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a b s t r a c t

Inverse-electron-demand Diels–Alder reaction of masked o-benzoquinones (MOBs) ensuing from the cor-
responding 4-halo-2-methoxyphenols with styrene, dihydrofuran and ethyl vinyl ether, butyl vinyl ether,
phenyl vinyl sulfide and vinyl acetate to afford the highly functionalized halogen substituted bicyl-
clo[2.2.2]octenones are described.

� 2011 Published by Elsevier Ltd.
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Figure 1. Reactivity of MOBs.
The electron-rich aromatic compounds such as 2-methoxy-phe-
nols, which are nucleophilic in nature, can be transformed into
electrophilic intermediates by oxidative dearomatization. Chemi-
cal or electrochemical oxidation of 2-alkoxyphenols in an alcoholic
solvent generates 6,6-dialkoxycyclohexa-2,4-dienones known as
orthobenzoquinone monoketals or masked o-benzoquinones
(MOBs).1 These transiently generated electrophilic quinonoid
intermediates can be intercepted with nucleophiles in Michael
addition and with dienophiles in [4+2] cycloaddition. The intermo-
lecular Diels–Alder reaction of masked o-benzoquinones with
either electron-deficient2 or electron-rich3 dienophiles proceeds
in regio- and stereo-selective manner1f to produce highly function-
alized bicyclo[2.2.2]octenones. Liao and co-workers have success-
fully utilized the cycloadducts derived from inter and
intramolecular Diels–Alder reactions of masked o-benzoquinones
for the efficient synthesis of structurally complex frameworks
and natural products.1c,f,4

The reactivity of these conjugated cyclohexadienones can be
harnessed by appropriately substituting the arene moiety. When
there is no substitution on the aromatic ring (i.e., parent 2-
methoxyphenol) or the presence of electron-withdrawing groups
such as CO2Me at position-4 enhances the reactivity. Any substitu-
tion (alkyl, alkoxy, ester, etc.) on the position-5 produces non-
dimerizing MOBs5 (Fig. 1). If the self-dimerization is an undesired
event, the strategies generally used for diminishing this incident
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are (i) slow generation of masked o-benzoquinones by regulated
addition of either 2-methoxyphenols or the oxidising agent in
the presence of large excess of dienophile, (ii) introducing bulky/
electron releasing groups2a,5b,6 at position-4 and (iii) replacing
one of the methoxy groups at position-6 with acetoxy group.7

Diels–Alder dimerization of masked o-benzoquinones followed
by retro Diels–Alder reaction in the presence of external dieno-
philes is a tactic generally adopted to achieve better yields for
the reaction of dimerizable MOBs.8 Introduction of a halo substitu-
tion at position-4 brings about the stability for the 4-halo masked
o-benzoquinones and retard the Diels–Alder dimerization.2b,6a,9,10

The bromo substituent present on the masked o-benzoquinones11

and on the cycloadducts12 can be employed as handles for further
synthetic manipulations.
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Scheme 1.

Table 1
Inverse-electron-demand Diels–Alder reaction of halo-MOBs 4–6 generated from 4-halo-guaiacols 1–3a

a The reactions were carried out with 0.5 mM of halo-guaiacol, 10 mM of dienophile and 0.6 mM of DAIB in 5 mL of MeOH.
b Represents the reaction time after the addition of DAIB.
c Yields of pure and isolated products.
d Product was obtained as 1:1 mixture of endo and exo isomers.
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Recently we reported the Diels–Alder reaction between tran-
siently generated 4-halo masked o-benzoquinones and electron-
deficient dienophiles to afford the corresponding cycloadducts in
very good yields.10 We became interested to evaluate the reactivity
of the relatively stable 4-halo MOBs with less reactive electron-rich
dienophiles in inverse electron demand Diels–Alder reaction. Here-
in we report the results from these studies.

