(\pm) -6-Acetamido-1,2-anhydro-6-deoxy-myo-inositol: a tight-binding inhibitor and pseudosubstrate for N-acetyl- β -glucosaminidases

Günter Legler and Ralf Bollhagen

Institut für Biochemie der Universität zu Köln, Zülpicher Str. 47, D-5000 Köln 1 (FRG) (Received December 7th, 1991; accepted March 9th, 1992)

ABSTRACT

A five-step procedure is described for the synthesis of the title compound (*N*-acetylconduramine B *trans*-epoxide, 14) from tetra-O-acetylconduritol B $[(\pm)-(1,3/2,4)-1,2,3,4$ -tetra-O-acetyl-5-cyclohexene-1,2,3,4-tetrol]. Inhibition studies with *N*-acetyl- β -glucosaminidases from bovine kidney, jack beans, and *Helix pomatia* gave K_i values for 14 of 0.50–1.6 μ M, i.e., 500–8000-fold lower than the K_i for 2-acetamido-2-deoxy-D-glucose. The K_i values for *N*-acetylconduramine B $[(\pm)-(1,3/2,4)-4$ -acetamido-5-cyclohexene-1,2,3-triol] and its *cis*-epoxide $[(\pm)-1$ -acetamido-2,3-anhydro-2-deoxy-*myo*-inositol] were several orders of magnitude larger than for 14. In contrast to the interaction of other glycosidases with anhydro-inositols of appropriate configuration, there was no covalent, irreversible inhibition. Instead, the first two enzymes catalysed a transformation of 14 into a compound (presumably the oxazoline) which underwent spontaneous hydrolysis at pH ≤ 5 . No inhibition was observed with the *N*-acetyl- β -glucosaminidase from *Aspergillus niger*.

INTRODUCTION

Conduritol epoxides (1,2-anhydro-inositols) with the appropriate configurations are mechanism-based active-site-directed inhibitors of numerous glycosidases^{1.2}. Their specificity rests on non-covalent interactions of the glycon-binding site with the hydroxyl groups of the inhibitor combined with catalytic features of the active site, which normally effect hydrolysis of bound substrate molecules. These features are (a) an acidic group AH, which can transfer a proton to the glycosidic oxygen atom of the substrate or the oxirane ring of the inhibitor; and (b) a carboxylate group which stabilises a (partial) positive charge in the first transition state of substrate hydrolysis or which forms an ester bond with the activated oxirane, thus giving a covalent enzyme-inhibitor complex $(1 \rightarrow 2 \text{ in Scheme 1})$.

Correspondence to: Professor Dr. G. Legler, Institut für Biochemie der Universität zu Köln, Zülpicher Str. 47, D-5000 Köln 1, FRG.

Scheme 1. Reaction of glycon-related epoxides with β -glycoside hydrolases (hydroxyl groups omitted).

We have extended this principle to N-acetyl- β -glucosaminidases by the synthesis of (±)-6-acetamido-1,2-anhydro-6-deoxy-myo-inositol (N-acetylconduramine B trans-epoxide, 14). Exploratory experiments with epoxides prepared from a mixture of N-acetylconduramines B (3) and F (4) [data not reported] showed a weak immediate, but no time-dependent, inhibition of N-acetyl- β -glucosaminidases from jack beans and bovine epididymis. Presumably epoxidation occurred exclusively *cis* to the acetamido group³. If N-acetyl- β -glucosaminidases act by a mechanism similar to that of β -glucosidases^{1,2}, then the oxirane should be *trans* to the acetamido group in the potential inhibitor. In order to overcome the orientational effects of the neighbouring acetamido group, the precursor azide (12) was epoxidised and the product (13) was used in the synthesis of the title compound (14).

