CHEMISTRY A European Journal

Accepted Article

Title: A New, Practical One-Pot Synthesis of Unprotected Sulfonimidamides by Transfer of Electrophilic NH to Sulfinamides

Authors: Ulrich Lücking, Flavia Izzo, Martina Schäfer, and Robert Stockman

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Chem. Eur. J. 10.1002/chem.201703272

Link to VoR: http://dx.doi.org/10.1002/chem.201703272

Supported by ACES

WILEY-VCH

A New, Practical One-Pot Synthesis of Unprotected Sulfonimidamides by Transfer of Electrophilic NH to Sulfinamides

Flavia Izzo,^[a] Martina Schäfer,^[b] Robert Stockman,*^[a] and Ulrich Lücking*^[b]

Abstract: Unprotected tertiary sulfonimidamides have been prepared in good to excellent yields in a one-pot transformation from tertiary sulfinamides via NH transfer. The reaction is mediated by commercially available (diacetoxyiodo)benzene and ammonium carbamate in methanol under convenient conditions. A wide range of functional groups are tolerated and initial results indicate that the NH transfer is stereospecific. A small molecule X-ray analysis of NH sulfonimidamide **2a** and its behavior in selected in vitro assays in comparison to the matched sulfonamide are also reported. This new reaction provides a safe, short and efficient approach to sulfonimidamides, which have been the subject of recent, growing interest in the life sciences.

Introduction

The sulfonamide group **1** (Figure 1) has long been a very important pharmacophore in drug discovery, being widely used in anticancer, anti-inflammatory and antiviral agents.^[1] In contrast, sulfonimidamides **2**, the mono-aza analogues of sulfonamides, have been rather neglected in the life sciences so far, despite offering very interesting properties such as high stability, favorable physicochemical properties, multiple hydrogen-bond acceptor/donor functionalities and structural diversity, as highlighted recently by Arvidsson and co-workers.^[2] Arguably, the use of sulfonimidamides in the life sciences has been hampered by the lack of their commercial availability and the limited methods available for their synthesis.^[3] The 'state of the art' concerning sulfonimidamides in drug discovery resembles that of sulfoximines **4**,^[4] the mono-aza analogues of sulfones **3** (Figure 1), about 15 years ago.

Figure 1. General structures of sulfonamides **1** (1° R², R³ = H; 2° R² = H, R³ \neq H; 3° R² \neq H, R³ \neq H), sulfonimidamides **2** (1° R², R³ = H; 2° R² = H, R³ \neq H; 3° R² \neq H, R³ \neq H), sulfones **3** and sulfoximines **4**.

After its late discovery in 1949, the sulfoximine group garnered only a very moderate interest in medicinal chemistry for many decades. In recent years, however, interest in sulfoximine chemistry has increased substantially, as evidenced by the development of new, safe methods for the preparation of sulfoximines, the kinase inhibitors roniciclib (BAY 1000394),^[5] atuveciclib (BAY 1143572),^[6] AZD 6738^[7] and BAY 1251152.^[8] To the best of our knowledge, a sulfonimidamide candidate is yet to be evaluated in clinical trials; however, there are a few recent examples of sulfonimidamides in medicinal chemistry^[2] including an analogue of the clinical anticancer agent tasisulam, with comparable antiproliferative activity against two melanoma cell lines in vitro,^[9] and saccharin aza bioisosteres, which are interesting, new scaffolds for drug design^[10] (Figure 2).

Figure 2. Sulfonimidamide-based structure of the analogue of tasisulam and general structures of novel saccharin aza bioisosteres.

Sulfonimidamides **2** were first synthesized in 1962 by Levchenko and co-workers.^[11] Since then, only a few synthetic approaches for the preparation of sulfonimidamides have been reported, usually involving the nucleophilic substitution of a sulfonimidoyl chloride **7** by an amine (Scheme 1).^[12] The required key chloride intermediates **7** have been prepared via different strategies which generally hinge on the oxidative imidation of sulfinyl chlorides **5**,^[11,13] oxidative chlorination of sulfinamides **6**^[14] or deoxychlorination of secondary sulfonamides **1**.^[3,15] However, most of these protocols require the use of a protecting group and deprotection to the corresponding unprotected NH sulfonimidamides can be challenging. Furthermore, many protocols have a rather limited substrate scope and/or rely on reagents with an associated safety risk, an example being *tert*butyl hypochlorite which is commonly used for oxidative chlorination despite its explosive nature.^[16]

Scheme 1. Common strategy for the synthesis of sulfonimidamides 2 via the reaction of amines with sulfonimidoyl chlorides 7, which can be prepared by a) oxidative imidation of sulfinyl chlorides 5, b) oxidative chlorination of sulfinamides 6 or c) deoxychlorination of secondary sulfonamides 1.

A new synthetic strategy for unprotected tertiary sulfonimidamides **2**, based on a copper-catalyzed reaction of sulfoximines **4a** with secondary amines, was disclosed by Bolm and co-workers in 2016 (Scheme 2).^[17] However, this method requires prior synthesis of the corresponding sulfoximine **4a**, which in our experience can be challenging, depending on the nature of R¹.^[18]

Scheme 2. Redox-neutral S–C to S–N bond-exchange reaction allowing the conversion of sulfoximines 4a into unprotected tertiary sulfonimidamides 2; TC = thiophene-2-carboxylate.

During the course of our long-standing interest in sulfoximines in medicinal chemistry,^[19] we have witnessed significant improvements over the last 15 years towards safe and efficient synthetic methods for the preparation of sulfoximines. Our attention was captured by a recent report^[20] from Luisi, Bull and co-workers outlining the use of a mixture of ammonium carbamate and (diacetoxyiodo)benzene [PhI(OAc)₂] for the direct conversion of sulfoxides **8** into NH sulfoximines **4** at room temperature (Scheme 3). Furthermore, this facile, new NH transfer method was applicable for a wide substrate scope and tolerated a large number of heterocycles and other functionalities.^[21] Attracted by the use of commercial reagents and the robust results of this new one-pot method, we were intrigued as to whether these safe reaction conditions could also

be useful for the facile synthesis of sulfonimidamides 2 by NH transfer to sulfinamides 6.

Scheme 3. Synthesis of NH sulfoximines **4** by NH transfer to sulfoxides **8** using ammonium carbamate mediated by the hypervalent iodine reagent PhI(OAc)₂, as described by Bull and Luisi,^[20] and proposed synthesis of tertiary NH sulfonimidamides **2** ($\mathbb{R}^2 \neq H$, $\mathbb{R}^3 \neq H$) from tertiary sulfinamides **6** ($\mathbb{R}^2 \neq H$, $\mathbb{R}^3 \neq H$) by applying similar reaction conditions.

Results and Discussion

Initially, the reported reaction conditions^[20] for the imination of sulfoxides **8** were applied to a commercially available tertiary sulfinamide. Thus, 1-(phenylsulfinyl)piperidine (**6a**; 100 mg, 0.48 mmol) was treated with ammonium carbamate (4 equiv) in the presence of PhI(OAc)₂ (3 equiv) in methanol at room temperature for 1 hour (Scheme 4).

