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ABSTRACT: Reversible cleavage of C(sp3)-H bonds can enable racemization or epimerization, offering a valuable tool to edit the stereochem-
istry of organic compounds. While epimerization reactions operating via cleavage of acidic C(sp3)-H bonds, such as the Ca-H of carbonyl 
compounds, have been widely used in organic synthesis and enzyme-catalyzed biosynthesis, epimerization of tertiary carbons bearing a non-
acidic C(sp3)-H bond is much more challenging with few practical methods available. Herein, we report the first synthetically useful protocol 
for the epimerization of tertiary carbons via reversible radical cleavage of unactivated C(sp3)-H bonds with hypervalent iodine reagent benzio-
doxole azide and H2O under mild conditions. These reactions exhibit excellent reactivity and selectivity for unactivated 3o C-H bonds of various 
cycloalkanes and offer a powerful strategy for editing the stereochemical configurations of carbon scaffolds intractable to conventional methods. 
Mechanistic study suggests that the unique ability of N3• to serve as a catalytic H atom shuttle is critical to reversibly break and reform 3o C-H 
bond with high efficiency and selectivity. 

INTRODUCTION 

Methods for the selective functionalization of alkyl C-H bonds 
have been greatly advanced over the past few decades, offering 
streamlined strategies for the synthesis and modification of complex 
molecules.1-4 A wide range of reactions have been developed to trans-
form C(sp3)-H bonds into different functional groups.5-9 However, 
reactions featuring reversible cleavage of unactivated C(sp3)-H 
bonds have received much less attention. Racemization or epimeri-
zation via reversible cleavage of C(sp3)-H bonds might offer an in-
valuable tool for editing the stereochemistry of organic compounds. 
Additionally, exchanging C(sp3)-H bonds with C-deuterium bonds 
may provide valuable deuterated compounds for biomedical appli-
cations.10,11 Epimerization reactions of tertiary Ca of carbonyl com-
pounds via cleavage of their acidic C(sp3)-H bonds have been rou-
tinely used in the synthesis of complex molecules, and in catalytic 
process such as dynamic kinetic resolution (Scheme 1A). Similar 
enolization mechanisms have also been widely used by enzyme epi-
merases for the biosynthesis of natural products.12 Compared with 
acidic C(sp3)-H bonds, epimerization of tertiary carbons bearing 
non-acidic C(sp3)-H bonds is much more challenging. Interestingly, 
recent biochemical studies have shown that [4Fe-4S]-cluster radical 
S-adenosyl-L-methionine (SAM) epimerases invert the stereocen-
ters of amino acid or sugar units through radical-mediated path-
ways.13, 14 For example, an epimerase selectively converts an L-Ile 
amino acid residue of a peptide to D-allo-Ile via abstraction of Ca-
H by a 5’-deoxyadenosyl radical (5’-dA•) and quenching of the car-
bon radical intermediate by a thiol group of an enzyme cysteine res-
idue (Scheme 1B).13 Radical-mediated C(sp3)-H cleavage reactions 
could potentially provide a unique solution to epimerize tradition-
ally “unepimerizable” tertiary carbon centers in organic synthesis. 

 
Scheme 1. Epimerization of tertiary carbon via reversible cleavage 
of tertiary C-H bonds. 
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To achieve such transformations with useful efficiency, the sequence 
of H abstraction by a suitable radical H atom acceptor (A•) and 
quenching of the tertiary C-radical by suitable H atom donor (D-H) 
must be developed (Scheme 1C). Herein, we report an efficient and 
synthetically useful protocol for epimerizing tertiary carbons via rad-
ical cleavage of non-acidic 3o C(sp3)-H bonds with hypervalent io-
dine reagent benziodoxole azide and H2O under mild conditions 
(Scheme 1D). 

