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I2-catalyzed base-free reactions of 3-homoallylquinoline-2-thiones have been described for the synthesis
of tetracyclic quinolines, tetrahydrofuro [20,40:4,6]thiopyrano[2,3-b]quinolines in excellent yields.
Similarly, I2-catalyzed reactions could proceed to tricyclic quinolines from hydroxyl group protected
3-homoallylquinoline-2-thiones. However, deprotection of group in tricyclic quinoline with HI again
transformed into tetracyclic quinoline. The sulfonium salt intermediate has been proposed to explain
these reactions.

� 2014 Elsevier Ltd. All rights reserved.
The quinoline scaffold is prevalent in various alkaloids.1 On the
other hand, its benzo/hetero-fused analogues have attracted much
attention to both medicinal and synthetic chemists because of
their biological, pharmaceutical, and agrochemical activities and
as synthetic building blocks.2 Thiopyran-fused quinolines have
been reported to possess important biological activities.3 For
example, 3,4-dihydro-2H-thiopyrano[2,3-b]quinoline4 and 2H-
thiopyrano[2,3-b]quinolin-2-carboxylic acid,5 have exhibited mGlu 1
receptor and antioxidant activities, respectively. Consequently,
several syntheses have been reported for this class of compounds.6

Recently, we7 and Wang and co-workers8 have reported the synthesis
of 2H-thiopyrano[2,3-b]quinolines from 2-mercaptoquinoline-
3-carbaldehydes and activated alkenes via Michael addition-
cyclization and Michael–Henry reaction routes, respectively.

The electrophilic iodocyclization of alkenes with proximal
nucleophilic groups has become one of the most popular routes
for the syntheses of various carbocycles and heterocycles.9 We
have reported iodocyclization of homoallylquinolin-2-ones to the
synthesis of tri/tetracyclic, pyrano[2,3-b]quinolines.10 In contrast,
iodocyclization of their 2-thiones analogues has not been studied
so far. Thus, in continuation of our interest in developing new
methodologies to the carbo/hetero-fused quinolines,11 we herein
describe base-free iodine-catalyzed cyclization reactions of 3-
homoallylquinolin-2-thiones 3 which gives new insights into this
reaction and, in turn, affords tetracyclic thiopyrano[2,3-b]quino-
lines 4, respectively.

The starting substrates, 3-homoallylquinoline-2-thiones 3a–l15

were prepared from 2-chloroquinoline-3-carbaldehydes 1 in two
steps via Barbier reaction10a followed by sodium sulfide10b in
DMF at room temperature (82–95%) (Scheme 1).

Initially, the substrate 3a was examined for iodocyclization
reaction with and without NaHCO3 under our previously reported
conditions for analogous substrates,10c with 2.2 equiv of iodine in
THF at rt under aerobic atmosphere. Both the reactions were com-
pleted in 5 min giving the same product 4a with 82% yields
(Table 1, entries 1–3). The structure of 4a was characterized as,
2,2a,10,11-tetrahydrofuro [20,40:4,6] thiopyrano[2,3-b]quinoline,
tetracyclic quinoline from its spectral and analytical data. The
structure of 4a was further confirmed unambiguously from X-ray
crystallography (Fig. 1).12

Iodocyclization reaction of 3a at �70 �C to isolate tricyclic, thio-
pyrano[2,3-b]quinoline 5 (Scheme 4) was also unsuccessful,
although, reaction rate was slow and afforded exclusively tetracyclic
4a with 78% yield (entry 4). The exclusive formation of 4a in a very
short period could be explained by rapid conversion of 5 into more
reactive intermediate for intramolecular nucleophilic substitution
reaction by the hydroxyl group. Further, it has been noticed that
nucleophilic substitution of 2-halomethylthiopyrans, similar to 2-
halomethylpyrrolidines,13 would proceed through sulfonium salt
intermediate. From these results, we speculated that 3a would rap-
idly provide the sulfonium salt intermediate B from intermediate 5
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Table 1
Optimization of iodocyclization reaction conditions for the synthesis of 4aa

N
H

OH

S
catalyst, solvent
tempoC, time

N S

OH

B
N S

O

3a 4aI

Entry Catalyst
(equiv)

Base (equiv) Solvent Time (min) Yieldb (%)

1 I2 (2.2) NaHCO3 (2.3) THF 5 82
2 I2 (2.2) NaHCO3 (1.0) THF 5 82
3 I2 (2.2) — THF 5 82
4 I2 (2.2) — THF 8hr 78c

5 I2 (1.0) — THF 5 81
6 I2 (0.5) — THF 5 80
7 I2 (0.25) — THF 5 83
8 I2 (0.1) — THF 20 85
9 I2 (0.1) NaHCO3 (2.3) THF 20 85
10 I2 (0.1) — THF 24 h 6+SMd

11 NIS (0.1) — THF 20 80
12 NBS (0.1) — THF 30 78
13 ICl (0.1) — THF 20 50
14 NCS (0.1) — THF 60 e

15 I2 (0.1) — DCM 20 80
16 I2 (0.1) — DMF 30 82
17 I2 (0.1) — MeOH 30 80
18 I2 (0.1) — CH3CN 50 74
19 I2 (0.1) — Benzene 90 65
20 I2 (0.1) — Dioxane 90 65

Bold values signify optimized reaction condition.
a All reactions were performed using 3a (1 mmol), catalyst and 4.0 ml of solvent

at room temperature in air.
b Isolated yields.
c reaction was performed at �70 �C.
d reaction performed under inert atmosphere; S.M. = starting material.
e An inseparable mixture of products was obtained.