Scheme 4. Synthesis of tertiary NH sulfonimidamide 2a by NH transfer to tertiary sulfinamide 6a.

To our delight, the unprotected tertiary sulfonimidamide **2a** was isolated in 94% yield after column chromatography. A scaled-up reaction of sulfinamide **6a** (4.0 g, 19.1 mmol) also resulted in a clean conversion and very good yield (88%). The structure of sulfonimidamide **2a** was confirmed by X-ray analysis (Figure 3).

10.1002/chem.201703272

WILEY-VCH

Figure 3. ORTEP plot (50% thermal ellipsoids) of the crystal structure of sulfonimidamide ${\bf 2a}.$

Given the clean reaction and high yield, we then elected to explore the substrate scope of this new process. Our initial focus was on variation of the NR²R³ group of the sulfinamide **6** and thus tertiary sulfinamides **6a–k** were subjected to the standard reaction conditions (Table 1). Gratifyingly, the reactions were generally very clean, resulting in the desired unprotected tertiary sulfonimidamides **2a–k** in good to excellent isolated yields. Only the reaction of sulfinamide **6d** (NR²R³ = N*i*Pr₂) resulted in low conversion, presumably due to steric hindrance of the bulky *N*,*N*-diisopropylamino group, with the tertiary sulfonimidamide **2d** isolated in 17% yield along with recovered starting material. Notably, the reaction of 1,4-bis(phenylsulfinyl)piperazine (**6k**) resulted in a double NH transfer to give the desired product **2k**.

Table 1. Exploration of the substrate scope of the NH transfer reaction:Variation of the NR^2R^3 group in tertiary sulfinamides 6a-k.

[a] Isolated yield. [b] Starting material 6k = 1,4-bis(phenylsulfinyl)piperazine.

We found, however, that the reaction is limited to the use of tertiary sulfinamides **6**. Subjecting the commercial, primary sulfinamide **6** to the standard conditions did not result in formation of the corresponding sulfonimidamide **2** i; rather, sulfonimidate **9** was isolated in 58% yield along with sulfonamide **1** (15% yield, Scheme 5). Reaction of the secondary ethyl sulfinamide **6** m resulted in a mixture of products from which sulfonimidate **9m** was isolated as the main product. These results are in line with previous reports of the preparation of sulfonimidates from primary and secondary sulfinamides **6** and hypervalent iodine reagents in the presence of suitable alcohols.^[22] The formation of sulfonamides **1** arising from the standard oxidation of sulfinamides **6** is a side reaction under these conditions.

R ^S N ^{R²} H	H ₂ NCO ₂ NH ₄ (4 equiv) Phl(OAc) ₂ (3 equiv) MeOH 25 °C, 0.5–2 h	0, NH R'S N/R ² +	0,0 R ^{-S} N ⁻ R ² +	O R ^S N ^{R²} H
61 : R = 4-MeC ₆ H ₄	, 21:	R = 4-MeC ₆ H ₄ , 9	91: R = 4-MeC ₆ H ₄ ,	1I : $R = 4$ -MeC ₆ H
R ² = H	R ²	= H F	R ² = H	$R^2 = H$
6 m : R = Ph,	2m	I: R = Ph, 9	9m:R = Ph,	1m : $R = Ph$,
R ² = Et	R ²	= Et F	R ² = Et	$R^2 = Et$

 $\label{eq:Scheme 5.} \ensuremath{\text{Scheme 5.}}\xspace \ensuremath{\text{Behavior of primary (6I)}}\xspace \ensuremath{\text{scheme 5.}}\xspace \ensuremath{\text{Scheme 5.}}\xs$

Next, the scope of the R^1 group was explored, with tertiary sulfinamides **6n**-**y** being additionally subjected to the standard reaction conditions (Table 2).

10.1002/chem.201703272

WILEY-VCH

O R ^{1_S} N 6n−y	H ₂ NCO ₂ NH ₄ (4 Phl(OAc) ₂ (3 e MeOH 25 °C, 0.5–3	equiv) $P(1) = \frac{1}{2} h$ $Q(n) = \frac{1}{2} N + \frac{1}{2$
Sulfonimidamide	R ¹	Yield (%) ^[a]
2a	Ph	94
2n	4-MeOC ₆ H ₄	87
20	4-FC ₆ H ₄	89
2р	4-O ₂ NC ₆ H ₄	62
2q	$3-F_3CC_6H_4$	81
2r	4-MeC ₆ H ₄	95
2r*	4-MeC ₆ H ₄	88 (48% ee ^[b])
2s	3-CIC ₆ H ₄	85
2t	2-CIC ₆ H ₄	29 (48) ^[c]
2u	2-pyridyl	85
2v	3-pyridyl	53
2w	cyclohexyl	88
2x	<i>i</i> Pr	70
2у	<i>t</i> Bu	83

[a] Isolated yield. [b] ee determined by chiral-phase HPLC analysis; $2r^*$ obtained from starting material $6r^*$ with 51% ee. [c] Additional ammonium carbamate and PhI(OAc)₂ were used.

Again, the reactions were very clean, giving the desired unprotected tertiary sulfonimidamides 2n-y in good to excellent isolated yields. Furthermore, a broad variety of substitution patterns and functional groups common in medicinal chemistry were tolerated. Similar to the reaction of the sterically demanding *N*,*N*-diisopropylbenzenesulfinamide (6d, Table 1), only the *ortho*-chloro derivative 6t ($R^1 = 2$ -CIC₆H₄) resulted in an incomplete but nevertheless clean reaction, providing the tertiary sulfonimidamide 2t in 29% yield under the standard conditions.

However, when the reaction was repeated using an additional portion of PhI(OAc)₂ and ammonium carbamate, there was improved conversion which resulted in a 48% isolated yield of **2t**, along with unreacted starting material. To our delight, sulfinamides with pyridyl or alkyl substituents also reacted successfully to give the corresponding sulfonimidamides **2u–y** in very good yields, illustrating the broad substrate scope of this new, mild reaction. As an initial insight into the stereospecificity of this process, the optically enriched sulfinamide **6r***, which had been prepared with 51% ee using the commercial Andersen reagent,^[23] was subjected to the standard reaction conditions. The NH transfer proceeded stereospecifically to provide product **2r*** with 48% ee.