RESULTS AND DISCUSSION

The reaction of tetra-O-acetylconduritol B (5) with hydrogen bromide in acetic acid gave exclusively the all-*trans* product (\pm) -(1,3/2,4)-1,2,3-tri-O-acetyl-4-bro-mo-5-cyclohexene-1,2,3-triol (7). With acetonitrile as solvent, a 3:2 mixture of the desired (1,3,4/2)-isomer 6 and 7 was obtained together with one (in acetic acid) or two (in acetonitrile or water) 1,4-dibromo derivatives. The reaction of 5 in acetonitrile is similar to that in hydrobromic acid⁴. The results may be rationalised by an S_N1 reaction in polar solvents. The complete retention of configuration in the reaction of 5 in acetic acid is probably due to the formation of an intermediate cyclic acetoxonium ion.

Treatment of the mixture of 6 and 7 with ethanolic sodium ethoxide converted 7 into the unstable⁴ epoxide 8 and deacetylated 6 (\rightarrow 9). Treatment of the mixture of 8 and 9 with tetrabutylammonium azide and acetylation of the product gave the azide triacetate 10. Treatment of 7 with tetrabutylammonium azide in acetonitrile effected azide displacement with inversion of configuration to give the azide triacetate 11. Whereas epoxidation of *N*-acetylconduramine B (3), obtained from 12, gave exclusively the *cis* isomer 15, the *trans*-epoxide 13 was the only product when 12, obtained by deacetylation of 10, was epoxidised under the same conditions. The outcome of the epoxidation of 3 and 12 show that the directing effect of

the acetamido group greatly exceeds that of the hydroxyl group. Reduction of the azide group in 13 with triphenylphosphine and N-acetylation of the resulting amide gave the title epoxide 14.

All of the compounds synthesised are racemic; the enantiomers with closest resemblance to 2-acetamido-2-deoxy-D-glucose are shown in the formulae.

The stability of the epoxide 14 was tested by measuring the inhibitory potency against *N*-acetyl- β -glucosaminidases from jack beans and bovine kidney (see below) under different conditions of storage. From the decrease of $1/K_i$, the half-life in water was calculated to be 20 h at 20–22° and 50 h at 4°. In 50 mM citrate/phosphate buffer (pH 4.5), $1/K_i$ decreased with k_{hydr} 0.0067 min⁻¹ ($t^{1/2}$ 105 min), but the decrease was $\leq 5\%$ after 90 min at pH 3.5 and 6.0. The

Epoxide	Time (s)	Relative rate	
Cyclohexene oxide	18± 0.5	100	
14	730 ± 10	2.4	
15	350 ± 5	5.2	
Conduritol B epoxide (18)	255 ± 5	7.0	
Bromoconduritol B epoxide (19)	73 + 3	24.5	
Conduritol C cis-epoxide ²¹ (16)	330 + 5	5.5	
Conducitol C trans-epoxide ²¹ (17)	930 + 20	1.9	

TABLE I

Relative rates of reaction of epoxides with thiosulfate ^a

^a Time required to give the same colour with 0.05% phenolphthalein in 0.5 M thiosulfate as seen with 0.09 mM NaOH. The epoxide concentration was 25 mM.

occurrence of a maximum of instability indicates a participation of both the acid and base of the buffer in the decomposition process.

The reactivity of 14 with nucleophiles in the absence of acid catalysis was tested by the thiosulfate-phenolphthalein method⁵ and the results are shown in Table I.

The differences in the rates of reaction of 14 and 15 and the conduritol C *cis*-(16) and *trans*-epoxide (17) are probably caused by steric effects. In the slower reacting isomers, the bulky acetamido group in 14 and the axial hydroxyl group in 17 are located on the side where attack of the thiosulfate ion occurs. The instability of 14 near pH 4.5, which is in marked contrast to the other conduritol epoxides, is not due to exceptional reactivity with nucleophiles, but decomposition might occur via an intramolecular reaction as proposed below (Scheme 2).

