EISEVIER

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Synthesis and in vitro autoradiographic evaluation of a novel high-affinity radioiodinated ligand for imaging brain cannabinoid subtype-1 receptors

Sean R. Donohue a,b,*, Katarina Varnäs b, Zhisheng Jia b, Balázs Gulyás b, Victor W. Pike a, Christer Halldin b

ARTICLE INFO

Article history:
Received 27 July 2009
Revised 26 August 2009
Accepted 31 August 2009
Available online 3 September 2009

Keywords: SPECT PET CB₁ receptors Radioiodination Radioligand

ABSTRACT

There is strong interest to study the involvement of brain cannabinoid subtype-1 (CB₁) receptors in neuropsychiatric disorders with single photon emission computed tomography (SPECT) and a suitable radioligand. Here we report the synthesis of a novel high-affinity radioiodinated CB₁ receptor ligand ([¹²⁵I]**8**, [¹²⁵I]1-(2-iodophenyl)-4-cyano-5-(4-methoxyphenyl)-*N*-(piperidin-1-yl)-1*H*-pyrazole-3-carboxylate, [¹²⁵I]SD7015). By autoradiography in vitro, [¹²⁵I]**8** showed selective binding to CB₁ receptors on human brain postmortem cryosections and now merits labeling with iodine-123 for further evaluation as a SPECT radioligand in non-human primate.

© 2009 Elsevier Ltd. All rights reserved.

Cannabis sativa (marijuana) is one of the oldest known plant derived-therapeutics, owing mainly to its anti-nociceptive properties. Other beneficial effects of cannabis intake may include anti-emesis and appetite stimulation. Conversely, the accompanying psychological 'high' and memory impairment have limited its therapeutic value. The most abundant and psychoactive cannabinoid, Δ^9 -tetrahydrocannabinol (Δ^9 -THC, 1), binds with high affinity to two known body receptor systems. These receptors have been named cannabinoid subtype-1 (CB₁) and cannabinoid subtype-2 (CB₂). CB₁ receptors have high-densities in brain and are implicated in a number of neuropsychiatric disorders such as, schizophrenia and depression. CB₂ receptors are located mainly in the periphery and are of less interest to neuropsychiatric research. $^{10.11}$

Ability to image and measure brain CB_1 receptors non-invasively with radiation computed tomography would assist neuropsychiatric research and drug development. The development of radioligands suitable for imaging brain CB_1 receptors is therefore of strong importance. Recently, there has been a great deal of progress in the development of useable radioligands for positron emission tomography (PET). Some of the more notable PET radioligands (Fig. 1) are $[^{11}C]MePPEP ([^{11}C]2), ^{12,13}[^{18}F]PipISB ([^{18}F]3), ^{14,15}[^{18}F]MK-9470 ([^{18}F]4), ^{16,17} (-)-[^{11}C]SD5014 ((-)-[^{11}C]5), ^{18}[^{11}C]-OMAR ([^{11}C]6), ^{19,20} and [^{11}C][HU75575 ([^{11}C]7), ^{20,21} In comparison,$

E-mail address: Sean_Donohue@tracer.nm.jhu.edu (S.R. Donohue).

the development of radioligands for more widespread single-photon computed tomography (SPECT) is much less advanced. Due to the longer half-life of radioiodine for SPECT imaging (e.g., 123 I, $t_{1/2}$ = 13.2 h), an on-site cyclotron is not required for radiolabeling, as with PET, which allows for more widespread use in pharmaceutical, academic, and hospital settings. Here we report the synthesis, receptor screening, radioiodination, and in vitro autoradiographic evaluation of a novel radioiodinated CB₁ receptor radioligand ([125 I]4-cyano-1-(2-iodophenyl)-5-(4-methoxyphenyl) -*N*-(piperidin-1-yl)-1*H*-pyrazole-3-carboxamide, [125 I]8, [125 I]SD 7015). Our results strongly suggest that [123 I]8 would merit evaluation as a SPECT radioligand in vivo.