In a preliminary assessment of the medicinal-chemistry-relevant properties of sulfonimidamides, the behavior of the fragment-like sulfonimidamide 2a compared to the matched sulfonamide analogue 1a in selected in vitro assays was undertaken (Table 3). Since our major concern was a possible inherent instability of the sulfonimidamide group, the hydrolytic stability of the two compounds at five different pH values was investigated, along with the metabolic stability in liver microsomes (human, rat and mouse) and also rat hepatocytes in vitro. Furthermore, the Caco2 permeability and logD values were determined. In line with our expectations, sulfonamide 1a displayed a high hydrolytic stability after 24 hours with stirring in media with pH values ranging from 2.0 to 7.4 (Table 3). Moderate hydrolytic stability was evident at pH 8.0, with 67% recovered test compound. However, sulfonimidamide 2a also has a very high hydrolytic stability, with 100% recovered test compound after 24 hours with stirring at all tested pH values. In vitro pharmacokinetic studies with sulfonamide 1a revealed a moderate metabolic stability in human liver microsomes, resulting in a moderate predicted blood clearance (CL_b) of 0.41 L/h/kg; however, a low metabolic stability and high predicted blood clearance of sulfonamide 1a was evident both in rat and mouse liver microsomes [CL_b = 3.8 L/h/kg (rat), 4.0 L/h/kg (mouse)]. A high blood clearance (4.0 L/h/kg) was also predicted from in vitro studies with rat hepatocytes. The main sites of metabolism were not determined in these studies. In comparison the matched sulfonimidamide 2a revealed a trend for higher metabolic stabilities in vitro: studies with human and mouse liver microsomes resulted in low predicted blood clearances of 0.04 and 1.1 L/h/kg, respectively. Sulfonimidamide 2a exhibited a low metabolic stability in rat preparations, with correspondingly high predicted CL_b values [3.0 L/h/kg (rat liver microsomes), 3.6 L/h/kg (rat hepatocytes)]; however, these data also revealed a trend in rats for a higher metabolic stability of sulfonimidamide 2a relative to sulfonamide 1a. In the Caco2 screening assay, sulfonamide 1a and the matched sulfonimidamide 2a both had high permeability coefficients (Papp A-B) of 393 and 378 nm/s, and no evidence of efflux. However, the switch from the sulfonamide to the sulfonimidamide results in a remarkable decrease in lipophilicity, with a logD value of 2.6 (1a) compared to 1.9 (2a).

Table 3. Comparison of the in vitro properties of sulfonamide 1a and NH

sulfonimidamide 2a.

Compound	Recovery [%] ^[a] (pH)	CL _b ^[b] (h/r/m)- LMs [L/h/kg]	CL _b ^[b] rHep [L/h/kg]	P _{app} A–B ^[c] [nm/s]	Efflux ratio ^[c]	log <i>D</i> pH 7.5 ^[d]
O, O S ^S N	91 (2.0) 85 (4.5) 100 (6.5) 100 (7.4)	0.41 (h) 3.8 (r) 4.0 (m)	4.0	393	0.64	2.6
	67 (8.0) 100 (2.0) 100 (4.5) 100 (6.5) 100 (7.4) 100 (8.0)	0.04 (h) 3.0 (r) 1.1 (m)	3.6	378	0.59	1.9

[a] Hydrolytic stability measured as recovery of test compound after 24 hours with stirring at pH 2.0 (citrate buffer), pH 4.5 (citrate buffer), pH 6.5 (phosphate-buffered saline), pH 7.4 (phosphate-buffered saline) and pH 8.0 (sodium borate buffer).^[24] [b] Predicted hepatic metabolic clearance based on a high-throughput metabolic stability assay using (i) pooled human liver microsomes (hLMs), (ii) pooled rat liver microsomes (rLMs), (iii) pooled mouse liver microsomes (mLMs) and (iv) freshly harvested rat hepatocytes (rHep).^[25] [c] $P_{app} A$ –B (apical to basolateral) and efflux ratio (ER) data were generated in a bidirectionally performed Caco2 permeability assay in a 24-well format; ER was calculated as $P_{app} B$ –A/ $P_{app} A$ –B.^[25] [d] Determined by reversed-phase HPLC.^[26]

Conclusions

We have utilized electrophilic NH transfer to achieve the first direct synthesis of tertiary NH sulfonimidamides **2** from tertiary sulfinamides **6**. The developed protocol relies on the readily available nitrogen source ammonium carbamate and the oxidant PhI(OAc)₂, and is compatible with a broad substrate scope, providing the corresponding sulfonimidamides **2** in good to excellent yields. Initial results indicate that this reaction process is stereospecific; additional investigations are currently underway. In vitro studies of the medicinal-chemistry-relevant properties of compound **2a** have not revealed any intrinsic flaw of the sulfonimidamide group with respect to its application as a new and versatile pharmacophore in the life sciences.

Experimental Section

For general methods and materials, and preparation of the starting sulfinamides **6**, see the Supporting Information.

General synthetic procedure for sulfonimidamides 2

To the sulfinamide (0.48 mmol, 1.00 equiv) were added (diacetoxyiodo)benzene (1.43 mmol, 3.00 equiv), ammonium carbamate (1.91 mmol, 4.00 equiv) and finally MeOH (0.96 mL, 0.5 M). The mixture was stirred in an open flask at RT for 0.5–2 h. When all the starting

material had been consumed (as monitored by TLC and UPLC-MS), saturated aqueous NaHCO₃ solution and EtOAc were added, and the mixture was stirred for 5 min. The organic layer was separated and the aqueous layer was extracted with EtOAc (3 x). The organic phases were combined, washed with brine (3 x) and dried over water-repellent filter paper. The volatiles were removed under reduced pressure and the crude product was purified by flash column chromatography.

1-(S-Phenylsulfonimidoyl)piperidine (2a)

Prepared according to the general procedure, from commercial 1-(phenylsulfinyl)piperidine (Sigma-Aldrich); crude purified by flash column chromatography (KP-Sil, 0–40% EtOAc in hexane) to give **2a** as a yellow-orange solid (105 mg, 94%): m.p. 99–100 °C; ¹H NMR (600 MHz, [D₆]DMSO): δ = 7.79–7.74 (m, 2H), 7.66–7.61 (m, 1H), 7.60–7.55 (m, 2H) 4.29 (s, 1H), 2.91–2.74 (m, 4H), 1.56–1.44 (m, 4H), 1.30 ppm (q, *J* = 5.82 Hz, 2H); ¹³C NMR (101 MHz, [D₆]DMSO): δ = 136.6, 132.0, 128.7, 127.7, 47.4, 25.2, 23.2 ppm; IR (KBr): ν = 3234, 2989, 2933, 2837, 1445, 1256, 907, 721, 687, 575 cm⁻¹; HRMS (ESI-TOF) *m*/*z* [*M*+H]⁺ calcd for C₁₁H₁₇N₂OS: 225.1062, found: 225.1066.

N,N-Dimethylbenzenesulfonimidoamide (2b)

Prepared according to the general procedure; crude purified by flash column chromatography (KP-Sil, 0–60% EtOAc in hexane) to give **2b** as a white solid (64 mg, 72%): m.p. 74–75 °C; ¹H NMR (600 MHz, [D₆]DMSO): δ = 7.75 (d, *J* = 7.58 Hz, 2H), 7.63–7.59 (m, 1H), 7.58–7.54 (m, 2H), 4.33 (s, 1H), 2.50 ppm (s, 6H); ¹³C NMR (151 MHz, [D₆]DMSO): δ = 135.8, 132.1, 128.8, 127.8, 38.6 ppm; IR (KBr): *v* = 3283, 2953, 1443, 1252, 1130, 937, 717, 663 cm⁻¹; HRMS (ESI-TOF) *m*/*z* [*M* + H]⁺ calcd for C₈H₁₃N₂OS: 185.0749, found: 185.0750.

