-10 < 10 < 10$ $-10 < 10 < 10$ $-10 < 10$	-9 < <i>k</i> < 12						
-16 < l < 14 $-14 < l < 14$ $-19 < l < 19$ -2	24 < 1 < 25						
R_{int} 0.031 0.029 0.031	0.081						
Total number of reflec- tions21100392615859	21229						
Number of reflections428019202650with $F > 4\sigma(F)^*$	3766						
Number of refined param- 91 118 127 eters	127						
2θ _{max} , deg 84.0 58 57.4	73.8						
Weight scheme** $ \left[\sigma^2(F_o^2) + (0.0558P)^2 \right]^{-1} \left[\sigma^2(F_o^2) + [\sigma^2(F_o^2) + [\sigma^2(F_o^2) + (0.0717P)^2 + 0.9531P]^{-1} \right] \left[\sigma^2(F_o^2) + [\sigma^2(F_o^2) + (0.0558P)^2 - (0.0558P)^2 + 0.9531P]^{-1} \right] $	$(5^{2}(F_{o}^{2}) + (100)^{2}(F_{o}^{2})^{-1})$						
$R(F > 4\pi(F)) \qquad \qquad 0.038 \qquad \qquad 0.047 \qquad \qquad 0.028 \qquad \qquad (0.0479P)^{-} + 0.9P]^{-}$	0.060						
wR = 0.033 = 0.020 = 0.020	0.107						
Goodness-of-fit 1.05 1.09 0.99	1.07						
$\Delta \rho_{-}/\Delta \rho_{-} e^{A^{-3}}$ 159/-074 087/-109 128/-042 0	81/-0.76						

Table 1. Crystallographic data and experimental details for structures I-IV

Notes: * The correction to the Lorentz and polarization factors was applied.

** $P = (F_o^2 + 2F_c^2)/3.$

Fig. 1. Fragment of structure **I**. Selected bond lengths and angles: C(2)=C(3) 1.373(2) Å, C(3)C(2)C(1) 124.04(12)°; $C(2)^{i}CuC(3)^{ii}$ 38.97(6)°, Cu-m 1.9397(7) Å (*m* is the middle of the C=C bond); Cu-Cl 2.3168(9) Å, $Cu-Cl^{ii}$ 2.6437(10) Å, N(1)C(1)C(2)C(3) 98.90(14)°.(*i*) *x*, -y + 1/2, z + 1/2; (*ii*) -x, -y, -z + 2.

Fig. 2. Structure **II**. Selected bond lengths and bond angles: Cu(1)–N(1) 1.939(4), Cu–*m* 1.9969(5), C(5)=C(6) 1.353(6) Å; C(6)C(5)C(4) 122.4(4)°, C(6)^{*iii*}Cu(2)C(5)^{*iii*} 37.42(16)°. (*iii*) *x*, *y*, *z* – 1.

RUSSIAN JOURNAL OF COORDINATION CHEMISTRY Vol. 38 No. 2 2012

Fig. 3. Structural fragments of compounds **III** and **IV**. Selected geometric parameters for **III**: C(2)=C(3) 1.374(3), C(6)=C(5) 1.315(3) Å; C(3)Cu(1)C(2) 38.87(8)°; Cu-*m* 1.9467(6) Å; Cu(1)-Cl(1) 2.2830(12), Cu(1)-Cl(2) 2.2510(10) Å; N(1)C(1)C(2)C(3) 145.77(2)°, N(1)C(7)C(8)C(9) 172.37(2)°, N(1)C(4)C(5)C(6) 115.9(2)°. Selected geometric parameters for **IV**: Cu(1)-Br(1) 2.4154(13), Cu(1)-Br(1)^{*i*} 2.8904(10), C(2)=C(3) 1.365(5), C(6)=C(5) 1.297(6) Å; C(3)Cu(1)C(2) 38.13(13)°, Br(2)Cu(1)Br(1) 107.65(2)°, Br(2)Cu(1)Br(1)^{*i*} 92.92(4)°, Br(1)Cu(1)Br(1)^{*i*} 102.97(3)°. Cu-*m* 1.9738(7) Å; N(1)C(1)C(2)C(3) 146.5(3)°, N(1)C(4)C(5)C(6) 117.0(4)°. (*i*v) -*x* + 2, *y* + 1/2, -*z* + 1/2.

does not participate in metal atom coordination, is shortened to 1.315(3) Å in **III** and to 1.297(6) Å in **IV**.

As is known, hydrogen bonds play an important role in the formation and stabilization of a certain structure [20, 21]. Their role is also substantial in the strengthening of the structures of complexes I-IV, which is especially noticeable in ionic compounds II-IV (Table 2).