Compound **8** was synthesized according to the procedure depicted in Scheme 1. Conversion of 2-iodoaniline into a diazonium salt, followed by treatment with ethyl 2-chloroacetoacetate in ethanol-water solution under basic conditions gave chloro[(2-iodophenyl)hydrazono]ethyl acetate (**9**). Heating of a solution of **9**, 4-methoxybenzoylacetonitrile and *N*,*N*-diisopropylethylamine in *tert*-butanol to reflux gave **10** in low but adequate yield. Hydrolysis of **10** with LiOH in aq-tetrahydrofuran gave the corresponding carboxylic acid, which was then converted into the acyl chloride with oxalyl chloride and a catalytic amount of *N*,*N*-dimethylformamide. The synthesis of **8** was completed by coupling the acyl chloride with 1-aminopiperidine under basic conditions.

The trimethylstannylated precursor, **11**, required for radiolabeling, was synthesized by refluxing a solution of the known bromo compound **7**²⁰ and hexamethylditin in the presence of palladium catalyst (Scheme 2).

^a Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA

^b Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm, Sweden

^{*} Corresponding author at present address: Johns Hopkins PET Center, Division of Nuclear Medicine, Radiology, Johns Hopkins Medicine, Nelson B1-122, 600 North Wolfe Street, Baltimore, MD 21287-0816, USA. Tel./fax: +1 410 614 0110.

$$F_{3}C$$

$$[^{11}C]2$$

$$[^{18}F]3$$

$$F_{3}C$$

$$[^{18}F]4$$

$$[^{11}C]5$$

$$[^{11}C]5$$

$$[^{11}C]6, R^{1} = Me^{*}O, R^{2} = R^{3} = CI$$

$$[^{11}C]7, R^{1} = Me^{*}O, R^{2} = Br, R^{3} = H$$

$$[^{125}]8, R^{1} = MeO, R^{2} = ^{1}I, R^{3} = H$$

Figure 1. Structures of [11C]**2**, [18F]**3**, [18F]**4**, [11C]**5-7**, and [125I]**8**. Asterisks denote positions of radiolabels.

Scheme 1. Synthesis of 8. Reagent, conditions and yields: (a) concentrated HCl, NaNO₂, ethyl 2-chloroacetoacetate, NaOAc, EtOH-H₂O, 16 h, 72%; (b) 4-methoxybenzoylacetonitrile, DIPEA, tert-BuOH, reflux, 16 h, 6%; (c) aq-LiOH, THF, 65 °C, 4 h; (d) DMF_(cat), (COCl)₂, DCM; (e) 1-aminopiperidine, DIPEA, DCM, 2 h, 73%.

A radioligand for imaging brain CB₁ receptors would ideally possess adequately high affinity and moderate lipophilicity to promote rapid development of a high ratio of receptor-specific binding to non-specific binding in brain in vivo, that might then allow accurate computation of output measures, such as binding potential.^{22,23} CB₁ receptors are one of the most abundant G protein-coupled receptors in brain, reaching a concentration (B_{max}) of 1752 fmol/mg protein (175 nM) in rat cerebellum.²⁴ Generally, a SPECT radioligand should show a substantial $B_{\text{max}}/K_{\text{d}}$ value (>5) to be successful. Hence, an effective CB₁ receptor radioligand might require only a moderately high affinity (K_i or K_d <35 nM). Ligand 8 was found to have about 10-fold higher affinity (3.4 nM; Table 1) than perhaps needed. Calculated ligand lipophilicity (cLog D_{7.4}) can be an important predictor of blood-brain barrier penetration and brain non-specific binding. Moderate lipophilicity (cLog D_{7.4} in the range 2.0-3.5) is usually preferred for adequate brain entry without incurring excessive non-specific binding in brain.²³ However, when target binding sites exist in high concentration, higher lipophilicity may be tolerated. For example, [11C]MePPEP is a successful PET radioligand for brain CB_1 receptors despite having a high $cLog \, D_{7.4}$ value of 5.42. 12,13 The $cLog \, D_{7.4}$ value of 8 is 4.14 and appears more favorable for a radioligand than that of [11C]MePPEP. Furthermore, the physiochemical and pharmacological properties of **8** compare well with other successful PET radioligands. Therefore, ligand **8** presents acceptable CB_1 receptor affinity and lipophilicity for development as a SPECT radioligand (Table 1).

