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Abstract: An efficient synthesis of 2-aminobenzoxazoles is de-
scribed by a direct oxidative amination of unfunctionalized benzox-
azoles with primary amines. The reaction could be performed in the
absence of transition metals by using catalytic amounts of a quater-
nary ammonium iodide and tert-butylhydroperoxide as a cheap and
easy-to-handle co-oxidant. In addition to primary amines, aqueous
solutions of NH3 were used to introduce a primary amine group into
the heterocyclic core.

Key words: green chemistry, amination, homogeneous catalysis,
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Aromatic and heteroaromatic amines are widely distribut-
ed structural motifs that can be found in important classes
of organic molecules such as pharmaceuticals, agrochem-
icals, organic dyes, and conducting polymers. An efficient
way to introduce the crucial C–N functionality is the di-
rect oxidative amination of a (hetero)aryl C–H bond.1

Meanwhile a variety of transition metals such as Pd,2 Ag,3

Cu,4 Mn, Co,5 and Fe6 were described to catalyze this re-
action.7 However, catalytic metal-free oxidative amina-
tions are much less explored.

Scheme 1 Iodide-catalyzed oxidative amination of oxazoles

In our attempts to develop novel iodide-catalyzed oxida-
tive C–C and C–X bond-forming reactions we have re-
cently developed a metal-free oxidative direct amination
of azoles with secondary amines by using catalytic
amounts of tetrabutylammoniumiodide (TBAI) and aque-
ous solutions of H2O2 or tert-butylhydroperoxide (TB-

HP).8,9 First mechanistic investigations led us to suggest
an activation through in situ iodination of the secondary
amine and thence an electrophilic amination mechanism
(Scheme 1).

Herein we wish to present a first systematic investigation
of TBAI-catalyzed aminations of benzoxazoles with
much less reactive primary amines. As a starting point we
studied the reaction between benzoxazole (1a) and N-bu-
tylamine (2a).10 To find the optimal reaction conditions
for this valuable transformation we chose to investigate
the reaction between benzoxazole (1a) and N-butylamine
(2a) with catalytic amounts of TBAI and acetic acid as
acid additive (Table 1). Using 5 mol% of TBAI as catalyst
and with H2O2 as co-oxidant at ambient temperature the
desired 2-aminobenzoxazole 3a could be isolated in 17%
yield (Table 1, entry 2). With TBHP as co-oxidant the
yield could be increased significantly to 31% (Table 1, en-
try 3). Raising the reaction temperature to 80 °C finally
gave 3a in a good isolated yield of 69% (Table 1, entry 6).
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Table 1 Optimizing the Reaction Conditions

Entry [O]a Solvent Temp (°C) Time (h) Yield (%)d

1 – MeCN r.t. 24 0

2 H2O2
b MeCN r.t. 24 17

3 TBHPc MeCN r.t. 24 31

4 TBHP MeCN 40 7 44

5 TBHP MeCN 60 3.5 63

6 TBHP MeCN 80 3.5 69

7 TBHP EtOAc 80 2 19

8 TBHP DMF 80 2 19

9 TBHP PhMe 80 2 48

10 TBHP EtOH 80 2 31

11 TBHP AcOH 80 2 5

a Co-oxidant.
b Conditions: 30% aq solution; 3 equiv based on 1a.
c Conditions: 70% aq solution; 1.5 equiv based on 1a were used for 
entries 3–11.
d Isolated yield after column chromatography.
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Other polar and nonpolar solvents did not improve the
yields (Table 1, entries 7–10). Running the reaction in
glacial acetic acid (Table 1, entry 11) gave 3a in trace
amounts only. Furthermore, it is important to note that
without the addition of a co-oxidant (Table 1, entry 1) or
without addition of an iodide source no reaction was ob-
served.

With our optimized reaction conditions we began to in-
vestigate the substrate scope of our oxidative amination
reaction. First we examined various primary alkyl amines
(Table 2).

Besides the initially chosen N-butylamine a variety of oth-
er aliphatic primary amines could be used for this reaction
such as isopropyl-, isobutyl-, and tert-butylamine
(Table 2, entries 2–4). The corresponding 2-aminobenz-
oxazoles 3b–d were isolated in up to 76% yield.