Compound	Contact D–H···A	Distance, Å			Angle D–H…A,	Coordinates of stom A
Compound		D–H	Н…А	D····A	deg	Coordinates of atom A
Ι	N(1)-H(1)····Cl	0.93	2.56	3.369(2)	146	-x, y - 1/2, -z + 3/2
	$C(4)-H(4B)\cdots N(2)$	0.99	2.54	3.380(2)	143	-x - 1, y + 1/2, -z + 3/2
II	$N(2)-H(1)\cdots Cl(2)$	0.90	2.48	3.222(3)	141	1 - x, 1 - y, 1 - z
	$N(2)-H(2)\cdots Cl(1)$	0.90	2.44	3.215(3)	145	2 - x, 1 - y, 1 - z
	C(3) - H(6) - Cl(3)	0.97	2.82	3.590(4)	137	2 - x, -y, 1 - z
	$C(6)-H(10)\cdots Cl(1)$	0.93	2.94	3.860(5)	169	2 - x, -y, 1 - z
	$C(6)-H(11)\cdots Cl(1)$	0.93	2.62	3.550(6)	175	3 + x, y, 1 + z
III	N(1)-H(1)-Cl(1)	0.93	2.31	3.142(2)	149	<i>x</i> , <i>y</i> , <i>z</i>
	$C(1)-H(1A)\cdots Cl(1)$	0.99	2.81	3.553(2)	132	-x, y + 1/2, -z + 3/2
	C(1) - H(1B) - N(2)	0.99	2.52	3.364(3)	143	x, -y + 5/2, z - 1/2
	$C(3)-H(3A)\cdots Cl(1)$	0.95	2.79	3.721(3)	168	x, y + 1, z
	$C(5)-H(5)\cdots N(2)$	0.95	2.60	3.539(3)	169	-x + 1, -y + 2, -z + 2
IV	N(1) - H(1) - Br(1)	0.92	2.50	3.305(3)	146	<i>x</i> , <i>y</i> , <i>z</i>
	C(1) - H(1B) - N(2)	0.98	2.59	3.421(5)	142	x, -y + 1/2, z - 1/2
	$C(3)-H(3A\cdots Br(1)$	0.94	2.88	3.802(4)	166	x, y + 1, z
	$C(8)-H(8A)\cdots Br(2)$	0.98	2.84	3.781(4)	161	-x+2, y+1/2, -z+1/2

Table 2. Hydrogen bonding geometry for compounds I-IV

RUSSIAN JOURNAL OF COORDINATION CHEMISTRY Vol. 38 No. 2 2012

It is most likely that the efficient hydrogen bonds $(C)H\cdots N(\equiv C)$ in structures **III** and **IV** diminishing the donating properties of the nitrile nitrogen atom in H⁺Dapn (and partially in H⁺Apn) favors the unexpected inert behavior of the cyano group towards the Cu(I) atom.

ACKNOWLEDGMENTS

The authors are grateful to E.A. Goreshnik (Josef Stefan Institute, Ljubljana, Slovenia) for the obtained diffraction array of compound **II**.

REFERENCES

- Mys'kiv, M.G. and Oliinik, V.V., Koord. Khim., 1995, vol. 21, no. 4, p. 290.
- 2. Oliinik, V.V., Mys'kiv, M.G., and Pecharskii, V.K., *Zh. Strukt. Khim.*, 1993, vol. 34, no. 6, p. 43.
- Mys'kiv, M.G., Goreshnik, E.A., Pecharskii, V.K., and Oliinik, V.V., *Zh. Strukt. Khim.*, 1994, vol. 35, no. 1, p. 90.
- Fayad, Kh., Sobolev, A.N., and Mys'kiv, M.G., *Koord. Khim.*, 1991, vol. 17, no. 9, p. 1245.
- 5. Zavalii, P.Yu., Mys'kiv, M.G., and Gladyshevskii, E.I., *Kristallografiya*, 1986, vol. 31, no. 1, p. 88.
- Mys'kiv, M.G., Zavalii, P.Yu., Oliinik, V.V., and Fundamenskii, V.S., *Zh. Strukt. Khim.*, 1990, vol. 31, no. 4, p. 85.
- 7. Mys'kiv, M.G., Oliinik, V.V., and Zavalii, P.Yu., *Zh. Strukt. Khim.*, 1988, vol. 29, no. 4, p. 113.

- Oliinik, V.V., Mys'kiv, M.G., Zavalii, P.Yu., and Mazus, M.D., *Metalloorg. Khim.*, 1988, vol. 1, no. 6, p. 1247.
- Oliinik, V.V., Zavalii, P.Yu., Mys'kiv, M.G., and Fundamensiki, V.S., *Koord. Khim.*, 1986, vol. 12, no. 8, p. 1141.
- 10. Filinchuk, Ya.E., Oliinik, V.V., and Davydov, V.M., *Russ. J. Coord. Chem.*, 1997, vol. 23, no. 11, p. 791.
- 11. Olijnyk, V., Glowiak, T., and Mys'kiv, M., J. Chem. Cryst., 1995, vol. 25, no. 10, p. 621.
- 12. Filinchuk, Ya.E. and Mys'kiv, M., Pol. J. Chem., 2000, vol. 74, no. 7, p. 927.
- 13. Houben-Weil, *Methoden der organischen Chemie*, Stuttgart: Georg Thieme, vol. 4, 1949.
- 14. Ukrainian Patent no. 25450, Byull. Izobret., 1998, no. 6.
- CrysAlis RED. Version 1.171.31.8 (Release 12-01-2007. CrysAlis 171.NET), Oxford: Oxford Diffraction Ltd., 2007.
- 16. *Crystal Clear*, Woodlands (Texas, USA): Rigaku Corporation, 1999.
- 17. Clark, R.C. and Reid, J.S., Acta Crystallogr., Sect. A: Found. Crystallogr., 1995, vol. 51, no. 6, p. 887.
- 18. Sheldrick, G.M., SHELXS-97 and SHELXL-97. Program for the Solution and Refinement of Crystal Structures, Göttingen (Germany): Univ. of Göttingen, 1997.
- 19. Oliinik, V.V., Mys'kiv, M.G., and Aksel'rud, L.G., *Russ. J. Coord. Chem.*, 1996, vol. 22, no. 1, p. 67.
- 20. Desiraju, G.R., Acc. Chem. Res., 2002, vol. 35, no. 7, p. 565.
- 21. Beauchamp, D.A. and Loeb, S.J., *Chem.-Eur. J.*, 2002, vol. 8, no. 22, p. 5084.