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Abstract This paper describes an efficient aminoesterifi-

cation of unactivated alkenes through Au(I)/Au(III) redox

catalytic cycles using Selectfluor or hypervalent iodine(III)

reagents.
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Introduction

New methodologies to access highly important motifs in

organic chemistry such as diols, diamines, and aminoal-

cohols have been developed during the past decades

[1–14]. Palladium catalysts have been employed together

with PhI(OAc)2 in the aminooxygenation and diamination

of unactivated alkenes in both an intra- [15–20] as well as

in an intermolecular fashion [21–26]. In these transfor-

mations, the oxidation of Pd(II) to Pd(IV) species is crucial

for the formation of the new carbon–heteroatom bonds

[27–33]. Copper catalysts have also been used in similar

transformations [34–43]. In addition, metal-free method-

ologies have also been developed [44–47]. A combination

of carbophilic gold complexes and Au(I)/Au(III) redox

catalytic cycles was employed in the past years by several

groups to design new transformations along these lines

[48–55]. In this context, our group reported a gold-cat-

alyzed difunctionalization of alkenes to yield

aminoalcohols, aminoesters, aminoethers, and diamines in

a highly flexible manner (Scheme 1) [56–58].

To further expand the scope of these transformations, we

envisaged the combination of Selectfluor as oxidant and

DMF as solvent to attain the synthesis of aminoformate

derivatives. Furthermore, we considered that the use of

different hypervalent iodine(III) reagents could enable the

introduction of other nucleophiles, thus expanding the

scope of this reaction towards the synthesis of new ami-

noesters (Scheme 2).

Results and discussion

We started to investigate the formation of aminoformates

using N-tosyl-2,2-diphenyl-4-pentenylamine (1a) as sub-

strate. When ten equivalents of DMF were used in a

reaction performed in nitromethane, 5,5-diphenyl-1-to-

sylpiperidin-3-yl formate 2a could be obtained in 45%

yield (Table 1, entry 1). Reducing the equivalents of DMF

from 10 to 5, delivered the same amount of aminoaldehyde

2a together with 13% of 5,5-diphenyl-1-tosylpiperidin-3-ol

20a (Table 1, entry 2). We envisaged that a faster hydrol-

ysis of the iminium intermediate might prevent formation

of byproduct 20a. Remarkably, the addition of 2 equivalents

of water to hydrolyze the iminium ion in situ afforded 79%

of aminoaldehyde 2a and 13% of aminoalcohol 20a
(Table 1, entry 3). These conditions (Table 1, entry 3) were

& Cristina Nevado

cristina.nevado@chem.uzh.ch

1 Institute of Chemistry, University of Zurich,

Winterthurerstrasse 190, 8057 Zurich, Switzerland

123

Monatsh Chem

https://doi.org/10.1007/s00706-018-2144-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s00706-018-2144-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00706-018-2144-8&amp;domain=pdf
https://doi.org/10.1007/s00706-018-2144-8


applied also to N-(2,2-dimethylpent-4-en-1-yl)-4-methyl-

benzenesulfonamide (1b) furnishing 5,5-dimethyl-1-

tosylpiperidin-3-yl formate 2b in 67% yield (Table 1, entry

4).

The use of different hypervalent iodine(III) reagents to

introduce additional nucleophiles was studied next. The

previously optimized conditions had to be adapted. It was

found that, changing the solvent from nitromethane to 1,2-

dichloroethane, was beneficial for the reaction outcome.

Specifically, when PhI(OPiv)2 was employed as oxidant,

both 1a and 1b could be efficiently converted into the

desired products 3a and 3b in 86 and 80% yields, respec-

tively (Table 2, entries 1 and 2). Other hypervalent iodine

reagents such as PhI(OCOCF3)2 could also be successfully

used to introduce the trifluoroacetoxy moiety delivering

both products 4a and 4b in 80% yield (Table 2, entries 3

and 4). Encouraged by these results, PhI(OCO(4-NO2C6-

H4))2 was tested providing product formation in rather
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Table 1 Optimization of the gold-catalyzed synthesis of aminoaldehydes 2a, 2b

Entry Substrate Reaction conditionsa Product, yield/%b Product, yield/%b

1 1a [Au], Selectfluor, NaHCO3, DMF (10 equiv.) 2a, 45 –

2 1a [Au], Selectfluor, NaHCO3, DMF (5 equiv.) 2a, 45 20a, 13

3 1a [Au], Selectfluor, NaHCO3, DMF (10 equiv.), H2O (2 equiv.) 2a, 79 20a, 13

4 1b [Au], Selectfluor, NaHCO3

(1 equiv.), DMF (5 equiv.), H2O (2 equiv.), MeNO2, 80 �C, 2 h

2b, 67 –

aReaction conditions: [Au] = Ph3PAuSbF6 (5 mol%), Selectfluor (2 equiv.), NaHCO3 (1 equiv.), MeNO2 (0.1 M), 80 �C
bIsolated yield after column chromatography
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moderate yields (5a and 5b, Table 2, entries 5 and 6).