Figure 1. ORTEP diagram of 4a.
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f: R1=7-OMe; R2=R3=H 3f 92%
g: R1=8-Et; R2=R3=H 3g 95%
h: R1=7-Cl; R2=R3=H 3h 88%
i: R1=6-Br; R2=R3=H 3i 88%

j:R1=H; R2=R3=Me 3j 84%
k: R1=6-Me; R2=R3=Me 3k 86%
l: R1=7-Cl; R2=R3=Me 3l 82%

Scheme 1. Synthesis of 3-homoallyl quinoline-2-thiones 3a–l.
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which in turn, affords the tetracylic 4a via intramolecular nucleo-
philic substitution reaction (Scheme 5).

Next, we carried out a series of experiments for standardization
of iodocyclization reaction conditions by varying iodine loadings,
catalysts, and different solvents. Decreasing the amount of iodine
ranging from 2.2 equiv to 0.1 equiv, the reactions proceeded
smoothly and afforded the cyclized product 4a in 80% to 85% yields
(entries 5–8, Table 1). Further, using base with catalytic iodine, the
reaction again completed in 20 min showing ineffectiveness of
base (entry 9). Further, the cyclization reaction under inert atmo-
sphere afforded only trace amount of 4a even after 24 h demon-
strating no regeneration of I2 (entry 10). Other catalysts such as
NIS, NBS, ICl, and NCS and solvents such as DCM, MeOH, benzene,
and dioxane were also examined for the reactions but none of
them led to any enhancement in the yield (Table 1, entries 11–
20). Thus, the optimal conditions for iodocyclization reaction were
found to be a combination of 1 equiv of 3a and 0.1 equiv of I2 in
THF at room temperature providing the best yield of 4a (entry 8).

Having established the optimal conditions for cyclization, we
next examined a series of substituted 3-(1-hydroxy-but-3-enyl)-
quinolin-2-thiones (3b–i) and 3-(1-hydroxy-2,2-dimethyl-but-3-
enyl)-quinolin-2-thiones (3j–l) which afforded the tetracyclic
quinolines 4b–l16 in good to excellent yields, respectively. The
results are summarized in Table 2.

We further envisioned that the iodocyclization reaction of the
hydroxyl group protected thione 7 under the optimal reaction con-
dition could afford tricyclic quinoline 5. The starting thiones 7a–b
were prepared in 88–90% yields in two steps according to
Scheme 2. Thus, the cyclization reaction of 7a was initially exam-
ined under the optimal reaction conditions for 5 min, 40 min, and
every 4 h intervals, reactions were not completed at all and
Table 2
Iodocyclization of 3-homoallyl quinolin-2-thiones 3a for the synthesis of tetracyclic
thiopyrano[2,3-b]quinolines 4b

N
H

OH

S

I2(0.1 equiv),
THF, rt

N S

O

3 4

R1 R1

R2 R3 R2
R3

R1= H, Me, OMe, Et, Cl, Br
R2= R3= H, Me

N S

O

4b
88%, 20 min

N S

O

4c
86%, 20 min

N S

O

4d
88%, 20 min

N S

O

4e
87%, 20 min

O

N S

O

4f
86%, 20 min

O

N S

O

4g
90%, 20 min

N S

O

4h
85%, 20 min

Cl N S

O

4i
82%, 20 min

Br

N S

O

4j
82%, 30 min

N S

O

4k
84%, 30 min

O N S

O

4l
80%, 30 min

Cl

N S

O

4a
85%, 20 min

a All reactions were performed using 3 (0.5 mmol) and I2 (0.1 equiv) in 4.0 ml of
THF at room temperature in air.

b Isolated yields.
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afforded the tricyclic quinoline 8a in 30%, 75%, and 80% yields
along with starting material (SM) 7a. Further, using 0.2 and
2.2 equiv of I2, the reactions were completed in 40 min and 5 min
with 80% yield (8a), respectively (Scheme 3), demonstrating I2-cat-
alyzed synthesis of tricyclic quinoline. Similarly, 8b was prepared
in 82% yield.

Next, the methyl group of 8a was deprotected to synthesize tri-
cyclic compound 5. However, the deprotection reaction of 8a with
HI in DMF afforded tetracyclic quinoline 4a, not tricyclic 5 which
again supports that the nucleophilic substitution reaction proceeds
through sulfonium salt intermediate to afford 4a (Scheme 4).

The plausible mechanism for the tetracyclic thiopyranoquino-
line is illustrated in Scheme 5. The electrophilic addition of I2 to
olefinic bond of substrate 3a results in the formation of iodonium
ion A. Intramolecular attack by sulfide anion, generated by I� from
thioamide, on A gave tricyclic intermediate 5, which rapidly con-
verts into sulfonium salt intermediate B by neighboring group par-
ticipation of sulfur atom on 2-iodomethyl carbon atom. Lastly,
sulfonium salt ring open by the hydroxyl group, via exo-dig, to
afford tetracylic 4a. The aerobic oxidation of HI regenerates I2

14

to complete the reactions.
In conclusion, we have described I2-catalyzed and base-free

facile synthesis of tetracyclic quinolines 4 in excellent yields. The
catalyzed reaction could be extended to the synthesis of tricyclic
N S

OMe

I

8a

HI, DMF
100 oC

Scheme 4. Synthesis of te
quinoline 8 by protecting the hydroxyl group. The sulfonium salt
intermediate has been proposed to explain these reactions. All
reactions were completed in very short time under aerobic
conditions.
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