N,N-Diethylbenzenesulfonimidoamide (2c)

Prepared according to general procedure **F**; crude purified by flash column chromatography (KP-Sil, 0–50% EtOAc in hexane) to give **2c** as a colorless oil (78 mg, 77%): ¹H NMR (400 MHz, [D₆]DMSO): δ = 7.85–7.80 (m, 2H), 7.61–7.50 (m, 3H), 4.23 (s, 1H), 3.31–3.04 (m, 4H), 0.98 ppm (t, *J* = 7.10 Hz, 6H); ¹³C NMR (101 MHz, [D₆]DMSO): δ = 141.9, 132.2, 129.5, 127.4, 42.9, 15.0 ppm; IR (KBr): ν = 3275, 2974, 1445, 1244, 993, 687 cm⁻¹; HRMS (ESI-TOF) *m*/*z* [*M*+H]⁺ calcd for C₁₀H₁₇N₂OS: 213.1062, found: 213.1060.

N,N-Diisopropylbenzenesulfonimidoamide (2d)

Prepared according to general procedure **F**; crude purified by flash column chromatography (KP-Sil, 0–50% EtOAc in hexane) to give **2d** as a white solid (20 mg, 17%): m.p. 80-81 °C; ¹H NMR (400 MHz, [D₆]DMSO): δ = 7.88 (d, *J* = 6.48 Hz, 2H), 7.56–7.46 (m, 3H), 4.20 (s, 1H) 3.76 (sept, *J* = 6.78 Hz, 2H), 1.22 (d, *J* = 6.59 Hz, 6H), 0.98 ppm (d, *J* = 6.84 Hz, 6H); ¹³C NMR (101 MHz, [D₆]DMSO): δ = 144.2, 131.2, 128.6, 126.8, 48.1, 23.0, 20.8 ppm; IR (KBr): ν = 3261, 2972, 1445, 1244, 1157, 1119, 991, 957, 752, 689, 636, 565 cm⁻¹; HRMS (ESI-TOF) *m*/*z* [*M* + H]⁺ calcd for C₁₂H₂₁N₂OS: 241.1375, found: 241.1374.

1-(S-Phenylsulfonimidoyl)azetidine (2e)

Prepared according to the general procedure; crude purified by flash column chromatography (KP-Sil, 0–70% EtOAc in hexane) to give **2e** as a white solid (67 mg, 71%): m.p. 81–82 °C; ¹H NMR (400 MHz, [D₆]DMSO): δ = 7.88–7.79 (m, 2H), 7.72–7.61 (m, 3H), 4.25 (br s, 1H), 3.57–3.44 (m, 4H), 1.84 ppm (q, *J* = 7.60 Hz, 2H); ¹³C NMR (101 MHz, [D₆]DMSO): δ = 135.2, 132.5, 128.9, 128.5, 50.9, 13.7 ppm; IR (KBr): ν =

3250, 2966, 2876, 1443, 1252, 756, 687, 600 cm $^{-1};$ ESI-MS (ESI-TOF) $m/z\,[M+H]^*$ calcd for C_9H1_3N2OS: 197.0753, found: 197.0749.

1-(S-Phenylsulfonimidoyl)pyrrolidine (2f)

Prepared according to the general procedure; crude purified by flash column chromatography (KP-Sil, 0–50% EtOAc in hexane) to give **2f** as a yellow-orange solid (77 mg, 77%): m.p. 93–94 °C; ¹H NMR (400 MHz, [D₆]DMSO): δ = 7.86 (d, *J* = 7.35 Hz, 2H), 7.69–7.50 (m, 3H), 4.40 (br s, 1H), 3.05 (s, 4H), 1.57 ppm (s, 4H); ¹³C NMR (101 MHz, [D₆]DMSO): δ = 137.5, 132.0, 128.8, 127.6, 48.3, 24.8 ppm; IR (KBr): ν = 3252, 2964, 1470, 1246, 982, 768, 692, 573 cm⁻¹; HRMS (ESI-TOF) *m*/*z* [*M* + H]⁺ calcd for C₁₀H₁₅N₂OS: 211.0905, found: 211.0904.

4-(S-Phenylsulfonimidoyl)morpholine (2g)

Prepared according to the general procedure; crude purified by flash column chromatography (KP-Sil, 0–70% EtOAc in hexane) to give **2g** as a white solid (83 mg, 77%): m.p. 97–98 °C; ¹H NMR (400 MHz, [D₆]DMSO): δ = 7.77 (d, *J* = 7.74 Hz, 2H), 7.70–7.65 (m, 1H), 7.64–7.58 (m, 2H), 4.52 (s, 1H), 3.58 (t, *J* = 4.69 Hz, 4H), 2.83–2.73 ppm (m, 4H); ¹³C NMR (101 MHz, [D₆]DMSO): δ = 135.6, 132.4, 128.9, 127.9, 65.7, 46.8 ppm; IR (KBr): ν = 3259, 1254, 924, 723, 688, 602 cm⁻¹; HRMS (ESI-TOF) *m*/*z* [*M*+H]⁺ calcd for C₁₀H₁₅N₂O₂S: 227.0854, found: 227.0856.

tert-Butyl 4-(S-phenylsulfonimidoyl)piperazine-1-carboxylate (2h)

Prepared according to the general procedure; crude purified by flash column chromatography (KP-Sil, 0–60% EtOAc in hexane) to give **2h** as a white solid (101 mg, 65%): m.p. 145–147 °C; ¹H NMR (400 MHz, [D₆]DMSO): δ = 7.76 (d, *J* = 7.05 Hz, 2H), 7.68–7.63 (m, 1H), 7.62–7.56 (m, 2H), 4.57 (s, 1H), 3.33 (s, 4H), 2.77 (m, 4H), 1.32 ppm (s, 9H); ¹³C NMR (101 MHz, [D₆]DMSO): δ = 153.4, 135.9, 132.4, 128.9, 127.8, 79.2, 46.5, 27.9 ppm; IR (KBr): ν = 3234, 2924, 1690, 1416, 1265, 1124, 908, 725, 688, 580 cm⁻¹; HRMS (ESI-TOF) *m*/*z* [*M*+H]⁺ calcd for C₁₅H₂₄N₃O₃S: 326.1538, found: 326.1542.

N-(2-Methoxyethyl)-N-methylbenzenesulfonimidoamide (2i)

Prepared according to the general procedure; crude purified by flash column chromatography (KP-Sil, 0–100% EtOAc in hexane) to give **2i** as a colorless oil (73 mg, 67%): ¹H NMR (400 MHz, [D₆]DMSO): δ = 7.81 (d, J = 7.72 Hz, 2H), 7.63–7.54 (m, 3H), 4.30 (s, 1H), 3.42 (t, J = 5.80 Hz, 2H), 3.21 (s, 3H), 3.12–2.99 (m, 2H), 2.66 ppm (s, 3H); ¹³C NMR (101 MHz, [D₆]DMSO): δ = 138.3, 131.9, 128.9, 127.3, 70.5, 58.0, 49.7, 36.6 ppm; IR (KBr): ν = 3265, 2883, 1447, 1254, 1115, 719, 690 cm⁻¹; HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₀H₁₇N₂O₂S: 229.1011, found: 229.1010.

tert-Butyl methyl{2-[methyl(S-phenylsulfonimidoyl)amino]ethyl}carbamate (2j)