RESULTS AND DISCUSSION 

Epimerization of cis-decalin   
Radical reactions can provide simple and efficient means to selec-

tively cleave 3o and activated 2o C-H bonds of organic compounds 
due to their relatively weak bond dissociation energy (BDE).15-20 In 
the absence of activated 2o C-H bonds, 3o C-H bonds could poten-
tially serve as a unique set of targets for selective radical C(sp3)-H 
functionalization of complex substrates. While conventional radical 
C-H cleavage reactions often require relatively harsh conditions, re-
cent studies have shown radical reactions can take place under much 
milder conditions.21-23 Compared with the large number of studies 
on various radical-mediated functionalizations of 3o C-H bonds, epi-
merization reactions of tertiary carbons via reversible cleavage of un-
activated 3o C-H bonds have been sporadically studied, mostly more 
than thirty years ago.24-29 While pioneering works by Mazur,24, 25 Ko-
chi,26 Hill,27 and others have demonstrated the feasibility of such a 
transformation, their methods demand relatively harsh operating 
conditions such as strong UV irradiation, high temperature or use of 
toxic reagents (e.g. HgBr2), and exhibit narrow substrate scope.  

In 1996, Zhdankin reported that the reaction of simple alkanes 
with azidobenziodoxole (BIN3, 1) in the presence of radical initiator 
benzoyl peroxide (BzOOBz) at elevated temperature led to selective 
azidation of 3o C−H bonds (see reaction of model substrate cis-de-
calin 2-cis in entry 1 of Table 1).30 Recently, Hartwig discovered that 
Fe/PyBOX catalysts promote similar C(sp3)−H azidation of more 
complex substrates at room temperature (entry 2).31 Subsequently, 
we developed a visible light (VL)-promoted method to affect selec-
tive 3o C−H azidation with photosensitizer Ru(bpy)3Cl2 in hex-
afluoroisopropanol (HFIP) solvent (entry 3).32, 33 Our visible light-
promoted azidation reaction likely starts with the formation of N3• 
or benziodoxole (Bl•) radicals via single electron transfer (SET) ac-
tivation of BIN3.34-38 These radicals abstract a H atom from 3o C-H 
bond to form a tertiary C-radical, which then reacts with BIN3 to give 
the azidation product. In this VL-promoted system, we noted that 
C-H halogenation products were obtained in high yield and selectiv-
ity when in the presence of halide salts, such as LiCl.32 This success-
ful modulation of the hypervalent-iodine mediated radical reaction 
pathway prompted us to attempt C-H epimerization using a combi-
nation of H donor (D-H)39 and BIN3. As shown in entry 4, we were 
pleased to see that the desired epimerization product trans-decalin 
2-trans was obtained in 35% yield when 1 equiv of H-donor Bu3SnH 
was included in the reaction mixture. Interestingly, a small amount 
of 2-trans was formed in the absence of photosensitizer and VL irra-
diation (entry 5). The yield of 2-trans was improved to 75% when 
EtOAc solvent was used (entry 6). Use of excess of Bu3SnH (2 equiv) 
gave lower yield (entry 7). Use of other H-donors such as 
Ph2P(=O)H, Et3SiH, and Hantzsch ester 7 also gave 2-trans in mod-
erate to excellent yield along with small amount of azidation byprod-
uct 3 (entries 8-10). As seen in entry 11, only trace amount of 2-
trans was formed in dry EtOAc solvent in the absence of H-donors. 

 
en-
try 

Reagents (equiv), reaction time, temp Solvents 
 

2-trans  
(2-cis) % 

3 % 

1 1 (2), BzOOBz (0.1), 24 h, 80 oC DCE <1 (36) 62 
2 1 (2), Fe(OAc)2 (0.1), PyBOX (0.1), 24 h,  

23 oC 
CH3CN <1 (8) 90 

3 1 (2), Ru(bpy)3Cl2 (0.1%), VL, 24 h, 35 oC HFIP <1 (3) 95 
4 1 (2), Ru(bpy)3Cl2 (0.1%), Bu3SnH (1), VL, 

