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a b s t r a c t 

Based on the initial docking studies of a representative compound in silico the evaluation of SIRT1 in- 

hibitory potential of 2-substituted nicotinic acid ethyl ester derivatives was undertaken in vitro . A sono- 

chemical method was developed and employed for the faster synthesis of this class of compounds. The 

methodology involved the iodine-mediated reaction of β-enamino esters with allylic alcohols in aqueous 

DMSO in the presence of air under mild conditions. A number of 2-substituted nicotinic acid ethyl ester 

derivatives were synthesized by employing this ultrasound assisted method in good to acceptable yield. 

The use of less expensive iodine and aqueous media, milder reaction condition and shorter reaction time 

are the key advantages of the current approach. All the synthesized compounds were tested for their 

SIRT1 inhibitory potential in vitro when some of them showed good activities and the compound 3g be- 

ing the best among them. The docking studies suggested that the fused lactone ring of 3g played a key 

role in interacting with the SIRT1 in silico via formation of H-bonds. The overall outcome of the in vitro 

and in silico studies suggested the compound 3g as an initial hit molecule for further pharmacological 

studies. 

© 2021 Elsevier B.V. All rights reserved. 

1

i

p

b

f

n

s

c

p

m

f

n

i

n

m

A

d

[  

t

w

I

S

i

b

d

w

m

c

a

i

h

0

. Introduction 

The nicotinic acid or pyridine-3-carboxylic acid ( A , Fig. 1 ) and 

ts derivatives constitute an important class of N -heterocyclic com- 

ounds that have found numerous applications and importance in 

oth chemistry and biology. For example, as the most common 

orm of water soluble vitamin B3, also known as niacin [1] , the 

icotinic acid has the potential to influence DNA repair, genomic 

tability, and the immune system, eventually having an impact on 

ancer risk [2] . Indeed, its importance for genomic stability thereby 

ossibility of reducing the cancer risk has been studied and docu- 

ented [3] . Besides, the use of nicotinic acid in clinical practice 

or the treatment of dyslipidemia is well known [4] . Nevertheless, 

icotinic acid and its derivatives have gained considerable interest 

n the discovery and development of promising anticancer agents. 
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ccordingly, the synthesis as well as evaluation of a range of novel 

erivatives of nicotinic acid has been reported for this purpose 

 5a–c ]. In another study [ 6 ] nicotinic acid has been reported to at-

enuate the vascular inflammation via modulation of SIRT1 path- 

ay [6a] . Notably, SIRT1 [or Sirtuin1, a NAD( + )-dependent class 

II histone deacetylase (HDACs) is one of the 7 members (SIRT1- 

IRT7) in the sirtuin family in mammals] is known to participate 

n the regulation of cellular inflammation [6b] . On the other hand, 

eing considered as important targets for cancer therapeutics [7a–

] sirtuins are shown to up-regulated in various types of cancer 

hereas inhibition of sirtuins allows re-expression of silenced tu- 

or suppressor genes, leading to the decreased growth of cancer 

ells. Further, the nicotinamide B ( Fig. 1 ) a derivative of nicotinic 

cid has been reported to be one of the earliest inhibitors of sirtu- 

ns including SIRT1 [7c] . All these reports and observations as well 

s our interest in this area [8a,b] prompted us to explore the tem- 

late C derived from A for the identification of new and potential 

nhibitors of SIRT1. The substituent R 

1 was introduced at the C-2 

osition of the pyridine ring (i) due to the key role played by the 

-2 substituents in the anticancer activities [9a,b] and (ii) to con- 
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Fig. 1. Nicotinic acid A , nicotinamide B and the template C . 

Fig. 2. Binding interactions and docked pose of compound C-1 at the catalytic site 

of SIRT1 (PDB: 4I5I). 
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Fig. 3. Binding interactions and docked pose of nicotinamide at the catalytic site of 

SIRT1 (PDB: 4I5I). 
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truct a library of small molecules based on C via varying the sub- 

tituent R 

1 for studying the Structure-Activity-Relationship (SAR) 

ithin the series thereby identifying the best active molecules. No- 

ably, our current research effort is of particular interest because 

he discovery of novel agents is considered as one of the way for- 

ards to address the multifaceted problem of drug resistance [10] . 

he drug resistance is known to be a major cause in the failure of 

hemotherapy based approaches on several occasions. 