In addition to acceptable binding affinity and lipophilicity a candidate SPECT radioligand should be selective for binding to the target protein. Ligand **8**, at 10 μ M concentration, showed <50% inhibition (n = 4) of radioligand binding to the sites: 5-HT_{1B-E}, 5-HT_{2A-C}, 5-HT₃, 5-HT_{5A}, 5-HT₆, 5-HT₇, $\alpha_{1A,B}$, $\alpha_{2A,B}$, β_{1-3} , D₁₋₄, DOR, H₁₋₄, M₁₋₅, NET, SERT, $\sigma_{1,2}$, V_{1A,1B,2}. $K_{\rm i}$ values (n = 3) of 93.5 ± 20.4 nM (5-HT_{1A}), >10,000 nM ($\alpha_{2\rm C}$), 1477 ± 148 nM (KOR), 1496 ± 216 nM (MOR), and 3166 ± 586 nM (TSPO) were found. Details of the employed binding assays may be found at the NIMH PDSP web site: http://pdsp.med.unc.edu. Hence, **8** was found to have excellent CB₁ receptor selectivity for development as a SPECT radioligand.

[125**i**]**8** was prepared by [125**i**]iodo-destannylation of the corresponding trimethylstannyl precursor (**11**) with [125**i**]NaI, aq-HCl and chloramine-T (oxidizer) in methanol (Scheme 2). The crude product was purified with high-performance liquid chromatography (HPLC) as described in Supplementary data. The decay-corrected radiochemical yield of [125**i**]**8** ranged from 48% to 59%. The specific radioactivity of [125**i**]**8** was 81.4 GBg/µmol and the radio-

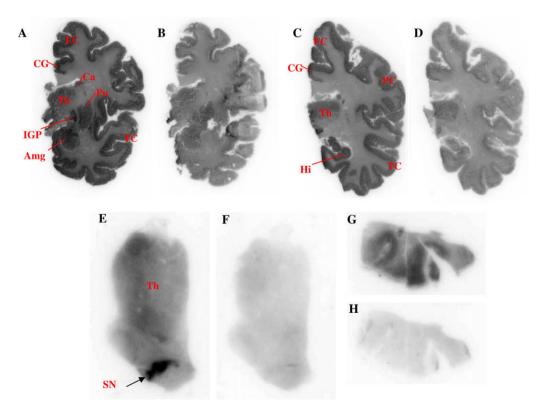
Scheme 2. Radiosynthesis of [125] 8. Reagents, conditions and yields: (a) hexamethylditin, Pd(PPh₃)₄, toluene, 20 h, 32%; (b), chloramine-T, aq-HCl, 5 min, 48-59%.

Table 1 K_i values for CB_1 and CB_2 receptors, selectivities for CB_1 versus CB_2 receptors and calculated lipophilicities

Ligand	$CB_1 K_i^a$ (nM)	$CB_2 K_i^a$ (nM)	CB ₁ versus CB ₂ selectivity ^a	cLog D _{7.4} b
Rimonabant	1.38 ± 0.17	927 ± 66	672 ± 94	6.01
8	3.40 ± 0.43	548 ± 23	161 ± 47	4.14

^a Values represent mean ± SD of three determinations.

chemical purity >98%. [¹²⁵I]**8** was thus obtained in adequate yield and purity for further evaluation with sensitive postmortem autoradiography in vitro. Furthermore, these conditions would be applicable to labeling **8** with iodine-123 for evaluation in SPECT imaging.


 CB_1 receptors are spread heterogeneously in brain, with high-densities appearing in substantia nigra, globus pallidus, amygdala, cortical regions, and striatum. ^{25,26} Brain regions with low CB_1 receptor densities are thalamus, pons, and white matter. In post-

mortem autoradiography in vitro, [125 I]8 bound substantially to human brain regions with high CB $_1$ receptor densities (Fig. 2; panels A, C, E, and G) with highest binding in globus pallidus and substantia nigra (Fig. 2; panels A and E). Additionally [125 I]8 showed much lower binding in brain regions with low CB $_1$ receptor density, including thalamus (Fig. 2; panels C and E). Under conditions in which the CB $_1$ receptors were blocked with the selective CB $_1$ ligand, rimonabant (10 μ M), the binding of [125 I]8 in CB $_1$ rich regions was greatly reduced and the distribution of radioligand became more homogeneous (Fig. 2, panels B, D, F, and H). Therefore, the regional selectivity of [125 I]8 indicated that 123 I-labeled 8 would be promising for imaging brain CB $_1$ receptors with SPECT.

