DOI: 10.1002/ejoc.200700056

Synthesis of Enantiopure 1-Azaspiro[4.5]decanes by Iodoaminocyclization of Allylaminocyclohexanes

Faïza Diaba,^[a] Gemma Puigbó,^[a] and Josep Bonjoch*^[a]

Keywords: Amines / Cyclization / Iodine / Nitrogen heterocycles / Spiro compounds

The 5-endo iodine-promoted ring closure of 4-allyl-4-(alk-ylamino)cyclohexanone derivatives gives the corresponding 1-azaspiro[4.5]decanes in good yields. The reaction was tested with enantiopure homoallylamines to evaluate the diastereoselectivity of the process and to provide a route for pos-

Introduction

In the course of our studies related to the immunosupressant FR901483,^[1–4] we introduced a new procedure for the synthesis of 1-azaspiro[4.5]decanes^[5] that is based on the treatment of homoallylamine I with iodine (Scheme 1),^[1,6] which promotes the electrophilic cyclofunctionalization of the unsaturated amine to give five-membered ring II.^[7–10]

Scheme 1.

Extending our previous work on iodoaminocyclizations, we report here the use of this procedure for the preparation of enantiopure 1-azaspiro[4.5]decanes, which are potential building blocks in the synthesis of the aforementioned FR901483 as well as TAN1251 derivatives.^[11] To achieve this goal, we envisaged two possible approaches: (a) transformation of racemic iodo derivative **II** into achiral com-

 [a] Laboratori de Química Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain Fax: +34-934024539 E-mail: josep.bonjoch@ub.edu

InterScience

sible intermediates to the natural products embodying this azabicyclic ring.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007)

pound **III**, which could then be transformed into an enantiopure advanced intermediate or (b) carry out the aminocyclization from an enantiopure homoallylamine and evaluate the stereocontrol induced by the stereogenic center in the side chain upon the newly formed stereogenic center at C-3 of the azaspiro derivative.

Results and Discussion

We explored the first possible approach by synthesizing ketone III (R = Bn), an achiral 1-azaspiro[4.5]decane. Required homoallylamine 1 was prepared by a one-pot procedure that involved the formation of an imine from the monoethylene acetal of 1,4-cyclohexanedione and benzylamine, followed by the addition of allylmagnesium bromide (Scheme 2).^[3,12] Treatment of 1 with iodine promoted the iodoaminocyclization process to give iodo derivative 2, which was then oxidized to ketone 3 by using DMSO and silver tetrafluoroborate.^[13] The overall sequence worked well and we gained access to achiral functionalized azaspirane 3 in 30% overall yield over the four transformations. The reductive amination of 3 with (S)- α -methylbenzylamine gave corresponding secondary amines 4a,b, whose configurations at C-3 were not established, in a nearly equimolecular ratio and a 72% overall yield. Further explorations of approach (a) (e.g. enantioselective reduction of ketone 3 followed by a Fukuyama-Mitsunobu process) were not pursued.

In view of the disappointingly low level of diastereoselectivity observed when the amino group was introduced, we turned to the alternative strategy outlined in Scheme 1. Approach (b) required a chiral homoallylamine such as **9** as the starting material (Scheme 3). Treatment of 1,4-cyclohexanedione monoethylene acetal with (*S*)-2-amino-3-(4methoxyphenyl)propan-1-ol (**5a**),^[14] which was prepared by direct reduction of *O*-methyl-L-tyrosine with LiBH₄/TMSCI

Scheme 2. Synthesis of enantiopure 3-amino-1-azaspiro[4.5]decan-8-ones: (i) $C_6H_5CH_2NH_2$, 4 Å molecular sieves, CH_2Cl_2 , room temp., 5 h; (ii) CH_2 =CHCH₂MgBr, CH_2Cl_2 , room temp., 95% for the two steps; (iii) I₂, NaHCO₃, CH_2Cl_2/H_2O , room temp., 12 h, 73%; (iv) AgBF₄, DMSO, room temp., 12 h, quantitative; (v) (*S*)-1-phenylethylamine, NaCNBH₃, THF, room temp., 24 h, 72%.

in 83% yield,^[15] gave oxazolidine **6** in excellent yield. As all our attempts to cleave this cyclic hemiaminal (by using allylmagnesium bromide, allyltrimethylsilane, allyltributyltin, and allylcerium chloride) to obtain homoallylamine **9** were unsuccessful, we focused our attention on protected amino alcohol **5b**.^[16] Condensation of **5b** with the aforementioned cyclohexanone produced imine **7**, which was treated with allylmagnesium bromide to give homoallylamine **8** in 72% overall yield. Finally, deprotection of **8** by cleavage of the silyl ether group by TBAF gave amino alcohol **9**.