24 h, 35 oC 
HFIP 35 (13) 52 

5 1 (2), Bu3SnH (1), 24 h, 35 oC HFIP 7 (34) 59 
6 1 (2), Bu3SnH (1), 24 h, 35 oC EtOAc (E) 75 (7) 17 
7 1 (2), Bu3SnH (2), 24 h, 35 oC E 10 (89) <1 
8 1 (2), Ph2P(=O)H (1), 24 h, 35 oC E 89 (2) 9 
9 1 (2), Et3SiH (1), 24 h, 35 oC E 80 (19) <1 
10 1 (2), 7 (1), 24 h, 35 oC E 91 (2) 7 
11 1 (2), 24 h, 35 oC E (dry) 1 (92) 7 
12 1 (2), 24 h, 35 oC E  

(+ 1% H2O (H))c 
84 (7) 8 

13 1 (2), 24 h, 35 oC E/H (9:1) 97 (<1) <1 
14 1 (2), 24 h, 35 oC DCE/H (9:1) 87 (2) 10 
15 1 (2), 24 h, 35 oC PhCl/H (9:1) 95 (2) 3 
16 1 (1), 24 h, 35 oC E/H (9:1) 90 (9) <1 
17 1 (0.5), 7 d, 35 oC E/H (9:1) 95 (4) <1 
18 1 (0.1), 7 d, 50 oC E/H (9:1) 69 (30) <1 
19 1 (0.1), HOAc (0.2), 7 d, 50 oC E/H (9:1) 80 (19) <1 
20 5 (2), 24 h, 35 oC E/H (9:1) 0 (100) 0 
21 6 (2), 24 h, 35 oC E/H (9:1) 0 (100) 0 
22 1 (2), 24 h, air, 35 oC E/H (9:1) 0 (95) (4d) 
23 1 (2), 24 h, in darkness, 35 oC E/H (9:1) 97 (1) 1 

 
Table 1. Epimerization of cis-decalin with BIN3. a) Yields are based 
on GC-MS analysis of reaction mixture on a 0.1 mmol scale at a 0.2 
M concentration using ACS grade solvents under Ar atmosphere un-
less specified otherwise. Source of VL: 18 W compact fluorescent 
lamp. b) 2 M concentration. c) EtOAc solvent with 1% of H2O (~3 
equiv) was used. d) 3o C-H hydroxylation side product 4 was ob-
tained in 4% yield. E: EtOAc, H: H2O. 

Surprisingly, a clean epimerization with almost complete suppres-
sion of azidation was observed when a mixture of EtOAc/H2O (9:1) 
was used (entry 13). A mixture of PhCl/H2O gave comparable re-
sults. (entry 15). The use of 0.1 equiv of BIN3 over an extended re-
action time (7 days) at 50 oC led to 69% yield of 2-trans, suggesting 
a catalytic pathway in the BIN3-mediated epimerization reaction 
(entry 18). In contrast to BIN3, other benziodoxole reagents such as 
hydroxybenziodoxole BIOH 5 and acetoxybenziodoxole BIOAc 6 
exhibit no reactivity (entries 20, 21). A trial conducted under an air 
atmosphere gave only trace amount of C-H hydroxylation side prod-
uct 4 (entry 22). Irradiation with visible light had no impact on the 
epimerization reaction (entry 23). 

Substrate scope and selectivity   
With the optimized conditions in hand, we next explored the 

scope of this BIN3/H2O-mediated C-H epimerization reaction with 
representative mono-, bicyclic and acyclic alkanes bearing suitable 3o 

C(sp3)-H bonds (Scheme 2). In general, the efficiency of the 
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Scheme 2. Substrate scope of BIN3/H2O-mediated 3o C-H epimerization. a) Standard reaction conditions: 0.1 mmol of alkane, 0.2 mmol of 
BIN3, EtOAc/H2O (0.45/0.05 mL), 35 oC, Ar, 24 hours unless specified otherwise. b) EtOAc is replaced with PhCl. c) More azidation byprod-
uct is formed in PhCl/H2O than in EtOAc/H2O. d) BIN3 (3 equiv). e) Additional Et3SiH (2 equiv). Significant oxidation at NH-adjacent 3o 
C-H occurred in the absence of Et3SiH. f) Reaction temperature: 50 oC. g) t = 48 h. h) t = 3 d. i) t = 5 d, j) Yields are based on GC-MS analysis.  
k) Yields are based on 1H-NMR analysis. l) Isolated yield. m) about 20% of benzamide byproduct was formed. n) A cis/trans (3/1) mixture was 
used. o) Yields are analyzed by chiral HPLC. p) azidation of 3o C-H bond. SM: starting material. 