Ligand **8** demonstrated high affinity and good selectivity for CB₁ receptors. [125 I]**8** was obtained in acceptable radiochemical yield, specific radioactivity and purity for evaluation in vitro. Autoradiographs of human brain obtained with [125 I]**8** showed radioactivity distribution according to known regional CB₁ receptor densities. Future research evaluating [123 I]**8** with SPECT imaging is therefore warranted.

Acknowledgments

S.R.D. and V.W.P. were supported by the Intramural Research Program of the National Institutes of Health, specifically the National Institute of Mental Health (NIMH), project number ZO1MH002793. We thank the NIMH Psychoactive Drug Screening Program (PDSP) for performing binding assays and Siv Eriksson for the excellent technical assistance with autoradiographic experiments. The PDSP is directed by Bryan L. Roth, PhD, with project officer Jamie Driscoll (NIMH) at the University of Carolina at Chapel Hill (contract NO1MH32004).

Figure 2. Autoradiographs from whole-hemisphere cryosections (panels A–D; 100 μm thickness) and cryosections (20 μm thickness) covering thalamus and brainstem (panels E and F) and temporal cortex (panels G and H) incubated with [125I]**8** under baseline (panels A, C, E and G) and blocked (rimonabant, 10 μM; panels B, D, F and H) conditions. Abbreviations: Amg, amygdala; Ca, caudate nucleus; CG, cingulate gyrus; FC, frontal cortex; Hi, hippocampus; IGP, globus pallidus, internal segment; PC, parietal cortex; Pu, putamen; SN, substantia nigra; TC, temporal cortex; Th, thalamus.

 $^{^{\}rm b}$ cLog $D_{7.4}$ values were calculated using Advanced Chemistry Development (ACD) 9.2.

Supplementary data

Supplementary data (experimental details of chemistry, labeling and autoradiography) associated with this article can be found, in the online version, at doi:10.1016/j.bmcl.2009.08.092.

References and notes

- 1. Lambert, D. M. J. Pharm. Belg. 2001, 56, 111.
- Devane, W. A.; Dysarz, F. A.; Johnson, M. R.; Melvin, L. S.; Howlett, A. C. Mol. Pharmacol. 1988, 34, 605.
- 3. Munro, S.; Thomas, K. L.; Abushaar, M. Nature 1993, 365, 61.
- 4. Howlett, A. C.; Barth, F.; Bonner, T. I.; Cabral, G.; Casellas, P.; Devane, W. A.; Felder, C. C.; Herkenham, M.; Mackie, K.; Martin, B. R.; Mechoulam, R.; Pertwee, R. G. *Pharmacol. Rev.* **2002**, *54*, 161.
- 5. Van Laere, K. Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 1719.
- Dean, B.; Sundram, S.; Bradbury, R.; Scarr, E.; Copolov, D. Neuroscience 2001, 103. 9.
- 7. Eggan, S. M.; Hashimoto, T.; Lewis, D. A. Arch. Gen. Psychiatry 2008, 65, 772.
- 8. Serra, G.; Fratta, W. Clin. Pract. Epidemol. Ment. Health 2007, 3, 25.
- Zavitsanou, K.; Garrick, T.; Huang, X. F. Prog. Neuropschyopharmacol. Biol. Psychiatry 2004, 28, 355.
- 10. Lynn, A. B.; Herkenham, M. J. Pharmacol. Exp. Ther. 1994, 268, 1612.
- Gong, J. P.; Onaivi, E. S.; Ishiguro, H.; Liu, Q. R.; Tagliaferro, P. A.; Brusco, A.; Uhl, G. R. Brain Res. 2006, 1071, 10.
- Yasuno, F.; Brown, A. K.; Zoghbi, S. S.; Krushinski, J. H.; Chernet, E.; Tauscher, J.; Schaus, J. M.; Phebus, L. A.; Chesterfield, A. K.; Felder, C. C.; Gladding, R. L.; Hong, J.; Halldin, C.; Pike, V. W.; Innis, R. B. Neuropsychopharmacology 2008, 33, 259.
- Donohue, S. R.; Krushinski, J. H.; Pike, V. W.; Chernet, E.; Chesterfield, A. K.; Felder, C. C.; Halldin, C.; Schaus, J. M. J. Med. Chem. 2008, 51, 5833.

