1623

Synthesis of New *o*-Quinone Methides from β-Lapachone Analogues

Sabrina Baptista Ferreira,^a Daniel Tadeu Gomes Gonzaga,^a Fernando de Carvalho da Silva,^a Katia Gomes de Lima Araújo,^b Vitor Francisco Ferreira^{*a}

^a Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24020-141 Niterói, Rio de Janeiro, Brazil Fax +55(21)26292362; E-mail: cegvito@vm.uff.br

^b Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Bromatologia, CEP 24241-000, Niterói, RJ, Brasil *Received 5 April 2011*

Abstract: In this work, we synthesized six new *o*-quinone methides from β -lapachone analogues by treating β -lapachone with acetone and a catalytic amount of iodine under thermal conditions and microwave irradiation. The yields of isolated *o*-quinone methides ranged from 20–80%. During the reactions, the formation of α -pyran naphthoquinones was observed; the yields varied depending upon the substituent. The reactions using microwave irradiation were faster, but yields and selectivities did not change significantly.

Key words: β -lapachone, *ortho*-quinone methide, microwave, isomerization

 β -Lapachone (1) is a natural product found as a minority constituent of the heartwood of trees of the Bignoniaceae family and is known in Brazil as Ipê.¹ It is easily prepared from the natural product lapachol (2) or by several synthetic methods.² Due to the variety of microbicidal effects of this compound, it became a leading structure in medicinal chemistry, and various synthetic methods were explored, such as transformations of the carbonyls to monoand disubstituted derivatives³ and ortho-quinone methides (o-QM). To this effect, in our preliminary communication of this work, we reported the synthetic methodology for several stable o-QM 3a-e (Figure 1) from β -lapachone (1),⁴ which in most cases are short-lived intermediates that are involved in various biological processes and that have wide applicability in organic synthesis.5

Continuing our interest in the synthesis of o-QM, we decided to study the transformation of several β -lapachone analogues **4** into stable *ortho*-quinone methides by thermal heating and using microwave irradiation.

The preparation of the β -lapachone analogues **4a**–**g** was carried out in one step using an improved synthetic protocol recently reported by our group.⁶ The Knoevenagel condensation of lawsone (**5**) with paraformaldehyde forms the *o*-QM intermediate **6**, which upon intermolecular hetero Diels–Alder cycloaddition with styrene derivatives **7a**–**g** led to α - and β -pyran naphthoquinones **8a**–**g** and **4a**–**g**, respectively, in good overall yield. The α - and β -isomers were separated by column chromatography using silica gel adsorbent in the yields outlined in Scheme 1.

Figure 1 Structure of lapachone (1), its precursor lapachol (2), *ortho*-quinone methides 3, and β -lapachone analogues 4

The β -pyran naphthoquinones **4a**–**g** were treated with acetone, and a catalytic amount of iodine and were heated thermally and exposed to microwave irradiation to produce a mixture, which after separation on silica gel, furnished the o-QM 9a-g in varying yields (Table 1). The structures of 9a-g were assigned by infrared (IR) spectroscopy and ¹H NMR and ¹³C NMR analysis. In the IR spectrum, only one absorption band corresponding to a carbonyl group (1585–1590 cm⁻¹) was observed. The structures were confirmed by ¹H NMR and ¹³C NMR using 2D NMR techniques, such as COSY, HSQC, HMBC, and NOESY. For example, in 9a, it is possible to clearly confirm that the exocyclic olefin was formed at the C-6 carbonyl due to the correlation between H-13 and H-7 in the NOESY spectrum. This result also confirms that its configuration can be securely assigned as E.

Analyses of the secondary product in these reactions prove that they are α -pyran naphthoquinones **8a–g**, a product that originates from the isomerization of β -pyran naphthoquinones **4a–g**, as shown in Scheme 2.

The formation of the *o*-QM **9a–g** and the α -isomers **8a–g** were quantified by ¹H NMR analysis of that crude mixtures that were obtained by thermal heating and micro-

SYNLETT 2011, No. 11, pp 1623–1625 Advanced online publication: 10.06.2011 DOI: 10.1055/s-0030-1260778; Art ID: S07511ST © Georg Thieme Verlag Stuttgart · New York

Scheme 1 Preparation of α - and β -pyranaphthoquinones 8a-g and 4a-g

 Table 1
 o-QM 9a-g Obtained under Thermal and Microwave Reactions

Entry	Product $9 \mathbf{R}^1$		R ²	R ³	Yield (%) ^a	Yield (%) ^b
1	9a	Н	Н	Н	70	80
2	9b	Н	Н	F	60	65
3	9c	Н	Н	Cl	45	58
4	9d	Н	Н	Br	45	52
5	9e	Н	Н	Me	20	40
6	9f	Me	Н	Н	40	48
7	9g	Н	Me	Me	0	0

^a Conventional heating, reaction time: 12 h.

^b Microwave irradiation, reaction time: 10 min.

wave irradiation. The aromatic proton signals of H-7 and H-10 that corresponded with the *o*-QM (9) and the α -isomer byproducts **8**, respectively, were selected for this analysis, and ratios of 10:8 for compounds are described in Table 2.

The overall yields of the reactions under microwave irradiation were higher than the thermal reactions and run for a shorter time period, but ratios 11:9 of the products remained comparatively the same. These results can be rationalized considering that the addition of acetone and
 Table 2
 Analysis of Crude Mixtures by ¹H NMR of the Reactions

 Carried on Thermal and Microwave Conditions

Entry	\mathbf{R}^1	\mathbb{R}^2	R ³	Ratio of 9/8 ^a	Ratio of 9/8b
1	Н	Н	Н	95:5	98:2
2	Н	Н	F	96:4	99:1
3	Н	Н	Cl	87:13	95:5
4	Н	Н	Br	44:56	52:48
5	Н	Н	Me	40:60	48:52
6	Me	Н	Н	45:55	56:44
7	Н	Me	Me	0:100	0:100

^a Conventional heating.