To assess the merit of template C the in silico docking studies 

f a representative molecule C-1 were carried out using the SIRT1 

rotein (PDB: 4I5I) ( Fig. 2 , see also Fig S-1 in suppl data). The

ompound C-1 showed good binding with the catalytic residues of 

IRT1 with the binding energy of -90.39 kcal/mol that was compa- 

able to nicotinamide’s -88.38 kcal/mol. The molecule participated 
2 
n the H-bond interactions with HIS363 and ILE347 through its 

yridine nitrogen atom and the ester carbonyl group, respectively. 

otably, a similar H-bond interaction with ILE347 was shown by 

icotinamide through its amide carbonyl moiety ( Fig. 3 , see also 

ig S-2 in suppl data). Further, C-1 also interacted with other 

esidues such as ALA262, ILE347, GLN345, HIS363, ILE411, PHE297 

nd PHE273 commonly through the van der Waals, pi-pi, pi-lone 

air and pi-alkyl interactions in the catalytic domain of SIRT1. The 

utcome of this in silico studies encouraged us to gain a direct and 

onvenient access to the compound C-1 and its analogues for fur- 

her evaluation. 

. Results and discussion 

The 2-aryl substituted pyridine derivatives are commonly pre- 

ared [11] by Pd-catalyzed direct arylation of pyridine N -oxides 

11a] or by addition of Grignard reagents to pyridine N -oxides fol- 

owed by treatment with Ac 2 O [11b] . They are also prepared via 

lCl induced C-C bond forming reactions between 2-halopyridines 
3 
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Scheme 1. Sonochemical synthesis of 2-substituted nicotinic acid ethyl ester 

derivatives. 
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Table 1 

Effect of conditions on the reaction of 1a with 2 . a 

Entry Temp ( °C) Time (h) Yield (%) b 

1 30 3 0 

2 50 3 0 

3 50 1 71 c 

4 50 1 74 d 

5 50 1 43 e 

6 80 5 29 f 

a All reactions were performed using the β-enamino ester 1a 

(0.4 mmol) and allyl alcohol 2 (0.8 mmol.) in aqueous DMSO (1:9, 

5 mL) under open air. 
b Isolated yields. 
c The reaction was performed in the presence of IBX (1.2 equiv.). 
d The reaction was performed in the presence of elemental io- 

dine (1.5 equiv.). 
e 0.8 equiv. iodine was used. 
f The reaction was performed in the absence of ultrasound. 
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nd arenes [12] . More recently, this class of compounds has been 

repared via the reaction of aryl ketone with 1,3-diaminopropane 

n the presence of a catalyst or reagents such as Cu(OSO 2 CF 3 ) 2 
13] , LiCl [14] , I 2 -HCl [15] , Ru(2,2 ′ -bipyridine) 3 Cl 2 .6H 2 O [16] and

d(OAc) 2 -PTSA-O 2 [17] . In our effort the synthesis of 2-substituted 

icotinic acid ethyl ester derivatives were carried out earlier via 

he IBX (2-iodoxybenzoic acid) mediated reaction of β-enamino 

sters with allylic alcohols [18] . While this one-pot reaction pro- 

eeded under a metal free conditions however the methodology 

nvolved the use of an elevated temperature (70 °C) and relatively 

onger reaction time (3h). Moreover, the oxidant IBX though read- 

ly available but is not an inexpensive reagent. On the other hand, 

ltrasound plays an important role in accelerating the reaction 

ate substantially affording the desired product within short re- 

ction time. Further, the ultrasound assisted reactions (i) are con- 

idered as green approaches in organic synthesis [19] , (ii) are ef- 

ective in waste minimization and reduction of energy require- 

ents [20] and (iii) play key role in developing new, cost effec- 

ive and environmentally safe methodologies for accessing numer- 

us organic molecules [ 21 , 22 ]. We therefore decided to adopt ul-

rasound assisted method for the faster access of our target com- 

ounds based on C . Notably, during this study we found that the 

lemental iodine in aqueous DMSO was an effective as well as 

heaper alternative agent for the reaction of β-enamino esters ( 1 ) 

ith allylic alcohols ( 2 ) under ultrasound irradiation ( Scheme 1 ). 

otably, molecular iodine or iodine containing agents have found 

onsiderable applications in organic synthesis [23–25] and we have 

 long term interest in this area [26–28] . 