epimerization reactions correlates well with the relative thermody-
namic stability of the corresponding epimers. Reactions of epimers 

with small free energy difference are bidirectional and give similar 
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the ability to reach epimerization equilibrium (see 8, 11). Reactions 
of epimers with large free energy difference are unidirectional, pre-
dominantly giving the more stable epimer (see 2, 9). The site and 
chemo-selectivity of this C-H epimerization is strongly influenced 
by the BDE of C-H bonds and electronic effects. Electron-rich 3o C-
H bonds of cyclic alkanes are most reactive, forming only small 
amount of azidation byproducts (typically less than 5%). Electron-
withdrawing groups such as alkoxylcarbonyl (e.g. CO2Bn) and car-
boxylate oxygen (e.g. BzO) not only diminish the epimerization re-
activity of neighboring 3o C-H bonds but also lead to more C-H az-
idation byproduct. Compared to electronic effects, steric effects ap-
pear to have a less significant impact on the reactivity (see 10, 12). 

As shown in Scheme 2A and 2B, the epimerization of 5- and 6-
membered mono- and bicyclic alkanes generally works well. While 
the reactions of 1,4 or 1,2-disubstituted cyclohexanes (10-14, 16) 
favor the formation of more stable trans isomers, the reaction of 1,3-
disubstituted cyclohexane 15 slightly favors the more stable cis-iso-
mer 15-cis. Functional groups such as benzoate (9), benzyl ester 
(10), phthalimide (13), BocNH (20), and tosyl (12) were tolerated. 
Free OH, SH, NH2 and CO2H groups are incompatible with the re-
action conditions. Epimerization of isomenthol benzoate 19-I takes 
place at either C5 or C2 position to give a mixture of 19-II (65%) and 
19-III (16%). The epimerization of Boc-protected phenylalanine 
ester 20-cis selectively occurs at the 3o C-H bonds of cyclohexane 
without reaction at the acidic Ha of the amino acid. In comparison, 
epimerization reactions of 20-cis under the known UV-irradiation 
conditions with acetone, HgBr2, or polyoxometalate gave much 
lower yield.40 Reaction of 14-cis bearing a secondary amide group 
BzNH under standard conditions gave a complex mixture. However, 
the reaction was improved with the addition of 2 equiv of Et3SiH. 
Including Et3SiH  in the reaction mixture improved the epimeriza-
tion performance in some cases (see Scheme 3). The lack of reactiv-
ity observed with 23-cis and 24-cis indicates that electron-withdraw-
ing CO2Bn and BzO groups deactivate their adjacent 3o C-H bond 
(Scheme 2C).41 Accordingly, the epimerization of 10-15 should oc-
cur at the more electron-rich 3o C-H bonds highlighted in green. Re-
actions in EtOAc/H2O usually gave less C-H azidation byproduct 
than in PhCl/H2O (see 8 and 13). The epimerization reactivity of 
electronically deactivated substrates can be slightly improved with 
PhCl /H2O solvents (see 9 and 17 bearing two electron-withdraw-
ing OBz groups). Compared with cyclohexane 16 and cyclopentane 
17, the lower epimerization efficiency of 18 may be caused by the 
higher BDE of the cyclobutane 3o C-H bonds. No epimerization re-
action was observed for the corresponding cyclopropane substrate 
due to its even higher 3o C-H BDE. These OBz-protected substrates 
were easily prepared in two steps from the corresponding commer-
cially available carboxylic acids.42 Compared with the clean epimeri-
zation reactions of benzyloxycarbonyl, benzoate and tosylate sub-
strates (e.g. 10, 11, 12), a trial with benzyl ether 25-cis gave a com-
plex mixture and benzaldehyde byproduct, presumably caused by 
oxidation of the benzylic C-H bond. As indicated by the slow race-
mization of 21-S, 3o C-H bonds of acyclic alkanes are less reactive 
than the 3o C-H bonds of cyclic alkanes. In 22, the target 3o benzylic 
C-H bond gave mostly azidation byproduct 22-N3 possibly due to 
the low H abstraction reactivity of the corresponding benzyl radical 
intermediate. 