Enzymic studies.—The addition of an active-site-directed, covalent inhibitor to a solution that contains enzyme and substrate should cause the rate of formation of the product to decrease with time. The initial rate v_i will be given by $v_i = v_0/(1 + S/K_m + I/K_i)$ where v_0 is the rate in the absence of inhibitor and K_i the dissociation constant of an initial non-covalent enzyme-inhibitor complex. If the inhibitor is stable under the conditions of the assay and is in large excess over the enzyme, the rate of formation of the product will decrease exponentially to zero in a first-order process governed by the rate constant for the conversion of the non-covalent into a covalent enzyme-inhibitor complex¹. The K_i for glycon-related conduritol epoxides was of the same order of magnitude as K_i for the corresponding hexose except for the mammalian lysosomal β -glucosidase where K_i (epoxide) is 1500-fold lower than K_i (glucose)^{6,7}.

However, the results of the inhibition experiments with 14 differed markedly from those expected from the above kinetic scheme in two respects, namely (a) the dissociation constants K_i (Table II), based on v_i measured directly after mixing (≤ 5 s), were several 1000-fold lower than those for 2-acetamido-2-deoxy-D-glucose and (b) the rate of substrate hydrolysis in the presence of 14 *increased* with time (Fig. 1).

The data in Table II indicate that specific interactions with the oxirane ring of 14 are important for tight inhibition. Its absence, as in 3, or its opposite orienta-

Fig. 1. Hydrolysis of 0.25 mM 4-methylumbelliferyl 2-acetamido-2-deoxy- β -D-glucopyranoside by N-acetyl- β -glucosaminidase A from bovine kidney in the absence (a) and presence of 5 (b) and 10 μ M (c) 14 at pH 4.25 and 25°: 100% fluorescence corresponds to 4% of hydrolysis.

tion, as in 15, decreased the affinity by several orders of magnitude. The lack of inhibition with the enzyme from Aspergillus niger was not unexpected as this enzyme probably has an unusual active site. The enzyme differs from the other *N*-acetyl- β -glucosaminidases in being inhibited⁸ \geq 1000-fold less by derivatives of 2-acetamido-2-deoxy-D-glucose with a basic nitrogen function at C-1. Nothing unusual was seen in the concentration dependence of the inhibition: Dixon plots over a 10-fold concentration range of 14 (not shown) were linear and the K_i values calculated from the slopes of Lineweaver-Burk plots⁹ (Fig. 2) were identical for different concentrations of 14. A partially non-competitive inhibition (ordinate intersections above $1/V_{max}$) was also seen with other strong inhibitors⁸ and became purely competitive at pH \geq 5.5. The pH dependence of the inhibition of hexosaminidase A from bovine kidney was maximal at pH 5.4 with half-maximal inhibition at pH 3.8 and 6.6 (data not shown).

The following model is proposed to account for the unexpected properties of 14. The high affinity for the N-acetyl- β -glucosaminidases from bovine kidney, jack beans, and *Helix pomatia* is due to a strong hydrogen bond with the epoxide oxygen. In addition, the interactions with the acetamido and hydroxyl groups are more favourable than with 2-acetamido-2-deoxy-D-glucose, as seen from the 12-and 90-fold lower K_i values for 3 relative to those of 2-acetamido-2-deoxy-D-glu-

Fig. 2. Lineweaver-Burk plot of the hydrolysis of 4-methylumbelliferyl 2-acetamido-2-deoxy- β -D-glucopyranoside by N-acetyl- β -glucosaminidase from jack beans in the absence (a) and presence of 2.5 (b), 5.0 (c), 10 (d), and 25 μ M (e) 14 at pH 4.5 and 25°. Reciprocal rates measured immediately after the addition of 14 (see Fig. 1) were plotted. The K_i values, calculated from the slopes in the presence and absence of 14, were 0.82 (b), 0.85 (c), 0.89 (d), and 0.76 μ M (e).

cose. In this respect, the enzyme-epoxide interaction resembles that of the lysosomal β -glucosidase from human placenta⁶ and bovine spleen⁷ with conducted B epoxide and its 6-bromo-6-deoxy derivative, respectively, for which K_i of the

TABLE II

Inhibition ^a	of	N-acetyl-\beta-glucosaminidases
-------------------------	----	---------------------------------

Enzyme source	Substrate			<u> </u>	
	3	14	15	GlcNAc	
Bovine kidney	45	0.39	1000	4000	
Jack beans	330	0.83	1.100	4000	
Helix pomatia	nd ^b	1.5	nd	800	
Aspergillus niger	nd	> 1000	nd	6000	

^{*a*} K_i values in μ M. ^{*b*} No inhibition detected.