When PhI(CO2(3,5-MeOC6H3))2 was used, the desired

products 6a and 6b could be isolated in 21 and 72% yields,

respectively (Table 2, entries 7 and 8).

Conclusion

A new protocol for the efficient aminoesterification of unac-

tivated alkenes is reported here. Taking advantage of Au(I)/

Au(III) redox catalytic cycles in the presence of either

Selectfluor or hypervalent iodine(III) reagents, aminoformate

and aminoester derivatives have been respectively formed

from 5-N-tosyl-4-pentenylamine substrates. The reactions are

operationally simple and offer a flexible entry to previously

unreported piperidine derivatives.

Experimental

Unless otherwise stated, starting materials were purchased

from Aldrich and/or Fluka. All reagents were used as

received. Substrates 1a and 1b were prepared according to

previously reported procedures [34, 59]. IR and 1H NMR

spectra of the products 2b [57] and 4b [47] were found to

be identical with the ones described. PhI(OPiv)2,

PhI(OCO(4-NO2-C6H4))2, and PhI(OCO(3,5-MeO-C6H3))2
were synthesized in analogy to a previously reported

procedure [60]. Ph3PAuSbF6 was prepared from Ph3PAuCl

(1 equiv.) and AgSbF6 (1 equiv.) in DCE (0.05 M). Except

acetonitrile, solvents were purchased in HPLC quality,

degassed by purging thoroughly with nitrogen and dried

over activated molecular sieves of appropriate size. Alter-

natively, they were purged with argon and passed through

alumina columns in a solvent purification system (Inno-

vative Technology). Unless otherwise stated, reactions

were not run under inert atmosphere. Conversion was

monitored by thin-layer chromatography (TLC) using

Merck TLC silica gel 60 F 254. Flash column chro-

matography was performed over silica gel (230–400 mesh).

Infrared spectra were recorded on a JASCO FT/IR-4100

spectrometer. Absorbance frequencies are reported in

reciprocal centimeters (cm-1). High-resolution electro-

spray ionization mass spectra were measured on a Bruker

ESQUIRE-LC quadrupole ion trap instrument (Bruker

Daltonik GmbH, Bremen, Germany) with accurate mass

acquisition below 2 ppm.

General protocol A

A mixture of aminopent-4-ene (1, 1 equiv.), Selectfluor (2

equiv.), NaHCO3 (1 equiv.), and DMF (5 equiv.) was

dissolved in MeNO2 (0.1 M) followed by addition of

Ph3PAuSbF6 (0.05 equiv.). The reaction was stirred for 2 h

at 80 �C and was monitored by TLC. Upon consumption of

the starting material, the mixture was diluted with 5 cm3

Table 2 Gold-catalyzed intramolecular difunctionalization of 1a and 1b

Entry Substrate Oxidanta Product Yield/%c

1 1a PhI(OPiv)2 3a, R2 = COt-Bu 86

2 1b PhI(OPiv)2 3b, R2 = COt-Bu 80

3 1a PhI(OCOCF3)2 4a, R2 = COCF3 80

4 1b PhI(OCOCF3)2 4b, R2 = COCF3 80

5 1a PhI(OCO(4-NO2-C6H4))2 5a, R2 = CO(4-NO2C6H4) 42

6 1b PhI(OCO(4-NO2-C6H4))2 5b, R2 = CO(4-NO2C6H4) 44

7 1a PhI(CO2(3,5-MeO-C6H3))2
b 6a, R2 = CO(3,5-MeOC6H3) 21

8 1b PhI(CO2(3,5-MeO-C6H3))2
b 6b, R2 = CO(3,5-

MeOC6H3)

72

aOxidant (2 equiv.), NaHCO3 (1 equiv.), DCE, 80 �C, 2 h
b17 h
cIsolated yield after column chromatography
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DCM and 2 cm3 water was added. The mixture was

extracted with DCM (3 9 5 cm3) and the combined

organic phases were dried over MgSO4. The solvent was

evaporated under reduced pressure and the residue was

purified through silica gel flash column chromatography

(hexane/EtOAc = 6/1) to yield the desired aminoaldehy-

des 2.