^b Microwave irradiation, reaction time: 10 min.

catalytic iodine to the C-6 carbonyl leads to the formation of the *o*-QM **9a–g** and competes with the pyran ring opening to a benzylic carbenium ion and then closing to the α isomers **8a–g** (Scheme 3). This hypothesis is confirmed by observing the stabilization of the carbenium ion intermediate caused by the electronic effects of the aromatic ring. A more stable carbenium ion leads to increased formation of the α -isomer (entries 4–7 in Table 2). In the case of entry 7 (Table 2), **8g** was obtained quantitatively. Electron-withdrawing groups increased the yield of the *o*-QM (entries 2–4).

Scheme 2 Reaction of β -pyran naphthoquinones 4a-g with acetone catalyzed by iodine

Synlett 2011, No. 11, 1623-1625 © Thieme Stuttgart · New York

Scheme 3 Proposed mechanism for formation of 9a–g and 8a–g

This study showed that other analogues of β -lapachone could be used for the synthesis of a new stable *o*-QM. However, in the studied reactions, it was observed that the pyran ring is not stable and can be opened to produce the α -pyran naphthoquinone isomers. The results clearly show that the stabilization of the carbenium ion intermediates increases the formation of α -isomers. The reactions under microwave irradiation were faster, but the yields and selectivities did not change significantly.

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.

Acknowledgment

Thanks are due to the CNPQ (National Council of Research of Brazil), CAPES and FAPERJ-PRONEX (E-26/171.512.2010), for funding this work. S. B. Ferreira thanks CAPES-PNPD for her doctoral fellowship. The authors thank Dr. Rodrigo Octavio Mendonça Alves de Souza, from Universidade Federal do Rio de Janeiro for providing the microwave used for the synthesis.

References

 (a) Hussain, H.; Krohn, K.; Ahmad, V. U.; Miana, G. A.; Green, I. R. *ARKIVOC* 2007, (*ii*), 145. (b) da Silva, M. N.; Ferreira, V. F.; De Souza, M. C. B. V. *Quim. Nova* 2003, 26, 407. (c) Pinto, C. N.; Dantas, A. P.; De Moura, K. C. G.; Emery, F. S.; Polequevitch, P. F.; Pinto, M. C. F. R.; De Castro, S. L.; Pinto, A. V. *Arzneim.-Forsch./Drug Res.* **2000**, *50*, 1120. (d) Moon, D. O.; Choi, Y. H.; Kim, N. D.; Park, Y. M.; Kim, G. Y. *Int. Immunopharmacol.* **2007**, *7*, 506.

- (2) (a) Fieser, L. F.; Fieser, M. J. Am. Chem. Soc. 1948, 70, 3215. (b) Ferreira, S. B.; Kaiser, C. R.; Ferreira, V. F. Org. Prep. Proced. Int. 2009, 3, 211.
- (3) (a) Bourguignon, S. C.; Castro, H. C.; Santos, D. O.; Alves, C. R.; Ferreira, V. F.; Gama, I. L.; Silva, F. C.; Seguis, W. S.; Pinho, R. T. *Exp. Parasitol.* 2009, *122*, 91. (b) Emery, F. S.; Silva, R. S. F.; De Moura, K. C. G.; Pinto, M. C. F. R.; Amorim, M. B.; Malta, V. R. S.; Santos, R. H. A. K.; Honório, M.; Da Silva, A. B. F.; Pinto, A. V. *Anais Acad. Brasil. Ciênc.* 2007, *79*, 29. (c) da Silva, F. C.; Jorqueira, A.; Gouvêa, R. M.; De Souza, M. C. B. V.; Howie, R. A.; Wardell, J. L.; Wardell, S. M. S. V.; Ferreira, V. F. *Synlett* 2007, 3123. (d) Pérez-Sacau, E.; Estévez-Braum, A.; Ravelo, A. G.; Yapu, D. G.; Turba, A. G. *Helv. Chim. Acta* 2005, *2*, 264. (e) Pérez-Sacau, E.; Díaz-Peñate, R. G.; Estévez-Braun, A.; Ravelo, A. G.; García-Castellano, J. M.; Pardo, L.; Campillo, M. *J. Med. Chem.* 2007, *50*, 696.
- (4) Ferreira, S. B.; da Silva, M. N.; Jorqueira, A.; de Souza, M. C. B. V.; Pinto, A. V.; Kaiser, C. R.; Ferreira, V. F. *Tetrahedron Lett.* 2007, 48, 6171.
- (5) Ferreira, S. B.; da Silva, F. C.; Pinto, A. C.; Gonzaga, D. T. G.; Ferreira, V. F. *J. Heterocycl. Chem.* **2009**, *46*, 1080.
- (6) (a) Ferreira, S. B.; Da Silva, F. C.; Bezerra, F. A. F. M.; Lourenço, M. C. S.; Kaiser, C. R.; Pinto, A. C.; Ferreira, V. F. Arch. Pharm. (Weinheim, Ger.) 2010, 343, 81. (b) da Silva, F. C.; Ferreira, S. B.; Kaiser, C. R.; Pinto, A. C.; Ferreira, V. F. J. Braz. Chem. Soc. 2009, 20, 1478.