In addition we were able to transform benzylamine (2e)
and 1-phenylethylamine (2f) to the desired products 3e
and 3f in 59% and 81% yield, respectively. Various cyclic
primary amines, such as cyclopentyl- or cyclohexylamine
(2g and 2h) as well as exo-2-aminonorbornan (2i), gave
the corresponding 2-aminobenzoxazoles 3g–i in up to
80% yield (Table 2, entries 7–9).

Allylamine 2j can be used for this oxidative amination as
well, although yielding 3j only in a moderate yield of
28%. Synthetically highly valuable alkynylamines are
also tolerated. As an example 1-ethynylcyclohexanamine
(2k) gave 3k in 66% yield. It is worth mentioning that ar-
omatic primary amines such as aniline did not react under
our optimized reaction conditions (data not shown).

Subsequently, we varied the benzoxazole motif and react-
ed diverse substituted azoles with 1-phenylethylamine
(Table 3). Benzoxazoles bearing electron-donating alkyl
groups (1b–d) and a 5-methoxy group (1e) showed the
highest reactivity (Table 3, entries 1–3). The desired ami-
nated products 3l–o were isolated in excellent yields of up
to 90% after short reaction times (1–2.5 h).

5-Chlorobenzoxazole (1f) gave 3p in a good yield of 71%
as well (Table 3, entry 5). However, the more electron-
poor 5-fluoro- and 6-nitro-substituted benzoxazoles 1g
and 1h showed a decreased reactivity yielding 3q and 3r,
respectively, in only 56% and 18% yield (Table 3, entries
6 and 7). Naphthoxazole 1i gave the desired product 3s in
41% yield (Table 3, entry 8).

Table 2 Reaction Scope with Various Primary Amines11 

Entry Amine 2 Product 3 Time 
(h)

Yield 
(%)

1
2a

3a

3.5 69

2

2b
3b
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3

2c 3c

3.5 76

4
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3d
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5

2e 3e

1.5 59
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2f 3f
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1 59
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Next we considered whether we could introduce a primary
amine group at the 2-position of the benzoxazole scaffold.
The easiest way to achieve this goal would be a reaction
of the azole with aqueous ammonia. We were pleased to
find that benzoxazoles could be easily aminated in the
proposed way, under the same reaction conditions that we
had used previously, by using ammonia instead of prima-
ry amines. However, for this reaction, catalyst loading had
to be increased from 5 mol% to 10 mol%.

Scheme 2 Oxidative amination of benzoxazoles with ammonia

Reaction of 1a with ammonia yielded 3t in 73% yield
(Scheme 2). However, yields dropped significantly for the
reaction of other substituted benzoxazoles with ammonia.
Alkyl-substituted benzoxazoles gave the desired products
3u–v in up to 54% yield. The chlorinated benzoxazole 1f
gave the desired 2-amino derivative 3x in only 35% yield.
The reasons for this significant drop in yield by changing
the substitution pattern are not clear to us at this point. A
detailed side-product analysis is part of ongoing investi-
gations.

Finally, we wanted to investigate whether chiral primary
amines keep their stereoinformation in the final reaction
product. Thus we decided to react optical pure (R)-1-phe-
nylethylamine [(R)-2f] with 1a (Scheme 3). Chiral GC
analysis indeed showed an optical purity for the reaction
product (R)-3f of 99% ee (see Supporting Information).

Scheme 3 Oxidative amination of benzoxazole with (R)-1-phenyl-
ethylamine

In summary we have developed an efficient metal-free ox-
idative amination of benzoxazoles with primary amines
and ammonia. With lowest amounts (5–10 mol%) of the
quaternary ammonium iodide TBAI the desired 2-ami-
nobenzoxazoles could be obtained in good yields after
short reaction times. Chiral primary amines can be used in
our oxidative amination reaction without a loss of optical
purity.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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Table 3 Variation of the Benzoxazole Scaffold11

Entry Benzoxazole 1 Product 3 Time 
(h)

Yield 
(%)

1

1b 3l

2.5 86

2

1c 3m

1 90

3

1d 3n

1.5 77

4

1e 3o

2 71

5

1f 3p

1 71

6

1g 3q

1.5 56

7

1h 3r

1 18

8

1i 3s

5.5 41
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