Scheme 2. Proposed reaction of 14 with N-acetyl- β -glucosaminidases from bovine kidney and jack beans.

non-covalent complex is 1500-fold⁶ and 200 000-fold⁷ lower, respectively, than the K_i for D-glucose. However, the enzymes studied here differ from these β -glucosidases in that the latter form a covalent bond with the epoxide (Scheme 1).

Since the regain of activity of the enzymes from bovine kidney and jack beans was first order with a rate constant $k = 0.09 \pm 0.01 \text{ min}^{-1}$ that was independent of the inhibitor concentration and unaffected by the presence of substrate, it must be due to an enzyme-independent process. On the other hand, the regain was much larger than the rate of spontaneous decomposition $(0.0067 \text{ min}^{-1})$. We propose that these two enzymes catalyse a rapid transformation of 14 into a compound of similar inhibitory potency, which undergoes an acid-catalysed decomposition into a non-inhibiting species because the regain of activity is only seen at pH \leq 5. Such a compound could be the oxazoline 20 which would undergo hydrolysis to the N-acetylinosamine 21 (Scheme 2). Thus, 14 can be classified as a pseudosubstrate² for these two N-acetyl- β -glucosaminidases. The lack of a similar regain of activity with the enzyme from *Helix pomatia* could point to an active site where a strong hydrogen bond with the oxirane is formed but transformation of 14 into 21 does not occur. A somewhat different pseudosubstrate-like interaction of conducitol epoxides and glycoside hydrolases was observed with β -glucosidases from Aspergillus wentii¹⁰ and sweet almonds¹¹ where part of the inhibitor did not react as in $1 \rightarrow 2$ but underwent enzyme-catalysed hydrolysis or ring opening by halide ions present in the assay medium.

If the active site of an enzyme has evolved towards a structure which stabilises the transition state and/or a reactive intermediate, its affinity for structural analogues of these intermediates is much larger than for the substrate or product¹². The postulated strong inhibition by the oxazoline **20** would then imply that the oxazoline derived from 2-acetamido-2-deoxyglucose, or its protonated counterpart, is on the reaction pathway of substrate hydrolysis. Acetamido-group participation with formation of an oxazoline has been postulated¹³ from pH-rate studies of the non-enzymic hydrolysis of $(1 \rightarrow 4)$ -linked 2-acetamido-2-deoxy- β -D-glucose oligosaccharides and by lysozyme¹⁴. On the other hand, anchimeric assistance by the acetamido group was considered unimportant for lysozyme catalysis by Raftery and Rand-Meir¹⁵ from a comparison of the rates of cleavage with substrates where the acetamido group had been replaced by a hydroxyl group. Preliminary experiments showed the crude oxazoline prepared by deacetylation of 2-methyl-(1,4,6-tri-O-acetyl-1,2-dideoxy- α -D-glucopyrano[2,1-d]oxazoline to be an ~ 10-fold better inhibitor than 2-acetamido-2-deoxy-D-glucose for N-acetyl- β -glucosaminidase from bovine kidney.

Another model which could explain the strong inhibition by 14 and the observed reactivation is based on the rapid formation of a covalent enzyme-inhibitor complex which is then hydrolysed to the enzyme and a weakly inhibiting product. This possibility cannot be ruled out completely but appears unlikely because the inhibition was established within the time of mixing (<5 s) even with an inhibitor concentration of 2.5 μ M and a substrate concentration of >2 K_m . Under these conditions, the rate constant for the approach to the inhibition is governed by $k_i(\max)/K_i$ (cf. inhibition by glycals²). The failure to observe a lag phase in the approach to the inhibition (Fig. 1) requires that $k_i(\max)/K_i$ should be >10⁷ M⁻¹ min⁻¹, which is >2000-fold larger than $k_i(\max)/K_i$ for the fastest epoxide/glyco-sidase system reported so far².