Prepared according to the general procedure, but on a different scale (**6j**: 120 mg, 0.38 mmol); crude purified by flash column chromatography (KP-Sil, 0–100% EtQAc in hexane) to give **2j** as a colorless oil (98 mg, 78%): ¹H NMR (600 MHz, [D₆]DMSO): δ = 7.81 (d, *J* = 7.53 Hz, 2H), 7.64–7.61 (m, 1H), 7.59–7.56 (m, 2H), 4.25 (br s, 1H), 3.29–3.24 (m, 2H), 3.01–2.95 (m, 2H), 2.80–2.77 (m, 3H), 2.64 (s, 3H), 1.38 ppm (s, 9H); ¹³C NMR (101 MHz, [D₆]DMSO): δ = 154.9, 154.6, 138.3, 132.0, 128.9, 127.2, 78.6, 55.0, 54.9, 48.2, 47.9, 46.6, 46.1, 35.9, 35.8, 34.4, 34.2, 28.1 ppm; IR (KBr): *v* = 3261, 2974, 1686, 1254, 1155, 717, 690 cm⁻¹; HRMS (ESI-TOF) *m/z* [*M* + H]⁺ calcd for C₁₅H₂₆N₃O₃S: 328.1695, found: 328.1695.

1,4-Bis(S-phenylsulfonimidoyl)piperazine (2k)

Prepared according to the general procedure, but on a different scale (**6k**: 69 mg, 0.2 mmol) and using (diacetoxyiodo)benzene (6 equiv) and ammonium carbamate (8 equiv). No workup was performed. Once the reaction was complete, a white precipitate formed which was collected under vacuum filtration and washed with MeOH to give **2k** as a white solid (38 mg, 50%): m.p. 185–187 °C; ¹H NMR (400 MHz, [D₆]DMSO): δ = 7.75–7.69 (m, 4H), 7.67–7.61 (m, 2H), 7.60–7.53 (m, 4H), 4.47 (d, *J* = 3.30 Hz, 2H), 2.85 ppm (s, 8H); ¹³C NMR (101 MHz, [D₆]DMSO): δ = 136.0, 132.4, 128.9, 127.6, 46.2 ppm; IR (KBr): ν = 3277, 2854, 1242, 1090, 935, 721, 688, 590 cm⁻¹; HRMS (ESI-TOF) *m*/*z* [*M* + H]⁺ calcd for C₁₆H₂₁N₄O₂S₂: 365.1106, found: 365.1104.

1-[S-(4-Methoxyphenyl)sulfonimidoyl]piperidine (2n)

Prepared according to the general procedure; crude purified by flash column chromatography (KP-Sil, 0–40% EtOAc in hexane) to give **2n** as a yellow oil (106 mg, 87%): ¹H NMR (400 MHz, [D₆]DMSO): δ = 7.77–7.66 (m, 2H), 7.14–7.06 (m, 2H), 4.13 (s, 1H), 3.83 (s, 3H), 2.85–2.73 (m, 4H), 1.56–1.43 (m, 4H), 1.35–1.22 ppm (m, 2H); ¹³C NMR (101 MHz, [D₆]DMSO): δ = 161.9, 129.8, 128.2, 113.8, 55.6, 47.4, 25.7, 23.2 ppm; IR (KBr): ν = 3281, 2934, 2837, 1593, 1495, 1246, 1128, 910, 833, 700, 573 cm⁻¹; HRMS (ESI-TOF) *m*/*z* [*M*+H]⁺ calcd for C₁₂H₁₉N₂O₂S: 255.1167, found: 255.1169.

1-[S-(4-Fluorophenyl)sulfonimidoyl]piperidine (20)

Prepared according to the general procedure; crude purified by flash column chromatography (KP-Sil, 0–40% EtOAc in hexane) to give **20** as a yellow oil (100 mg, 89%): ¹H NMR (600 MHz, [D₆]DMSO): δ = 7.81 (dd, J = 9.03, 5.65 Hz, 2H), 7.41 (t, J = 9.03 Hz, 2H), 4.38 (s, 1H), 2.88–2.74 (m, 4H), 1.58–1.43 (m, 4H), 1.35–1.24 ppm (m, 2H); ¹³C NMR (151 MHz, [D₆]DMSO): δ = 164.2 (d, J = 249.86 Hz, 1C), 133.2 (d, J = 2.54 Hz, 1C), 130.7 (d, J = 9.54 Hz, 2C), 115.9 (d, J = 22.89 Hz, 2C), 47.5, 25.3, 23.2 ppm; IR (KBr): ν = 3279, 2937, 2853, 1587, 1489, 1252, 1132, 912, 837, 700, 569 cm⁻¹; HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₁H₁₆N₂OSF: 243.0967, found: 243.0965.

1-[S-(4-Nitrophenyl)sulfonimidoyl]piperidine (2p)

Prepared according to the general procedure; crude purified by flash column chromatography (KP-Sil, 0–40% EtOAc in hexane) to give **2p** as a yellow solid (80 mg, 62%): m.p. 134–135 °C; ¹H NMR (400 MHz, [D₆]DMSO): δ = 8.40 (d, *J* = 8.52 Hz, 2H), 8.00 (d, *J* = 8.58 Hz, 2H), 4.76 (s, 1H), 2.94–2.79 (m, 4H), 1.57–1.45 (m, 4H), 1.37–1.18 ppm (m, 2H); ¹³C NMR (101 MHz, [D₆]DMSO): δ = 149.4, 142.9, 129.1, 124.2, 124.1, 47.3, 25.6, 25.2, 23.0 ppm; IR (KBr): ν = 3281, 2928, 2856, 1522, 1346, 1240, 995, 932, 852, 731, 561 cm⁻¹; HRMS (ESI-TOF) *m*/*z* [*M* + H]⁺ calcd for C₁₁H₁₆N₃O₃S: 270.0912, found: 270.0912.

1-{S-[3-(Trifluoromethyl)phenyl]sulfonimidoyl}piperidine (2q)

Prepared according to the general procedure, but on a different scale (**6q**: 60 mg, 0.2 mmol); crude purified by flash column chromatography (KP-Sil, 0–60% EtOAc in hexane) to give **2q** as a white solid (51 mg, 81%): m.p. 103–105 °C; ¹H NMR (400 MHz, [D₆]DMSO): δ = 8.09–8.01 (m, 2H), 7.99 (s, 1H), 7.85 (t, *J* = 7.76 Hz, 1H), 4.69 (s, 1H), 2.91–2.82 (m, 4H), 1.51 (quin, *J* = 5.45 Hz, 4H), 1.31 ppm (quin, *J* = 5.64 Hz, 2H); ¹³C NMR (101 MHz, [D₆]DMSO): δ = 138.4, 131.6, 130.5, 129.5 (q, *J* = 32.6 Hz, 1C), 128.7 (q, *J* = 3.7 Hz, 1H), 123.9 (q, *J* = 3.8 Hz, 1C), 123.6 (q, *J* = 274.2 Hz, 1C), 47.3, 25.1, 23.0 ppm; IR (KBr): ν = 3252, 2949,

1323, 1263, 1117, 910, 810, 692 cm $^{-1};$ HRMS (ESI-TOF) $\textit{m/z}~[\textit{M}+H]^+$ calcd for C12H16N2OSF3: 293.0935, found: 293.0945.