Firstly, a brief study was carried out to establish the opti- 

ized reaction conditions and the reaction of ( E )-ethyl 3-amino- 

-phenylacrylate ( 1a ) with allyl alcohol ( 2 ) in aqueous DMSO (1: 9

 2 O-DMSO) was used as a model reaction for this purpose. The re- 

ction was performed at 30 °C for 3 h in the presence of air under

ltrasound using a laboratory ultrasonic bath SONOREX SUPER RK 

10H model producing irradiation of 35 kHz. No catalyst or reagent 

as used in this case and the reaction did not proceed at this or 

levated temperature (entry 1 and 2, Table 1 ). Notably, the reac- 

ion was completed within 1h affording the desired product 3a in 

ood yield when IBX was used (entry 3, Table 1 ). Next we explored

he use of elemental iodine as an inexpensive and alternative agent 

or the current transformation. Indeed, we were encouraged by the 

act that the use of iodine for the oxidation of allylic alcohol (pro- 

ected or unprotected) has been reported previously [29] . To our 

atisfaction the reaction proceeded well in the presence of iodine 

ffording the product 3a in 74% yield (entry 4, Table 1 ). The reac-

ion was carried out using 1.5 equivalent of iodine when the use of 

ower quantity of iodine decreased the product yield significantly 

entry 5, Table 1 ). The product yield was decreased further when 

he reaction was performed in the absence of ultrasound even at 

igher temperature for a longer time (entry 6, Table 1 ). Overall, 

he reaction condition of entry 4 appeared to be optimum for the 

reparation of 3a and was used for the preparation of its ana- 

ogues. 

A number of 2-substituted nicotinic acid ethyl ester derivatives 

 3 ) were synthesized by employing various β-enamino esters ( 1 ). 

he ultrasound assisted reaction in the presence of iodine under 

pen air proceeded well in all these cases affording the desired 
3 
roducts in good to acceptable yields ( Table 2 ). The C-2 substituent 

f the product 3 may include a substituted aryl ring, a phthalide 

r indole or pyridine or furan ring, a methyl or substituted ben- 

yl moiety or a styryl group. The key advantages of the current 

pproach are the use of less expensive iodine and aqueous me- 

ia, milder reaction condition and shorter reaction time. More- 

ver, since the reaction was performed under open air hence the 

ethodology is free from the risk of pressure development as ob- 

erved in case of reaction performed in an isolated system espe- 

ially in the large scale preparation. 

All the compounds synthesized were characterized by spectral 

 

1 H and 

13 C NMR and HRMS) data. This is exemplified by the 

artial 1 H and 

13 C NMR spectral data of two representative com- 

ounds e.g. 3g and 3h (see Fig S-0 in suppl data). A triplet near 1.1

and a quartet near 4.2 δ in the 1 H NMR spectra was due to the 

Et (ester) protons of 3g whereas a singlet near 5.3 δ accounting 

wo protons was due to its methylene moiety of the fused lactone 

ing. Similarly, the OEt protons appeared near 1.0 and 4.1 δ in case 

f 3h whereas a triplet near 6.5 δ, a doublet near 7.1 δ and a sin-

let near 3.8 δ were due to the C-3, C-2 and NMe protons of the 

ndole ring, respectively. The C-6 proton of the pyridine ring ap- 

eared near 8.8 or 8.7 δ in both the cases. The two C = O groups of

used lactone and the ester moiety and the OCH 2 carbon appeared 

ear 170.7, 166.9 and 69.6 ppm, respectively in the 13 CNMR spec- 

ra of 3g whereas the C-6 of the pyridine ring and the ester car- 

ons appeared near 157.6, 61.7 and 13.7 ppm. In case of 3h the key 
3 C signals and the corresponding carbons were identified as 169.0 

C = O), 159.6 (C-6 of the pyridine ring), 101.7 (C-3 of the indole 

ing) and 32.9 (NMe) ppm. The IR absorption near 1760 and 1725 

m 

−1 in case of 3g also indicated the presence of lactone and ester 

 = O group, respectively whereas rest of the compounds showed IR 

ignal near 1720 cm 

−1 due to the ester moiety. 

Based on the earlier reports [ 18 , 29 ] a plausible reaction mecha- 

ism for the I 2 -mediated reaction of 1 with 2 under ultrasound ir- 

adiation is proposed in Scheme 2 . The reaction seems to proceed 

ia (i) ultrasound assisted disproportionation reaction of I 2 with 

ater to generate hydroiodous acid (HOI) (along with HI) in situ 

30] , (ii) oxidation of allylic alcohol ( 2 ) by HOI (via providing the

lectrophilic I + species) [31] promoted by ultrasound to give the 

ldehyde E-1 that on (iii) sonochemical Michael addition with β- 

namino ester ( 1 ) followed by (iv) intramolecular cyclization gives 

he 1,4-dihydropyridine intermediate E-3 via E-2 , (v) oxidation of 

-3 in the presence of air under ultrasound to give the product 3 . 

otably, HI along with water are the by-products formed during 
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Table 2. 