EXPERIMENTAL

General.—Melting points were determined with a hot-stage microscope and are uncorrected. ¹H NMR spectra were recorded with Bruker AC 80 and AM 300 spectrometers, and mass spectra with a Finnigan MAT 4510 spectrometer. TLC was performed on Silica Gel 60 F_{254} (Merck), using A, light petroleum (bp 30-50°)–EtOAc (7:3); and B, CHCl₃–MeOH (3:1); and detection by charring with 30% H_2SO_4 in acetic acid and with 0.5% KMnO₄ in aq 5% Na₂CO₃. Column chromatography (MPLC) was performed on silica gel (Matrex LC 60 Å; 20-45 μ , Amicon).

Bromination of (\pm) -tetra-O-acetylconduritol B (5).—Crystalline acetonitrile/hydrogen bromide adduct (16 g, prepared by saturating acetonitrile with gaseous hydrogen bromide at 0°) was added to a solution of 5¹⁶ (4.08 g) in acetonitrile (10 mL). The mixture was kept in a closed vessel at 55° for 48 h until ~ 80% of 5 had reacted [TLC (solvent A); R_F values: 5 0.40, 6 0.56, 7 0.60, 1,4-dibromide(s) 0.87]. Work-up involved the addition of ice (30 g) and extraction with ether. The extract was washed with satd aq NaHCO₃ and concentrated. Column (3.5 × 40 cm) chromatography (light petroleum–EtOAc, 9:1 → 7:3) of the residue gave a mixture (0.6 g) of 1,4-dibromides, a mixture (2.9 g) of 6 and 7, and 5 (0.7 g).

Rechromatography (light petroleum–EtOAc, 9:2) of the middle fraction gave (\pm) -(1,3,4/2)-1,2,3-tri-*O*-acetyl-4-bromo-5-cyclohexene-1,2,3-triol (6), isolated as a colourless syrup. ¹H NMR data (80 MHz, CDCl₃): δ 2.04, 2.05, and 2.10 (3 s, 3 H each, 3 Ac), 4.8–5.0 (m, 2 H, H-3,4), 5.5–5.7 (m, 3 H, H-1,2,5), 6.1 (m, 1 H, H-6).

 (\pm) -(1,3/2,4)-1,2,3-Tri-O-acetyl-4-bromo-5-cyclohexene-1,2,3-triol (7).—A crystalline compound isolated from the first fractions of the mixture of **6** plus **7** after rechromatography (see above) was identified (¹H NMR, mixture mp) by comparison with **7**, prepared as described¹⁶.

Tetrabutylammonium azide.—A solution of the salt in CH₂Cl₂ was prepared as described¹⁷. The azide concentration was determined by concentration of an aliquot (100 μ L) in vacuo, and dissolution of the residue in water to give a concentration of 2–10 μ mol N₃⁻/mL. An aliquot (100 μ L) of this solution was added to 0.5 M aq FeCl₃ (0.4 mL) and water (4 mL), and the A_{460} measured after 15 min. The azide content was determined from a standard curve prepared with NaN₃, the slope of which corresponded to E_{460} 2450 M⁻¹ cm⁻¹. The yield of tetrabutylammonium azide was 60–70% and the solutions could be stored at -18° for several weeks; decomposition became noticeable after a few days at room temperature.

 (\pm) -(1,3 / 2,4)-1,2,3-Tri-O-acetyl-4-azido-5-cyclohexene-1,2,3-triol (10).—To a solution of a mixture (340 mg, 1 mmol) of 6 and 7 in anhyd EtOH (15 mL) was added ethanolic 0.4 M NaOEt dropwise until the solution (which became brown after a few min) remained alkaline for ~ 10 min (pH 9, indicator paper). Tetrabutylammonium azide solution (1.5 mL) was added and the pH was adjusted to ~ 5 with *p*-toluenesulfonic acid. The solution was stored for at least 6 h at room temperature, then concentrated, and the residue was acetylated with acetic anhydride-pyridine. Work-up (addition of ice, extraction with ether, and MPLC as described for 6 and 7) gave 10, R_F 0.60 (solvent A) in a yield of 65–80% which decreased to ~ 30% when the reaction was scaled up to 5 mmol. Isolated by-products were 11 (5–10%), R_F 0.54, and (\pm)-(1,3,4/2)-1,2,3-tri-O-acetyl-4-O-ethyl-5-cyclohexene-1,2,3-triol ($\leq 5\%$), R_F 0.68.