Environmentally benign and less expensive hypervalent iodine
reagent diacetoxyiodobenzene (DAIB)13 was used in methanol to
oxidise guaiacol derivatives into the orthoquinone monoketals.
Our initial studies on the oxidation of 4-fluoro-2-methoxyphenol
in the presence of ethyl vinyl ether or butyl vinyl ether in methanol
at room temperature resulted in the formation of the correspond-
ing Diels–Alder cycloadducts in low yields. However, when we car-
ried out the reaction of commercially available 4-chloro-2-
methoxyphenol (1) under similar conditions14 with dienophiles
such as styrene, 2,3-dihydrofuran, ethyl vinyl ether and butyl vinyl
ether, the corresponding adducts 7a–d were obtained in high
yields (Scheme 1). Similarly, the cycloaddition of in situ generated
chloro MOB 4 with phenyl vinyl sulfide provided the cycloadduct
7e. The oxidation of 1 with DAIB in the presence of vinyl acetate
in methanol gave a mixture (1H NMR) of two stereoisomers 7f-
endo and 7f-exo. The results are presented in Table 1.

Encouraged by the results obtained from the reaction of phenol
derivative 1, we then investigated the reactions of 4-bromo-2-
methoxyphenol (2)15 and 4-iodo-2-methoxyphenol (3)16 under
oxidative dearomatization conditions. The in situ generated MOBs
5 and 6 were trapped with the dienophiles to furnish the Diels–Al-
der adducts 8a–e and 9a–e, respectively (Table 1). Again, the reac-
tions of MOBs 5 and 6 with all the dienophiles, except with vinyl
acetate, proceeded in highly regio- and stereo-selective manner.

The cycloadducts derived from vinyl acetate were obtained as
mixtures of endo and exo isomers. The non-selective Diels–Alder
reaction of vinyl acetate was documented in literature.3a While
the reactions of MOBs with styrene, 2,3-dihydrofuran, phenyl vinyl
sulfide and vinyl acetate reached completion in relatively longer
times (20–24 h), the acyclic enol ethers – ethyl vinyl ether and bu-
tyl vinyl ether – reacted faster (2–5 h). The Diels–Alder reaction of
4-halo MOBs 4–6 with styrene, DHF, ethyl vinyl ether, butyl vinyl
ether and phenyl vinyl sulfide afforded a single isomer in each case.

The assigned structures of halogen substituted bicyclo[2.2.2]octe-
nones 7a–f–9a–f were on the basis of their IR, 1H (500 MHz) and
13C (125 MHz) NMR, DEPT and GC–MS/ESI-MS spectral analysis.17

The remarkable level of regio- and stereoselectivities observed in
the products 7a–e–9a–e was in accordance with the literature
precedents.2,3 Of the possible four isomers, only the one possessing
ortho regiochemistry (ERG is adjacent to octenone carbonyl func-
tion) and endo stereochemistry (ERG is anti to octenone carbonyl
function) is formed in 7a–e-9a–e. The regiochemistry of these
cycloadducts was deduced in each case from proton–proton decou-
pling experiments.

The endo stereochemistry of the products is corroborated from
the coupling constants between He–Hg and Hf–Hg. For the adduct
8c as shown in Figure 2, the larger J value for He–Hg (J = 8.5 Hz) re-
veals the cis orientation of the protons He and Hg over the less cou-
pling constant (J = 6.0 Hz) of Hf–Hg; thus confirming the endo
stereochemistry of the [4+2] cycloadduct. The two-dimensional
rotational frame nuclear Overhauser effect spectroscopy (ROESY)
measurements in selected examples indicated the proximity of
He and Hg, further confirming the assigned endo stereochemistry.
An expanded portion of the ROESY spectrum of compound 8c is
shown in Figure 2. The assigned ortho and endo selectivity of com-
pound 9a was confirmed from its single-crystal X-ray structure18

(Fig. 3).
In summary, a practical chemical protocol for the synthesis of

highly substituted bicyclo[2.2.2]octenone derivatives from 4-
haloguaiacols is now available. This method demonstrates the syn-
thesis of polyfunctionalized bicyclic systems from relatively less
reactive dienophiles and stable 4-halo MOBs. The assigned regio-
and stereo-selectivities are confirmed by 1-D and 2-D NMR
experiments.
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