- Donohue, S. R.; Halldin, C.; Schou, M.; Hong, J.; Phebus, L. A.; Chernet, E.; Hitchcock, S. A.; Gardinier, K. M.; Ruley, K. M.; Krushinski, J. H.; Schaus, J. M.; Pike, V. W. J. Labelled Compd. Radiopharm. 2008, 51, 149.
- Finnema, S. J.; Donohue, S. R.; Zoghbi, S. S.; Brown, A. K.; Gulyás, B.; Innis, R. B.; Halldin, C.; Pike, V. W. Synapse 2009, 63, 22.
- Burns, H. D.; Van Laere, K.; Sanabria-Bohorquez, S.; Hamill, T. G.; Bormans, G.; Eng, W. S.; Gibson, R.; Ryan, C.; Connolly, B.; Patel, S.; Krause, S.; Vanko, A.; Van Hecken, A.; Dupont, P.; De Lepeleire, I.; Rothenberg, P.; Stoch, S. A.; Cote, J.; Hagmann, W. K.; Jewell, J. P.; Lin, L. S.; Liu, P.; Goulet, M. T.; Gottesdiener, K.; Wagner, J. A.; de Hoon, J.; Mortelmans, L.; Fong, T. M.; Hargreaves, R. J. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 9800.
- Liu, P.; Lin, L. S.; Hamill, T. G.; Jewell, J. P.; Lanza, T. J.; Gibson, R. E.; Krause, S. M.; Ryan, C.; Eng, W. S.; Sanabria, S.; Tong, X. C.; Wang, J. Y.; Levorse, D. A.; Owens, K. A.; Fong, T. M.; Shen, C. P.; Lao, J. L.; Kumar, S.; Yin, W. J.; Payack, J. F.; Springfield, S. A.; Hargreaves, R.; Burns, H. D.; Goulet, M. T.; Hagmann, W. K. J. Med. Chem. 2007, 50, 3427.
- 18. Donohue, S. R.; Pike, V. W.; Finnema, S. J.; Truong, P.; Andersson, J.; Gulyás, B.; Halldin, C. *J. Med. Chem.* **2008**, *51*, 5608.
- Horti, A. G.; Fan, H.; Kuwabara, H.; Hilton, J.; Ravert, H. T.; Holt, D. P.; Alexander, M.; Kumar, A.; Rahmim, A.; Scheffel, U.; Wong, D. F.; Dannals, R. F. J. Nucl. Med. 2006, 47, 1689.
- Fan, H.; Ravert, H. T.; Holt, D. P.; Dannals, R. F.; Horti, A. G. J. Labelled Compd. Radiopharm. 2006, 49, 1021.
- Donohue, S. R.; Zoghbi, S.; Yasuno, F.; Terry, G.; Gourley, J.; Innis, R. B.; Halldin, C.; Pike, V. W. Curr. Radiopharmaceuticals 2008, 1, 93.
- 22. Laruelle, M.; Slifstein, M.; Huang, Y. Mol. Imaging Biol. 2003, 5, 363.
- 23. Waterhouse, R. N. Mol. Imaging Biol. 2003, 5, 376.
- Hirst, R. A.; Almond, S. L.; Lambert, D. G. Neurosci. Lett. 1996, 220, 101
- Herkenham, M.; Lynn, A. B.; Johnson, M. R.; Melvin, L. S.; De Costa, B. R.; Rice, K. C. J. Neurosci. 1991, 11, 563.
- 26. Glass, M.; Dragunow, M.; Faull, R. L. Neuroscience 1997, 77, 299.