Compound 10 had mp 123–124° (from EtOAc–light petroleum); $\nu_{\text{max}}^{\text{KBr}}$ 2090 cm⁻¹ (N₃). ¹H NMR data (300 MHz, CDCl₃): δ 2.00, 2.02, and 2.06 (3 s, 3 H each, 3 Ac), 4.17 (m, 1 H, H-4), 5.22 (m, 1 H, H-1), 5.25 (m, 1 H, H-2), 5.53 (m, 1 H, H-3), 5.70 (quasi s, 2 H, H-5,6). EI-mass spectrum: m/z 43 (100%, Ac⁺), 255 [7%, M – N₃)⁺]; other prominent peaks at m/z 212 (3%), 183 (12%), 170 (20%), 152 (4%), 128 (6%), 118 (10%).

Anal. Calcd for $C_{12}H_{15}N_3O_6$ (297.2): C, 48.49; H, 5.08; N, 14.13. Found: C, 48.10; H, 5.18; N, 13.90.

 (\pm) -(1,3,4/2)-1,2,3-Tri-O-acetyl-4-azido-5-cyclohexene-1,2,3-triol (11).—A solution of 7 (1.68 g, 5 mmol) in acetonitrile (5 mL) was treated with a solution of tetrabutylammonium azide (10 mmol) for 30 min at room temperature. The solution was diluted with ether (300 mL), washed four times with water, and concentrated to dryness. Crystallisation of the residue from EtOAc-light petroleum gave 11 (1.26 g, 85%), mp 82–83°. ¹H NMR data (300 MHz, CDCl₃): δ 2.00, 2.01, and 2.07 (3 s, 3 H each, 3 Ac), 4.32 (m, 1 H, H-4), 5.08 (m, 1 H, H-1), 5.40 (m, 1 H, H-2), 5.43 (m, 1 H, H-3), 5.75 (m, 1 H, H-5), 5.83 (m, 1 H, H-6).

Anal. Calcd for $C_{12}H_{15}N_3O_6$ (297.2): C, 48.49; H, 5.08; N, 14.13. Found: C, 48.00; H, 5.21; N, 13.60.

1,2-Anhydro-6-azido-6-deoxy-myo-inositol (13).—Compound 10 (1.2 g) was deacetylated with a catalytic amount of NaOMe in MeOH (30 mL). After 30 min, the solution was neutralised with Dowex 50 (H^+) resin and concentrated to

dryness to give (\pm) -(1,3/2,4)-4-azido-5-cyclohexene-1,2,3-triol (12, 0.68 g), mp 84–85°, R_F 0.70 (solvent B); $\nu_{\text{max}}^{\text{KBr}}$ 2100 cm⁻¹ (N₃). ¹H NMR data (80 MHz, pyridine- d_5): 4.10–4.68 (m, 4 H, H-1,2,3,4), 5.54–6.28 (m, 2 H, H-5,6), 6.44 (3 H, b s, OH).

A solution of 12 (0.65 g) in acetic acid (30 mL) and CHCl_3 (15 mL) was treated with *m*-chloroperoxybenzoic acid (2.5 g) for 48 h at room temperature. The solution was concentrated in vacuo to a few mL, diluted with water (50 mL), filtered, and extracted with ether until A_{280} became < 0.1. The aqueous phase was concentrated and then lyophilised to give 13 (0.49 g, 70%), mp 130–132° (from EtOH–ether), R_F 0.61 (solvent B). ¹H NMR data (80 MHz, pyridine- d_5): δ 3.23 [quasi d, 1 H, H-1(2)], 3.64 [m, 1 H, H-2(1)], 3.79–4.40 (m, 4 H, H-3,6).