List of 2-substituted nicotinic acid ethyl ester derivatives ( 3 ) synthesized following the method shown in 

Scheme 1. a , b 

a All reactions were performed using the β-enamino ester 1 (0.4 mmol), allyl alcohol 2 (0.8 mmol), iodine (1.5 

equiv.) in aqueous DMSO (1:9, 5 mL) under ultrasound irradiation in the presence of open air. 
b Figure in the bracket represents the isolated yield. 

Scheme 2. Proposed reaction mechanism for the I 2 -mediated reaction of 1 with 2 

under ultrasound irradiation in the presence of air. 
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his transformation when HI participates in regenerating the HOI 

o complete the reaction cycle. It is evident from Table 1 that ul- 

rasound not only accelerated the reaction rate but also facilitated 

he formation of the desired product. Indeed, the ultrasound facil- 

tates cavitation involving the growth, oscillation, and collapse of 

ubbles under the action of an acoustic field [ 32 , 33 ]. Consequently,

rastic conditions including the extremely high pressure (up to 

800 atmosphere) and temperature (e.g. 20 0 0–50 0 0 K) inside the 

edium within a very short duration are produced chiefly by the 

avitational collapse. Additionally, the shear forces, jets, and shock 
4 
aves are produced by this collapse outside the bubble. Thus, the 

verall effects induced by cavitation could be involved in the ox- 

dation of 2 followed by Michael addition with 1 and subsequent 

ntramolecular cyclization followed by oxidation ( Scheme 2 ). Nev- 

rtheless, the combined effect of ultrasound, iodine and air was 

ssential for the successful preparation of 3 . 

All the 2-substituted nicotinic acid ethyl ester derivatives ( 3 ) 

ynthesized were assessed for their inhibitory activities against 

SIRT1 in vitro using a reported biochemical enzymatic assay 

34] . The known inhibitor nicotinamide (the reported IC 50 value 

gainst SIRT1 = 120 μM) [35] was used as a reference compound. 

t the concertation of 10 μM the compounds that showed good 

ctivities ( > 50% inhibition) include 3a (72% inhibition), 3g (81% in- 

ibition), 3h (59% inhibition), 3i (67% inhibition) and 3j (53% inhi- 

ition) (see Table S-1 in suppl data). This was further supported by 

he estimated total energy of these molecules obtained via the in 

ilico docking studies performed (using these compounds includ- 

ng nicotinamide) against the SIRT1 protein (PDB: 4I5I). The iGEM- 

OCK version2.1 software [36] , a program for computing ligand 

onformation and orientation relative to the active site of the pro- 

ein was used for the docking studies and results are presented in 

able 3 . The docking [37a-b] interactions occurred with the cat- 

lytic domain residues of 241-516. The binding interactions and 

ocked pose of the best active molecule 3g at the catalytic site 

f SIRT1 is shown in Fig 4 (see also Fig S-3 in suppl data). The

olecule 3g participated in the H-bond interactions with GLN345 

nd ALA262 through its lactone oxygen atom and the carbonyl 

roup, respectively. Notably, similar involvement of its carbonyl 

roup was also observed when the molecule was docked into other 
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Table 3 

Summary of interactions of compounds with SIRT1 in silico . a 

Compounds Estimated Total Energy (kcal/mol) Active site interacting residues 

3a -90.39 HIS363, ILE347, ALA262, ILE411, PHE273, GLN345 

3g -94.54 GLN345, ALA262, HIS363, PHE273, ILE347, ILE411 

3h -77.67 ALA262, ILE347, ILE411, PHE273, PHE297 

3i -88.46 HIS363, ILE347, ALA262, PHE273, GLN345 

3j -74.43 ALA262, HIS363, PHE273, ILE347, VAL412 

Nicotinamide -88.38 ASP348, ILE347, PHE273, ALA262, ILE279 

EX527a -110.5 ASP348, ILE347, ILE316, ILE279, PHE273, PHE297, ILE411, PHE413 

a For binding interactions and docked pose see Fig S-3 to S-6 in the suppl data. 