5,5-Diphenyl-1-tosylpiperidin-3-yl formate

(2a, C25H25NO4S)

Following the general protocol A, compound 2a was

isolated in 79% yield. 1H NMR (500 MHz, CDCl3):

d = 7.91 (s, 1H), 7.64 (d, J = 8.0 Hz, 2H), 7.49 (d,

J = 7.7 Hz, 2H), 7.38–7.14 (m, 10H), 4.92 (tt, J = 9.8,

4.1 Hz, 1H), 4.46 (d, J = 12.5 Hz, 1H), 3.91–3.86 (m, 1H),

2.93 (dt, J = 12.6, 1.7 Hz, 1H), 2.63 (d, J = 12.5 Hz, 1H),

2.43 (s, 3H), 2.40 (d, J = 7.1 Hz, 1H), 2.18–2.10 (m, 1H)

ppm; 13C NMR (125 MHz, CDCl3): d = 160.3, 146.2,

144.7, 143.6, 133.1, 130.5, 129.4, 129.2, 128.4, 128.3,

127.4, 127.3, 127.1, 67.6, 54.6, 49.8, 47.0, 40.4, 22.2 ppm;

IR (film): �m = 2925, 2366, 1723, 1598, 1496, 1447, 1345,

1162, 1090, 1011, 908, 779, 730, 699, 661, 578, 562,

550 cm-1; HRMS (ESI): m/z calcd for C25H25NNaO4S

458.13965, found 458.13970.

5,5-Dimethyl-1-tosylpiperidin-3-yl formate

(2b, C15H21NO4S)

Following the general protocol A, compound 2b was

isolated in 67% yield. 1H NMR (500 MHz, CDCl3):

d = 7.99 (s, 1H), 7.63 (d, J = 8.4 Hz, 2H), 7.33 (d,

J = 8.0 Hz, 2H), 5.14 (tt, J = 8.8, 4.5 Hz, 1H), 3.65 (dd,

J = 11.2, 4.4 Hz, 1H), 3.07 (d, J = 11.5 Hz, 1H), 2.48–

2.44 (m, 1H), 2.43 (s, 3H), 2.31 (d, J = 11.5 Hz, 1H), 1.73

(dd, J = 13.2, 4.5 Hz, 1H), 1.22 (dd, J = 13.2, 9.5 Hz,

1H), 1.07 (s, 3H), 1.00 (s, 3H) ppm; 13C NMR (125 MHz,

CDCl3): d = 160.6, 144.4, 134.2, 130.4, 128.2, 67.5, 57.5,

49.7, 42.6, 32.5, 28.7, 26.1, 22.2 ppm; IR (film): �m = 2958,

1721, 1598, 1469, 1343, 1307, 1158, 1092, 993, 966, 916,

815, 660, 583, 551 cm-1; HRMS (ESI): m/z calcd for

C15H21NNaO4S 334.10835, found 334.10830.

General protocol B

A mixture of aminopent-4-ene (1, 1 equiv.), oxidant

(2 equiv.), and NaHCO3 (1 equiv.) was dissolved in 1,2-

dichloroethane (0.1 M) followed by addition of Ph3-
PAuSbF6 (0.05 equiv.). The reaction was stirred for 2 h

at 80 �C and was monitored by TLC. Upon consumption

of the starting material, the mixture was diluted with

5 cm3 DCM and filtered over celite. The solvent was

evaporated under reduced pressure and the residue was

purified through silica gel flash column chromatography

(hexane/EtOAc = 10/1) to yield the desired aminoesters

3–6.

5,5-Diphenyl-1-tosylpiperidin-3-yl pivalate

(3a, C29H33NO4S)

Following the general protocol B, compound 3a was

isolated in 86% yield. 1H NMR (500 MHz, CDCl3):

d = 7.63 (d, J = 8.3 Hz, 2H), 7.45 (d, J = 7.5 Hz, 2H),

7.36–7.29 (m, 4H), 7.26–7.15 (m, 6H), 4.80 (tt, J = 9.4,

4.5 Hz, 1H), 4.30 (d, J = 12.2 Hz, 1H), 3.69 (dd,

J = 10.5, 4.3 Hz, 1H), 2.90 (dt, J = 12.7, 1.8 Hz, 1H),

2.82 (d, J = 12.2 Hz, 1H), 2.49 (t, J = 9.9 Hz, 1H), 2.42

(s, 3H), 2.05 (dd, J = 12.8, 10.2 Hz, 1H), 1.10 (s, 9H)