Anal. Calcd for C₆H₉N₃O₄ (187.2): C, 38.49; H, 4.85; N, 22.44. Found: C, 39.20; H, 5.00; N, 21.90.

(±)-6-Acetamido-1,2-anhydro-6-deoxy-myo-inositol (14).—Triphenylphosphine (0.8 g, 3 mmol) was reacted at room temperature with 13 (0.28 g, 1.5 mmol) in anhyd tetrahydrofuran (15 mL) for 2.5 h. TLC (solvent *B*) then showed that 13 had been transformed into a compound with R_F 0.02 (ninhydrin positive). Water (20 µL) and acetic anhydride (0.2 mL) were added and crystallisation, induced by the addition of ether to faint turbidity, was completed by cooling to -18° and adding successive portions of ether, to give 14 (0.18 g, 58%), mp 120–122°. NMR data (pyridine- d_5): ¹H (300 MHz), δ 2.08 (s, 3 H, Ac); 3.52 (quasi d, 1 H, H-1), 3.69 (m, 1 H, H-2), 4.13 (m, 1 H, H-5), 4.21 (m, 1 H, H-4), 4.41 (m, 1 H, H-3), 4.72 (m, 1 H, H-6), 5.07, 6.92, 7.29 (s, OH), 9.21 (d, 1 H, NH); ¹³C (75 MHz), δ 23.07 (CH₃), 54.15 (C-6), 56.65 (C-1), 58.28 (C-2), 72.96 (C-3), 73.47 (C-4), 73.92 (C-5), 170.71 (C=O).

Anal. Calcd for C₈H₁₃NO₅ (203.1): C, 47.29; H, 6.40; N, 6.90. Found: C, 46.82; H, 6.65; N, 7.45.

(±)-N-Acetylconduramine B [(1,3 / 2,4)-4-acetamido-5-cyclohexene-1,2,3-triol, 3].—Compound 12 (150 mg) was reduced with triphenylphosphine and the product was acetylated, as described for 13, to give 3 (100 mg, 59%), mp 204–205°. ¹H NMR data (80 MHz, pyridinc- d_5): δ 2.03 (s, 3 H Ac), 4.18, 4.65, 5.22 (m, 4 H, H-1/4), 5.89 (m, 2 H, H-5/6), 4.8 (s, 1 H, OH), 6.7 (s, 2 H, OH), 8.77 (d, 1 H, NH).

Anal. Calcd for C₈H₁₃NO₄ (187.2): C, 51.33; H, 7.00; N, 7.49; Found: C, 50.50; H, 7.15; N, 7.29.

 (\pm) -1-Acetamido-2,3-anhydro-1-deoxy-myo-inositol (15).—Epoxidation of 3 (80 mg), as described for 12, gave 15 (48 mg, 52%), mp 190° (dec), $R_{\rm F}$ 0.42 (solvent B).

Relative reaction rates of epoxides with thiosulfate.—Equal volumes of 50 mM epoxide in water and M sodium thiosulfate in aq 50% MeOH containing 0.1% of phenolphthalein were mixed, and the times noted for the development of a pink colour corresponding to an arbitrary standard in which the epoxide solution was replaced by 0.18 mM NaOH.

Enzymic studies.—The activities of *N*-acetyl- β -glucosaminidases were determined fluorimetrically¹⁸ with 4-methylumbelliferyl 2-acetamido-2-deoxy- β -D-gluco-

pyranoside at 25° in 50 mM sodium citrate (pH 4.5), unless stated otherwise. The time of mixing was < 5 s. Values for K_i were calculated from the slopes of Lineweaver-Burk plots in the absence and presence of inhibitor⁹. The kinetics for the regain of activity were evaluated from plots of $\ln[S_0 - S_i(t)/S_i(0)]$ vs. time where S_0 is the slope in the absence, and $S_i(0)$ in the presence, of 14 immediately after its addition.