As shown in Scheme 3, this epimerization protocol has been suc-
cessfully applied to steroid substrates bearing multiple 3o C-H bonds. 
Reaction of androsterone benzoate 26 selectively gave the C14-epi-
mer 27 with a cis C/D ring juncture in good yield under slightly 

modified conditions with the addition of 0.1 equiv of Et3SiH. Reac-
tion of androstanediol derivative 28 gave C14-epimer 29 in 65% iso-
lated yield. The epimerization of pregnanediol dibenzoate 30 took 
place at either C5 or C14 position to give a diastereomeric mixture of 
31 (23%) and 32 (57%). The structures of epimerization products 
have been confirmed by X-ray crystallography. 

 
Scheme 3. 3o C-H epimerization of steroids. Reactions are con-
ducted on a 0.1 mmol scale. a) Yields are based on 1H-NMR analysis. 
b) Structure of its oxime derivative was confirmed by X-ray crystal-
lography. c) Isolated yield. See SI for detailed X-ray structures. 

Mechanistic Studies   
Control experiments and density functional theory (DFT) calcu-

lations have been carried out to understand the mechanism of this 
BIN3/H2O-mediated C(sp3)-H epimerization reaction. As outlined 
in Scheme 1C, a radical 3o C-H epimerization reaction would re-
quire efficient H-abstraction by a H-acceptor (A•) as well as selec-
tive quenching of the resulting carbon radical intermediate by a H-
donor (D-H). Ideally, A• should not react with D-H, avoiding non-
productive consumption of donor and acceptor.43-48 Furthermore, 
competing reaction pathways of the carbon radical intermediates 
need to be suppressed to achieve clean epimerization. 1) Previous 
studies have shown that BIN3 is uniquely effective at initiating the C-
H activation step through the formation of H-acceptor Bl• 33 or N3• 
via dissociative SET or homolytic cleavage of I-N bond (Scheme 
4A).32 In this reaction system, homolytic I-N cleavage of BIN3 is ex-
pected to occur at ambient temperature in the absence of light irra-
diation. This is supported by the DFT calculations that indicated a 
very small BDE of 27.8 kcal/mol for the Bl-N3 bond (eq 1), com-
pared to the calculated I-O BDEs for Bl-OH 5 and Bl-OAc 6 (42.3 
and 42.5 kcal/mol, respectively). More importantly, H-N3 has a  
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Scheme 4. Mechanistic studies. 

 
DFT calculations were performed at the M06-2X/6-311++G(d,p)-SDD/SMD(EtOAc)//M06-2X/6-31+G(d)-SDD/SMD(EtOAc) level of 
theory, See Supporting Information for more details. a) 64% yield of 5 was formed for forward reaction of 1 (1 equiv) in PhCl/H2O (9/1, H2O 
~ 9 equiv). 5% yield of 1 was formed for reverse reaction of 5 (1 equiv) and aq. HN3 (~ 3 equiv) in PhCl/H2O. b) aq. solution of HN3 [~5 M] 
is prepared from reacting NaN3 with aq. H2SO4 at rt (see Supporting Information). 