(rac)-1-[S-(4-Methylphenyl)sulfonimidoyl]piperidine (2r)

Prepared according to the general procedure; crude purified by flash column chromatography (KP-Sil, 0–100% EtOAc in hexane) to give **2r** as a white solid (109 mg, 95%): m.p. 79–80 °C; ¹H NMR (400 MHz, [D₆]DMSO): δ = 7.64 (d, *J* = 8.36 Hz, 2H), 7.37 (d, *J* = 7.86 Hz, 2H), 4.19 (s, 1H), 2.87–2.73 (m, 4H), 2.38 (s, 3H), 1.50 (quin, *J* = 5.58 Hz, 4H), 1.35–1.22 ppm (m, 2H); ¹³C NMR (101 MHz, [D₆]DMSO): δ = 142.1, 133.7, 129.2, 127.7, 47.4, 25.2, 23.2, 20.9 ppm; IR (KBr): ν = 3279, 2935, 1252, 1132, 914, 700, 571 cm⁻¹; HRMS (ESI-TOF) *m*/*z* [*M* + H]⁺ calcd for C₁₂H₁₉N₂OS: 239.1218, found: 239.1220.

(-)-1-[S-(4-Methylphenyl)sulfonimidoyl]piperidine (2r*)

Prepared according to the general procedure; crude purified by flash column chromatography (KP-Sil, 0–60% EtOAc in hexane) to give **2***r** as a colorless oil (100 mg, 88%): $[\alpha]_{569}^{20} = -7.2 \pm 0.1$ (*c* = 1 in CHCl₃); ¹H NMR (400 MHz, [D₆]DMSO): $\delta = 7.64$ (d, J = 8.11 Hz, 2H), 7.37 (d, J = 8.11 Hz, 2H), 4.19 (s, 1H), 2.86–2.73 (m, 4H), 2.38 (s, 3H), 1.50 (quin, J = 5.58 Hz, 4H), 1.28 ppm (quin, J = 5.70 Hz, 2H); ¹³C NMR (101 MHz, [D₆]DMSO): $\delta = 142.1$, 133.7, 129.2, 127.7, 47.4, 25.2, 23.2, 20.9 ppm; IR (KBr): $\nu = 3277$, 2934, 2831, 1250, 1132, 910, 813, 698 cm⁻¹; HRMS (ESI-TOF) *m*/*z* [*M*+H]⁺ calcd for C₁₂H₁₉N₂OS: 239.1218, found: 239.1217; chiral HPLC: instrument: Agilent HPLC 1260; column: Chiralpak IC 3 µm, 100 × 4.6 mm; eluent A: hexane + 0.1 vol% diethylamine (99%), eluent B: EtOH; gradient: 0–7 min 20–50% B; flow: 1.4 mL/min; temperature: 25 °C; DAD: 254 nm; 48% ee

1-[S-(3-Chlorophenyl)sulfonimidoyl]piperidine (2s)

Prepared according to the general procedure; crude purified by flash column chromatography (KP-Sil, 0–40% EtOAc in hexane) to give **2s** as a white solid (105 mg, 85%): m.p. 89–90 °C; ¹H NMR (400 MHz, [D₆]DMSO): δ = 7.75–7.67 (m, 3H), 7.66–7.57 (m, 1H), 4.57 (s, 1H), 2.92–2.77 (m, 4H), 1.51 (q, *J* = 5.58 Hz, 4H), 1.38–1.24 ppm (m, 2H); ¹³C NMR (101 MHz, [D₆]DMSO): δ = 139.0, 133.5, 132.0, 130.9, 127.1, 126.3, 47.3, 25.2, 23.1 ppm; IR (KBr): ν = 3254, 2922, 2849, 1572, 1456, 1256, 1136, 907, 787, 677, 588 cm⁻¹; HRMS (ESI-TOF) *m*/*z* [*M* + H]⁺ calcd for C₁₁H₁₆N₂OSCI: 259.0672, found: 259.0673.

1-[S-(2-Chlorophenyl)sulfonimidoyl]piperidine (2t)

Prepared according to the general procedure; crude purified by flash column chromatography (KP-Sil, 0–60% EtOAc in hexane) to give **2t** as a yellow semisolid (60 mg, 48%): ¹H NMR (400 MHz, [D₆]DMSO): δ = 8.03 (dd, *J* = 7.73, 1.65 Hz, 1H), 7.64–7.53 (m, 2H), 7.52–7.45 (m, 1H), 4.66 (s, 1H), 3.16–3.04 (m, 4H), 1.54–1.33 ppm (m, 6H); ¹³C NMR (101 MHz, [D₆]DMSO): δ = 138.3, 133.2, 132.2, 131.4, 130.9, 127.3, 46.4, 25.5, 23.4 ppm; IR (KBr): ν = 3277, 2935, 1450, 1248, 1047, 924, 746, 689 cm⁻¹; HRMS (ESI-TOF) *m*/*z* [*M* + H]⁺ calcd for C₁₁H₁₆N₂OSCI: 259.0672, found: 259.0673.

2-[S-(Piperidin-1-yl)sulfonimidoyl]pyridine (2u)

Prepared according to the general procedure; crude purified by flash column chromatography (KP-Sil, 0–100% EtOAc in hexane) to give **2u** as a colorless oil (92 mg, 85%): ¹H NMR (400 MHz, [D₆]DMSO): δ = 8.73–8.66 (m, 1H), 8.09–8.00 (m, 1H), 7.99–7.91 (m, 1H), 7.64–7.56 (m, 1H), 4.42 (br s, 1H), 3.20–2.98 (m, 4H), 1.57–1.44 (m, 4H), 1.44–1.28 ppm (m, 2H); ¹³C NMR (151 MHz, [D₆]DMSO): δ = 149.4, 138.2, 126.3, 122.7,

47.6, 25.4, 23.4 ppm; IR (KBr): $\nu = 3263$, 2935, 1576, 1423, 1257, 920, 735 cm⁻¹; HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₀H₁₆N₃OS: 226.1014, found: 226.1015.

3-[S-(Piperidin-1-yl)sulfonimidoyl]pyridine (2v)

Prepared according to the general procedure; crude purified by flash column chromatography (NH cartridges, 0–50% EtOAc in hexane) to give **2v** as a white solid (57 mg, 53%): m.p. 107–108 °C; ¹H NMR (400 MHz, [D₆]DMSO): δ = 8.90 (d, *J* = 1.77 Hz, 1H), 8.80 (dd, *J* = 4.82, 1.52 Hz, 1H), 8.12 (dt, *J* = 8.11, 1.90 Hz, 1H), 7.63 (dd, *J* = 8.11, 4.82 Hz, 1H), 4.65 (s, 1H), 2.93–2.82 (m, 4H), 1.54–1.48 (m, 4H), 1.32 ppm (quin, *J* = 5.77 Hz, 2H); ¹³C NMR (101 MHz, [D₆]DMSO): δ = 152.6, 148.1, 135.7, 133.3, 123.9, 47.3, 25.1, 23.0 ppm; IR (KBr): *v* = 3290, 3047, 1257, 1144 922, 741, 694, 580 cm⁻¹; HRMS (ESI-TOF) *m/z* [*M*+H]⁺ calcd for C₁₀H₁₆N₃OS: 226.1014, found: 226.1015.