The enzymes were from the following sources. *N*-Acetyl- β -glucosaminidase from Jack beans (*Convallaria ensiformis*) was a commercial preparation (Sigma A 2264) and was used without further purification (K_m 0.42 mM). Hexosaminidase A was purified from freshly frozen bovine kidney by affinity chromatography¹⁹ (K_m 0.65 mM). Commercial β -glucuronidase (Sigma G 7017) from the digestive juice of *Helix* was found to contain two, possibly three, *N*-acetyl- β -glucosaminidases. The isozyme (Hex A) with highest affinity for DEAE-Cellulose was purified by affinity chromatography²⁰ (K_m 0.010 mM at pH 5). The *N*-acetyl- β -glucosaminidase from *Aspergillus niger* was a commercial preparation (Sigma A 7053) and was used without further purification (K_m 0.1 mM).

ACKNOWLEDGMENTS

We thank Mrs. Marie-Therese Krauthoff for technical assistance, Mrs. Ursula Wingen for the isolation of the enzyme from *Helix pomatia* and its kinetic characterisation, and the Fonds der Chemischen Industrie for financial support.

REFERENCES

- 1 P. Lalégerie, G. Legler, and J.M. Yon, Biochimie, 64 (1982) 977-1000.
- 2 G. Legler, Adv. Carbohydr. Chem. Biochem., 48 (1990) 319-384.
- 3 M. Nakajima, A. Hasegawa, and F.W. Lichtenthaler, Justus Liebigs Ann. Chem., 669 (1963) 75-84.
- 4 G. Legler and W. Lotz, Hoppe-Seyler's Z. Physiol. Chem., 354 (1973) 243-254.
- 5 W.A.C. Ross, J. Chem. Soc., (1950) 2252-2272.
- 6 G.A. Grabowski, K. Osiecki-Newman, T. Dinur, D. Fabbro, G. Legler, S. Gatt, and R.J. Desnick, J. Biol. Chem., 261 (1986) 8263-8269.
- 7 H. Liedtke and G. Legler, in R. Salvayre, L. Douste-Blazy, and S. Gatt (Eds.), *Lipid Storage Disorders*, Plenum Press, New York, 1988, pp 353-358.
- 8 E. Kappes and G. Legler, J. Carbohydr. Chem., 9 (1990) 479-499.
- 9 K.J. Laidler and P.S. Bunting, *The Chemical Kinetics of Enzyme Action*, 2nd ed., Clarendon Press, Oxford, 1973.
- 10 G. Legler, Hoppe-Seyler's Z. Physiol. Chem., 349 (1968) 767-774.
- 11 G. Legler and S.N. Hasnain, Hoppe-Seyler's Z. Physiol. Chem., 351 (1970) 25-31.
- 12 A. Fersht, Enzyme Structure and Mechanism, 2nd ed., Freeman, New York, 1985, Chap. 12.
- 13 D. Piszkiewicz and T.C. Bruice, J. Am. Chem. Soc., 90 (1968) 2156-2163.
- 14 G. Lowe and G. Sheppard, J. Chem. Soc., Chem. Commun., (1968) 529-530.
- 15 M.A. Raftery and T. Rand-Meir, Biochemistry, 7 (1968) 3281-3289.
- 16 H. Stegelmeier, Thesis, University of Cologne, 1979.
- 17 R.A. Moss, J. Terpinski, D.P. Cox, D.Z. Denney, and K. Krogh-Jespersen, J. Am. Chem. Soc., 107 (1985) 2743-2748.
- 18 G. Legler, Biochim. Biophys. Acta, 254 (1978) 94-99.
- 19 G. Legler, E. Lüllau, E. Kappes, and F. Kastenholz, Biochim. Biophys. Acta, 1080 (1991) 89-95.
- 20 U. Wingen, Thesis, University of Cologne, 1991.
- 21 G. Legler and M. Herrchen, FEBS Lett., 135 (1981) 139-144.