ppm; 13C NMR (125 MHz, CDCl3): d = 178.1, 146.5,

144.5, 144.0, 133.4, 130.5, 129.4, 129.2, 128.5, 128.3,

127.3, 127.2, 127.2, 54.8, 49.9, 46.9, 40.3, 39.3, 27.8, 27.7,

27.7, 22.2 ppm; IR (film): �m = 2971, 1728, 1598, 1496,

1479, 1447, 1346, 1282, 1161, 1090, 1038, 1020, 991, 910,

804, 783, 732, 699, 663, 570, 549 cm-1; HRMS (ESI): m/z

calcd for C29H33NNaO4S 514.20225, found 514.20233.

5,5-Dimethyl-1-tosylpiperidin-3-yl pivalate

(3b, C19H29NO4S)

Following the general procedure for the gold-catalyzed

difunctionalization of alkenes, compound 2b was isolated

in 80% yield. 1H NMR (500 MHz, CDCl3): d = 7.64 (d,

J = 8.0 Hz, 2H), 7.32 (d, J = 7.9 Hz, 2H), 5.02–4.91 (m,

1H), 3.40 (dd, J = 11.4, 3.9 Hz, 1H), 2.90 (d,

J = 11.4 Hz, 1H), 2.62 (dd, J = 11.3, 7.8 Hz, 1H), 2.50

(d, J = 11.4 Hz, 1H), 2.43 (s, 3H), 1.64 (dd, J = 13.3,

4.3 Hz, 1H), 1.23 (dd, J = 13.4, 8.2 Hz, 1H), 1.18 (s, 9H),

1.04 (s, 6H) ppm; 13C NMR (125 MHz, CDCl3):

d = 177.7, 143.6, 134.0, 129.8, 127.7, 66.7, 57.0, 49.2,

41.8, 38.8, 31.7, 27.9, 27.2, 26.2, 21.7 ppm; IR (film):

�m = 2969, 1736, 1455, 1366, 1348, 1307, 1282, 1228,

1216, 1206, 1161, 1092, 1036, 992, 916, 813, 767, 752,

685, 660, 549 cm-1; HRMS (ESI): m/z calcd for C19H29-

NNaO4S 390.1715, found 390.17130.

5,5-Diphenyl-1-tosylpiperidin-3-yl 2,2,2-trifluoroacetate

(4a, C16H20F3NO4S)

Following the general protocol B, compound 4a was

isolated in 80% yield. 1H NMR (500 MHz, CDCl3):

d = 7.83 (d, J = 8.2 Hz, 2H), 7.65 (d, J = 7.6 Hz, 2H),

7.56–7.49 (m, 4H), 7.46–7.30 (m, 6H), 5.14 (tt, J = 9.9,

4.3 Hz, 1H), 4.65 (d, J = 12.5 Hz, 1H), 4.12 (dd,

J = 10.5, 4.8 Hz, 1H), 3.16 (dt, J = 12.6, 1.8 Hz, 1H),

2.81 (d, J = 12.5 Hz, 1H), 2.64 (t, J = 10.2 Hz, 1H), 2.61

(s, 3H), 2.40 (dd, J = 12.5, 10.8 Hz, 1H) ppm; 13C NMR

(125 MHz, CDCl3): d = 157.0 (q, J = 42.7 Hz), 145.7,

144.9, 143.1, 133.0, 130.7, 129.6, 129.4, 128.5, 128.3,

127.8, 127.5, 127.0, 114.9 (q, J = 285.8 Hz), 72.2, 54.6,

49.3, 47.1, 40.0, 22.2 ppm; IR (film): �m = 2852, 1784,

1598, 1496, 1448, 1347, 1221, 1158, 1091, 1009, 908, 864,

816, 803, 781, 733, 698, 662, 578, 550 cm-1; HRMS

(ESI): m/z calcd for C26H24F3NNaO4S 526.12703, found

526.12763.
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5,5-Dimethyl-1-tosylpiperidin-3-yl 4-nitrobenzoate

(5b, C21H24N2O6S)