1-(S-Cyclohexylsulfonimidoyl)piperidine (2w)

Prepared according to the general procedure; crude purified by flash column chromatography (KP-Sil, 0–100% EtOAc in hexane) to give **2w** as a colorless oil (97 mg, 88%): ¹H NMR (600 MHz, CDCl₃): δ = 3.33 (s, 4H), 3.02–2.87 (m, 1H), 2.19 (d, *J* = 12.42 Hz, 1H), 2.12–2.03 (m, 1H), 1.87 (d, *J* = 12.80 Hz, 2H), 1.69–1.48 (m, 10H), 1.30–1.14 (m, 3H); ¹³C NMR (151 MHz, CDCl₃): δ = 61.8, 47.8, 27.4, 26.9, 26.7, 25.4, 25.2, 24.2; IR (KBr): ν = 3275, 2930, 1448, 1236, 1043, 928, 685 cm⁻¹; HRMS (ESI-TOF) *m*/*z* [*M* + H]⁺ calcd for C₁₁H₂₃N₂OS: 231.1531, found: 231.1532.

1-(S-IsopropyIsulfonimidoyI)piperidine (2x)

Prepared according to the general procedure; crude purified by flash column chromatography (KP-Sil, 0–100% EtOAc in hexane) to give **2x** as a colorless oil (64 mg, 70%): ¹H NMR (400 MHz, CDCl₃): δ = 3.39–3.31 (m, 4H), 3.24 (dt, *J* = 13.69, 6.84 Hz, 1H), 1.65–1.54 (m, 6H), 1.38 (d, *J* = 6.59 Hz, 3H), 1.34 ppm (d, *J* = 6.84 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ = 53.5, 47.8, 26.6, 24.2, 17.6, 17.0 ppm; IR (KBr): ν = 3277, 2934, 2851 1230, 1041, 930, 704 cm⁻¹; HRMS (ESI-TOF) *m*/*z* [*M* + H]⁺ calcd for C₈H₁₉N₂OS: 191.1218, found: 191.1215.

1-(S-tert-Butylsulfonimidoyl)piperidine (2y)

Prepared according to the general procedure; crude purified by flash column chromatography (KP-Sil, 0–100% EtOAc in hexane) to give **2y** as a yellow solid (82 mg, 83%): m.p. 53–54 °C; ¹H NMR (400 MHz, CDCl₃): δ = 3.38 (br s, 4H), 1.95 (br s, 1H), 1.57 (s, 6H), 1.37 ppm (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ = 61.9, 48.9, 26.9, 25.1, 24.2 ppm; IR (KBr): ν = 3254, 2930, 2851, 1230, 1041, 930, 694 cm⁻¹; HRMS (ESI-TOF) *m*/*z* [*M* + H]⁺ calcd for C₉H₂₁N₂OS: 205.1375, found: 205.1374.

Acknowledgements

The support of U. Ganzer and P. Lienau for the measurement and interpretation of the physicochemical and in vitro pharmacokinetic properties is highly appreciated. We thank M. Bergmann and K. Greenfield for valuable technical support with the manuscript.

Keywords: sulfonimidamides • sulfinamides • hypervalent iodine • drug design • medicinal chemistry

- For recent reviews, see for example: a) Ajeet, A. K. Mishra, A. Kumar, *Am. J. Pharmacol. Sci.* 2015, 3, 18; b) A. Kołaczek, I. Fusiarz, J. Ławecka, D. Branowska, *Chemik* 2014, *68*, 620; c) S. S. A. Shah, G. Rivera, M. Ashfaq, *Mini-Rev. Med. Chem.* 2013, *13*, 70.
- P. K. Chinthakindi, T. Naicker, N. Thota, T. Govender, H. G. Kruger, P. I. Arvidsson, *Angew. Chem. Int. Ed.* 2017, *56*, 4100.
- [3] Y. Chen, J. Gibson, RSC Adv. 2015, 5, 4171.
- [4] a) C. R. Johnson, Aldrichimica Acta 1985, 18, 3; b) M. Reggelin, C. Zur, Synthesis 2000, 1; c) U. Lücking, Angew. Chem. Int. Ed. 2013, 52, 9399; d) M. Frings, C. Bolm, A. Blum, C. Gnamm, Eur. J. Med. Chem. 2017, 126, 225; e) J. A. Sirvent, U. Lücking, ChemMedChem 2017, 12, 487.
- [5] a) G. Siemeister, U. Luecking, A. M. Wengner, P. Lienau, W. Steinke, C. Schatz, D. Mumberg, K. Ziegelbauer, *Mol. Cancer Ther.* 2012, *11*, 2265; b) U. Lücking, R. Jautelat, M. Krüger, T. Brumby, P. Lienau, M. Schäfer, H. Briem, J. Schulze, A. Hillisch, A. Reichel, A. M. Wengner, G. Siemeister, *ChemMedChem* 2013, *8*, 1067.
- a) A. Scholz, T. Oellerich, A. Hussain, S. Lindner, U. Luecking, A. O. Walter, P. Ellinghaus, R. Valencia, F. von Nussbaum, D. Mumberg, M. Brands, S. Ince, H. Serve, K. Ziegelbauer, *Cancer Res.* 2016, 76 (14 Suppl), Abstract nr 3022; DOI: 10.1158/1538-7445.AM2016-3022; b) A. Scholz, U. Luecking, G. Siemeister, P. Lienau, U. Boemer, P. Ellinghaus, A. O. Walter, R. Valencia, S. Ince, F. von Nussbaum, D. Mumberg, M. Brands, K. Ziegelbauer, *Cancer Res.* 2015, 75 (15 Suppl), Abstract nr DDT02-02; DOI: 10.1158/1538-7445.AM2015-DDT02-02; c) U. Luecking, A. Scholz, P. Lienau, G. Siemeister, D. Kosemund, R. Bohlmann, K. Eis, M. Gnoth, I. Terebesi, K. Meyer, K. Prelle, R. Valencia, S. Ince, F. von Nussbaum, D. Mumberg, K. Ziegelbauer, B. Klebl, A. Choidas, P. Nussbaumer, M. Baumann, C. Schultz-Fademrecht, G. Ruehter, J. Eickhoff, M. Brands, *Cancer Res.* 2015, 75 (15 Suppl), Abstract nr 2828; DOI: 10.1158/1538-7445.AM2015-2828.
- [7] K. M. Foote, A. Lau, J. W. M. Nissink, Future Med. Chem. 2015, 7, 873.
- [8] U. T. Luecking, A. Scholz, D. Kosemund, R. Bohlmann, H. Briem, P. Lienau, G. Siemeister, I. Terebesi, K. Meyer, K. Prelle, R. Valencia, S. Ince, F. von Nussbaum, D. Mumberg, K. Ziegelbauer, M. Brands, AACR Annual Meeting, Washington, D.C., April, 2017, MS.CH01.01 #984.
- [9] A.-D. Steinkamp, L. Schmitt, X. Chen, K. Fietkau, R. Heise, J. M. Baron, C. Bolm, *Skin Pharmacol. Physiol.* 2016, 29, 281.
- [10] Y. Chen, C.-J. Aurell, A. Pettersen, R. J. Lewis, M. A. Hayes, M. Lepistö, A. C. Jonson, H. Leek, L. Thunberg, ACS Med. Chem. Lett. 2017, 8, 672.
- [11] E. S. Levchenko, N. Y. Derkach, A. V. Kirsanov, Zh. Obshch. Khim. 1962, 32, 1208.
- For a comprehensive review, see: E. S. Levchenko, L. N. Markovskii, Y. G. Shermolovich, *Russ. J. Org. Chem.* 2000, *36*, 143.
- [13] a) E. S. Levchenko, N. Y. Derkach, A. V. Kirsanov, *Zh. Obshch. Khim.* **1960**, *30*, 1971; b) E. S. Levchenko, N. Y. Derkach, A. V. Kirsanov, *Zh. Obshch. Khim.* **1961**, *31*, 1971; c) S. Tsushima, Y. Yamada, T. Onami, K. Oshima, M. O. Chaney, N. D. Jones, J. K. Swartzendruber, *Bull. Chem. Soc. Jpn.* **1989**, *62*, 1167; d) P. H. Di Chenna, F. Robert-Peillard, P. Dauban, R. H. Dodd, *Org. Lett.* **2004**, *6*, 4503; e) C. Fruit, F. Robert-Peillard, G. Bernardinelli, P. Müller, R. H. Dodd, P. Dauban,