BDE of 93.3 kcal/mol, which is very close to the BDE of unactivated 
3o C-H bonds (93.3 and 96.1 kcal/mol for 3o C-H of 2-cis and 2-
trans, respectively, Scheme 4C). In comparison, the 2o C-H bonds 
of cyclohexane have a larger BDE of 97.5 kcal/mol. The close match 
in BDE of H-N3 and unactivated 3o C-H not only renders N3• a com-
petent H-acceptor for 3o C-H bonds but also makes H-N3 a suitable 
H-donor to 3o carbon radical intermediates, making N3• an effective 
hydrogen atom shuttle for 3o C-H bonds. 2) Although H2O is critical 
to the success of this epimerization reaction, H2O is unlikely the im-
mediate H-donor due to the high BDE of H-OH (~ 117.2 
kcal/mol).49 Control experiments indicate that BIN3 readily reacts 
with H2O to form BlOH 5 and HN3 in EtOAc or PhCl (>60% con-
version in 30 min, eq 3). Furthermore, reacting BlOH with aq. HN3, 
prepared by mixing NaN3 with aqueous H2SO4, can also form small 
amount of BIN3, suggesting a reversible reaction of BIN3 and H2O. 
Reaction of 2-cis using D2O as co-solvent gave the deuterated prod-
uct 34 in excellent yield (eq 4), suggesting DN3 as the deuterium do-
nor. 3) As shown in eq 5, the use of aq. HN3 alone did not give any 
epimerization product under the reaction conditions. Similarly, 
BlOH alone cannot promote the epimerization reaction (entry 20, 
Table 1). However, a combination of BlOH and aq. HN3 is effective 
(eq 6). These results suggest that the residual BIN3, rather than HN3 

or BlOH, is responsible for the initiation of C-H epimerization.32 
Since BIN3 is an excellent azidation reagent for carbon radicals, the 
low concentration of BIN3 and the abundance of HN3 in the reaction 
system might contribute to the suppression of the competing C-H 

azidation pathway. 4) As outlined in the proposed reaction pathway 
in Scheme 4B, this epimerization reaction likely starts with a homo-
lytic cleavage of the residual BIN3, generating Bl• 33 and N3• radical. 
N3• then selectively cleaves a 3o C-H bond of alkane I forming car-
bon radical II and HN3.38 In additional to the steric hindrance and 
C-H bond nucleophilicity, the 1,3-diaxial strain release and torsional 
strain factor concerning the tertiary radical transition state would 
also influence the reactivity of H abstraction.50-52 Nucleophilic car-
bon radical II then reacts with the electrophilic H-donor HN3

53 to 
give the epimerization product III or I and regenerate N3•, thus 
propagating a radical chain reaction. As shown in Scheme 4C, DFT 
calculations of the epimerization of cis-decalin 2-cis show that both 
the initial H abstraction by N3• (TS1) and the subsequent quench-
ing of tertiary carbon radical with HN3 (TS3) proceed with low en-
ergy barriers.54-57 The late transition state (r(C-H) = 1.32 Å in TS1) 
suggests the rate and selectivity of the C-H abstraction are sensitive 
to the BDE of the C-H bonds.57 DFT calculations also indicate the 
more sterically hindered Bl• 33 is less effective than N3• at cleaving 
the 3o C-H bond of 2-cis (see Supporting Information for details). 
Overall, the facile activation of BIN3 at ambient temperature, the 
proper equilibrium between BIN3 and HN3 in the presence of H2O, 
and the unique ability of N3• as a catalytic hydrogen atom shuttle 
enable an efficient, selective and clean radical 3o C-H epimerization 
under mild conditions. 

Conclusion 
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In summary, we have developed the first synthetically useful pro-
tocol for radical-mediated C-H epimerization reactions of tertiary 
carbon centers, using a hypervalent iodine reagent and H2O under 
mild conditions. These reactions show excellent reactivity and selec-
tivity toward unactivated 3o C-H bonds of various cycloalkanes and 
offer a powerful tool to edit stereochemical configurations that are 
intractable by conventional methods. Using this method, we have 
demonstrated easy access to novel steroid scaffolds. We hope that 
use of N3• as a catalytic hydrogen atom shuttle for unactivated 
C(sp3)-H bonds might facilitate other challenging radical C-H func-
tionalization transformations, such as C-H deuteration and dynamic 
kinetic resolution, in future investigations. 

ASSOCIATED CONTENT  
Detailed synthetic procedures, compound characterization, NMR spec-
tra, X-ray crystallographic data, and computational details are provided. 
This material is available free of charge via the Internet at 
http://pubs.acs.org. 
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