Following the general protocol B, compound 5b was

isolated in 44% yield. 1H NMR (500 MHz, CDCl3):

d = 8.28 (d, J = 12.0 Hz, 2H), 8.16 (d, J = 9.0 Hz, 2H),

7.65 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.1 Hz, 2H), 5.28

(dt, J = 7.8, 4.0 Hz, 1H), 3.57 (dd, J = 11.4, 3.7 Hz, 1H),

2.97 (d, J = 11.5 Hz, 1H), 2.84 (dd, J = 11.3, 7.7 Hz,

1H), 2.60 (d, J = 11.5 Hz, 1H), 2.43 (s, 3H), 1.78 (dd,

J = 13.5, 4.2 Hz, 1H), 1.46 (dd, J = 13.6, 8.3 Hz, 1H),

1.10 (s, 6H) ppm; 13C NMR (125 MHz, CDCl3):

d = 164.4, 151.5, 144.4, 136.0, 134.5, 131.5, 130.5,

128.2, 124.3, 69.4, 57.5, 49.8, 42.4, 32.4, 28.4, 26.9,

22.2 ppm; IR (film): �m = 2958, 1724, 1600, 1526, 1468,

1346, 1309, 1274, 1162, 1117, 1092, 993, 912, 813, 720,

661, 593, 572, 550 cm-1; HRMS (ESI): m/z calcd for

C21H24N2NaO6S 455.12473, found 455.12468.

5,5-Diphenyl-1-tosylpiperidin-3-yl 3,5-dimethoxybenzoate

(6a, C33H33N2O6S)

Following the general protocol B, compound 6a was

isolated in 21% yield. 1H NMR (500 MHz, CDCl3):

d = 7.65 (d, J = 8.2 Hz, 2H), 7.50 (d, J = 8.2 Hz, 2H),

7.36 (t, J = 7.8 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 7.27–

7.08 (m, 6H), 7.03 (d, J = 2.4 Hz, 2H), 6.63 (t,

J = 2.3 Hz, 1H), 5.04 (tt, J = 9.1, 4.6 Hz, 1H), 4.37 (d,

J = 12.3 Hz, 1H), 3.87 (dd, J = 10.4, 3.6 Hz, 1H), 3.81 (s,

6H), 3.01 (d, J = 12.5 Hz, 1H), 2.83 (d, J = 12.3 Hz, 1H),

2.58 (t, J = 9.9 Hz, 1H), 2.42 (s, 3H), 2.27 (dd, J = 12.7,

10.3 Hz, 1H) ppm; 13C NMR (125 MHz, CDCl3):

d = 165.8, 161.3, 146.3, 144.6, 144.0, 133.3, 132.2,

130.5, 129.4, 129.2, 128.5, 128.3, 127.3, 127.3, 127.1,

108.0, 106.4, 68.4, 56.3, 54.7, 50.0, 46.9, 40.3, 22.2 ppm;

IR (film): �m = 2958, 1718, 1596, 1458, 1347, 1231, 1205,

1158, 1091, 1048, 767, 699, 665, 576, 549 cm-1; HRMS

(ESI): m/z calcd for C33H33NNaO6S 594.19208, found

594.19180.

5,5-Dimethyl-1-tosylpiperidin-3-yl 3,5-dimethoxybenzoate

(6b, C23H29N2O6S)

Following the general protocol B, compound 6b was

isolated in 72% yield. 1H NMR (500 MHz, CDCl3):

d = 7.65 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H),

7.14 (d, J = 2.4 Hz, 2H), 6.64 (t, J = 2.3 Hz, 1H), 5.22 (tt,

J = 8.4, 4.3 Hz, 1H), 3.82 (s, 6H), 3.63 (dd, J = 11.3,

4.1 Hz, 1H), 3.03 (d, J = 11.5 Hz, 1H), 2.71 (dd,

J = 11.2, 8.2 Hz, 1H), 2.50 (d, J = 11.5 Hz, 1H), 2.42

(m, 3H), 1.78 (dd, J = 13.3, 4.3 Hz, 1H), 1.39 (dd,

J = 13.3, 8.7 Hz, 1H), 1.10 (s, 3H), 1.07 (s, 3H) ppm;
13C NMR (125 MHz, CDCl3): d = 166.0, 161.3, 144.2,

134.6, 132.5, 130.4, 128.2, 108.0, 106.4, 68.4, 57.5, 56.3,

49.9, 42.6, 32.4, 28.6, 26.6, 22.2 ppm; IR (film): �m = 2958,

1716, 1596, 1461, 1428, 1345, 1303, 1233, 1205, 1158,

1092, 1049, 990, 916, 813, 767, 731, 661, 587, 571,

551 cm-1; HRMS (ESI): m/z calcd for C23H29NNaO6S

470.16078, found 470.16067.
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