Tetrahedron: Asymmetry **2005**, *16*, 3484; f) T. A. Khan, J. D. Scott, J. N. Cumming (Merck Sharp & Dohme Corp.), WO 2014/150340, **2014**.

- a) E. U. Jonsson, C. C. Bacon, C. R. Johnson, J. Am. Chem. Soc. 1971, [14] 93, 5306; b) E. U. Jonsson, C. C. Bacon, C. R. Johnson, J. Am. Chem. Soc. 1971, 93, 5308; c) C. R. Johnson, E. U. Jonsson, C. C. Bacon, J. Org. Chem. 1979, 44, 2055; d) C. R. Johnson, A. Wambsgans, J. Org. Chem. 1979, 44, 2278; e) S. G. Pyne, J. Org. Chem. 1986, 51, 81; f) K. Okuma, T. Kolke, H. Ohta, J. Org. Chem. 1988, 53, 4190; g) M. Harmata, Tetrahedron Lett. 1989, 30, 437; h) R. Kluge, H. Hocke, M. Schulz, F. Schilke, Phosphorus, Sulfur Silicon Relat. Elem. 1999, 149, 179; i) M. Reggelin, B. Junker, Chem. - Eur. J. 2001, 7, 1232; j) O. García Mancheño, C. Bolm, Beilstein J. Org. Chem. 2007, 3, 25; k) M. F. Maldonado, F. Sehgelmeble, F. Bjarnemark, M. Svensson, J. Ahman P. I. Arvidsson, Tetrahedron 2012, 68, 7456; I) S. R. K. Battula, G. V. Subbareddy, I. E. Chakravarthy, Tetrahedron Lett. 2014, 55, 517; m) E. Langkopf, A. Blum (Boehringer Ingelheim International GMBH), WO 2016/023789, 2016.
- [15] a) E. S. Levchenko, A. V. Kirsanov, *Zh. Obshch. Khim.* **1960**, *30*, 1553;
 b) E. S. Levchenko, I. E. Sheinkman, A. V. Kirsanov, *Zh. Obshch. Khim* **1960**, *30*, 1941;
 c) W. Ried, J. Valentin, *Justus Liebigs Ann. Chem.* **1966**, *699*, 183;
 d) A. K. Roy, *J. Am. Chem. Soc.* **1993**, *115*, 2598.
- [16] See references 3 and 14j, and references therein.
- [17] J. Wen, H. Cheng, S. Dong, C. Bolm, *Chem. Eur. J.* **2016**, 22, 5547.
- [18] J. A. Sirvent, D. Bierer, R. Webster, U. Lücking, Synthesis 2017, 49, 1024.
- [19] See reference 4e, and references therein.
- [20] M. Zenzola, R. Doran, L. Degennaro, R. Luisi, J. Bull, Angew. Chem. Int. Ed. 2016, 55, 7203.
- [21] For recent developments concerning the use of PhI(OAc)₂ in the synthesis of sulfoximines, see also: a) A. Tota, M. Zenzola, S. J. Chawner, S. St. John-Campbell, C. Carlucci, G. Romanazzi, L. Degennaro, J. A. Bull, R. Luisi, *Chem. Commun.* 2017, 53, 348; b) J.-F. Lohier, T. Glachet, H. Marzag, A.-C. Gaumont, V. Reboul, *Chem. Commun.* 2017, 53, 2064; c) Y. Xie, B. Zhou, S. Zhou, S. Zhou, W. Wei J. Liu, Y. Zhan, D. Cheng, M. Chen, Y. Li, B. Wang, X.-S. Xue, Z. Li, *ChemistrySelect* 2017, 2, 1620.
- [22] a) D. Leca, L. Fensterbank, E. Lacôte, M. Malacria, Org. Lett. 2002, 4, 4093; b) D. Leca, K. Song, M. Amatore, L. Fensterbank, E. Lacôte, M. Malacria, Chem. Eur. J. 2004, 10, 906; c) A. Felim, A. Toussaint, C. R Phillips, D. Leca, A. Vagstad, L. Fensterbank, E. Lacôte, M. Malacria, Org. Lett. 2006, 8, 337.
- [23] a) K. K. Andersen, *Tetrahedron Lett.* **1962**, 93; b) J. R. Fulton, L. M. Kamara, S. C. Morton, G. J. Rowlands, *Tetrahedron* **2009**, *65*, 9134.
- [24] For the assay description, see: E. H. Kerns, L. Di, *Drug-like Properties: Concepts, Structure Design and Methods*, Elsevier Inc./Academic Press, Burlington, MA, USA, **2008**, pp. 353–356.
- [25] For the assay description, see: U. Lücking, P. Wasnaire, A. Scholz, P. Lienau, G. Siemeister, C. Stegmann, U. Boemer, K. Zheng, P. Gao, G. Chen, J. Xi (Bayer Pharma Aktiengesellschaft), WO 2015155197, 2015.
- [26] For the assay description, see: D. J. Minick, J. H. Frenz, M. A. Patrick, D. A. Brent, *J. Med. Chem.* **1988**, *31*, 1023.

WILEY-VCH

Entry for the Table of Contents (Please choose one layout)

FULL PAPER

The first direct synthesis of tertiary NH sulfonimidamides from tertiary sulfinamides by electrophilic NH transfer has been achieved. In vitro studies did not reveal any intrinsic flaw of the sulfonimidamide group regarding medicinal-chemistry-relevant properties.

Flavia Izzo, Dr. Martina Schäfer, Prof. Robert Stockman,* and Dr. Ulrich Lücking*

A New, Practical One-Pot Synthesis of Unprotected Sulfonimidamides by Transfer of Electrophilic NH to Sulfinamides