Fig. 4. Binding interactions and docked pose of compound 3g at the catalytic site 

of SIRT1 (PDB: 4I5I). 
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Fig. 5. 2D binding interactions and docked pose of EX527a at the catalytic site of 

SIRT1 (PDB: 4I5I). 
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IRT1 with PDB code as 5BTR, 4ZZH and 4KXQ (see Fig S-7 in 

uppl data). Further, 3g also interacted with other residues such as 

LE347, HIS363, ILE411, PHE297, PHE273 etc via the van der Waals, 

i-pi, pi-lone pair and pi-alkyl interactions in the catalytic domain 

f SIRT1. It is evident from Table 3 that 3g showed better inter- 

ctions with SIRT1 than nicotinamide as indicated by the outcome 
5 
f in vitro assay. However, being a potent inhibitor of SIRT1 the 

ndole derivative EX527a (an analogue of EX527 or Selisistat and 

lso a co-crystallized ligand with PDB: 4I5I) [37a] showed superior 

nergy and interactions ( Table 3 and Fig. 5 ) than 3g . Nevertheless,

n acceptable ADME (absorption, distribution, metabolism, and ex- 

retion) or pharmacokinetic properties was predicted for 3g when 

he computational ADME prediction of this compound along with 

a and 3i (that showed good inhibition of SIRT1) was carried out 

sing Swiss ADME web-tool [38] ( Table 4 ). Indeed, the molecule 

g may show high GI absorption, favorable drug likeness as well as 

ioavailability score in addition to be a non-P-gp substrate though 

t may penetrate the blood brain barrier. Overall, the compound 3g 

ppeared as an interesting hit molecule for further biological stud- 

es. 

From the viewpoint of Structure- Activity-Relationship (SAR) 

ithin the current series of 2-substituted nicotinic acid ethyl es- 

er derivatives it was evident that the SIRT1 inhibitory activity was 

aried considerably with the change in the nature as well as type 

f substituent present at the C-2 position. In general, arene / het- 

roarene (e.g. indole, pyridine, furan etc.) moieties were favored at 

his position whereas an alkylaryl (e.g. benzyl or substituted ben- 

yl) group at the same position was less effective. A smaller group 

.g. Me or an alkenyl moiety like styrene at this position was also 

ot favored. Notably, a halo benzene e.g. chloro or bromobenzene 

ing at the C-2 position decreased the activity whereas a descend- 

ng order of activity was observed for the compound possessing 

hthalide > pyridine > indole > furan as the C-2 substituent. 
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Table 4. 

Computational ADME prediction of selected compounds. 

Properties Molecules 

(i) Physicochemical 3a 3g 3i 

Molecular Weight (g/mol) 227.26 283.28 228.25 

Consensus Log P a 2.68 2.47 1.93 

Log S (ESOL) b -3.23 (soluble) -3.12 (soluble) -2.56 (soluble) 

(ii) Pharmacokinetics 

GI c absorption High High High 

BBB d penetration Yes Yes Yes 

P-gp e substrate No No No 

(iii) Drug likeness 

Lipinski rule Yes; 0 violations Yes; 0 violations Yes; 0 violations 

Veber rule Yes Yes Yes 

Bioavailability score 0.55 0.55 0.55 

a Log P: Lipophilicity. 
b Log S (ESOL): water solubility, calculated by ESOL method which is a Quantitative 

Structure-Property Relationship (QSPR) based model. 
c GI: Gastrointestinal. 
d BBB: Blood Brain Barrier 
e P-gp: permeability glycoprotein. 
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. Conclusions 

In conclusion, the 2-substituted nicotinic acid ethyl ester 

erivatives were assessed for their potential SIRT1 inhibitory prop- 

rties in vitro that was backed by the initial docking studies of 

 representative compound in silico . Accordingly, a sonochemical 

ethod was developed and employed for the fast time for the 

uicker access to this class of compounds. The methodology in- 

olved the iodine-mediated reaction of β-enamino esters with al- 

ylic alcohols in aqueous DMSO in the presence of air under mild 

onditions. A number of 2-substituted nicotinic acid ethyl ester 

erivatives were synthesized by employing this ultrasound assisted 

ethod in good to acceptable yield. The use of less expensive io- 

ine and aqueous media, milder reaction condition and shorter 

eaction time are the key advantages of the current approach. A 

lausible reaction mechanism is proposed and discussed for this 

onochemical process. All the synthesized compounds were tested 

or their SIRT1 inhibitory potential in vitro when some of them 

howed good activities and the compound 3g appeared to be the 

est among them. The docking studies suggested that the fused 

actone ring of 3g played a key role in interacting with the SIRT1 

n silico via formation of H-bonds. An acceptable ADME or phar- 

acokinetic properties was predicted for 3g via the computational 

DME prediction of this compound in silico . Thus the overall out- 

ome of the in vitro and in silico studies suggested the compound 

g as an initial hit molecule for further pharmacological studies. 

inally, the current research effort s not only revealed the utility of 

odine and ultrasound for the rapid access of 2-substituted nico- 

inic acid ethyl ester derivatives but also highlighted the potential 

f nicotinic acid ethyl ester based framework for the identification 

f new inhibitors of SIRT1. 
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