By using the best reaction conditions found for achiral homoallylic amine 1, we examined the iodine-promoted cyclization from both amines 8 and 9. Whereas the process from 8 did not proceed, the less sterically demanding deprotected amino alcohol 9 did undergo the aminocyclization process; although, unexpectedly the isolated end product was tricyclic oxazolidine 10, which was obtained in 62%overall yield for the two successive cyclizations. The formation of 10 probably involved an initial cyclization to afford azaspiranic ring 11 (or a mixture of diastereomers) followed by a neighboring hydroxy group oxidation of the amine to give an iminium intermediate,^[17] which was trapped by the hydroxy group to form the oxazolidine ring.^[18] On the basis of the small coupling constant (J = 2.8 Hz) observed in the ¹H NMR spectrum for the methine protons,^[19] we have assigned the stereochemistry of 10 to that shown in Figure 1 with a trans relationship between the linked heteroatoms at the pyrrolidine ring. Oxazolidine 10 was reduced $(NaBH_4)^{[20]}$ to azaspirane 11 in good yield and then, for analytical purposes, to 12 (Bu₃SnH, AIBN). Although the process seems to be diastereoselective as only diastereomer 10 was isolated, the moderate overall yield of the process (62%) gives room for doubt. The diastereoselectivity could arise from the initial stereocontrolled formation of the iodonium intermediate and its stereocontrolled ring-opening by the amino group. The ring-opening could then be followed by the formation of an iminium ion and attack of

Scheme 3. Reagents and conditions: (i) *t*BuMe₂SiCl, imidazole, DMF, room temp., 12 h, 77%; (ii) from **5a**: 1,4-cyclohexanedione monoethylene acetal, 4 Å molecular sieves, CH₂Cl₂, room temp., 2 h, 95%; (iii) from **5b**: 1,4-cyclohexanedione monoethylene acetal, 4 Å molecular sieves, CH₂Cl₂, room temp., 5 h; (iv) CH₂=CHCH₂MgBr, Et₂O, room temp., 72% for the two steps; (v) TBAF, THF, room temp., 1 h, 84%; (vi) I₂, NaHCO₃, CH₂Cl₂/H₂O, room temp., 12 h, 62%; (vii) NaBH₄, MeOH, room temp., 2 h, 93%; (viii) Bu₃SnH, AIBN, benzene, reflux, 2 h, 70%.

the hydroxy group on the face opposite to the location of the iodine atom and antiperiplanar to the electron lone pair of the nitrogen atom. Alternatively, and more probably, the nonobservation of other diastereomeric oxazolidines could simply derive from the fact that after the oxidation step, other iminium salt intermediates that were formed could not evolve for steric and/or stereoelectronic reasons and they decomposed in solution upon work up. Thus, this result did not clarify if the stereogenic center in the side chain linked to the nitrogen atom exerted some stereocontrol in the genesis of the new stereogenic center formed at C-3 in the azaspiranic ring.

Figure 1. Assignment of the stereochemistry of **10** on the basis of coupling constants.

We then decided to prepare a new type of azaspiranic compound from a homoallylic amine lacking a hydroxy group to prevent the anchimeric process that promotes the oxazolidine ring formation. With this goal in mind, we deFULL PAPER

cided to synthesize vinyl bromide **15** to attempt the iodinepromoted azaspirodecane ring formation, which would also allow us to test the diastereoselectivity of the process and gain access to a valuable intermediate in the synthetic route to FR901683 (Scheme 4).

Scheme 4. Reagents and conditions: (i) MeI, NaHCO₃, DMF, room temp., 16 h, 81%; (ii) LiBH₄, THF/EtOH, 16 h, 99%; (iii) TEMPO, NaBr, NaHCO₃, NaOCl, CH₂Cl₂/H₂O, 0 °C, 2 h, 91%; (iv) (MeO)₂P(O)CN₂COCH₃, K₂CO₃, MeOH, room temp., 16 h, 74%; (v) 1,4-cyclohexanedione monoethylene acetal, 4 Å molecular sieves, CH₂Cl₂, room temp., overnight; (vi) CH₂=CHCH₂MgBr, CH₂Cl₂, room temp., 4 h, 75% for the two steps; (vii) I₂, NaHCO₃, CH₂Cl₂/H₂O, room temp., 2 h; (viii) NaN₃, DMF, 50 °C, DMSO, 3 h, 58% for the two steps; (ix) Ph₃P, THF, 1 d, then H₂O, room temp., 3 d, 95%.

Commercially available O-methyl-N-(tert-butoxycarbonyl)-L-tyrosine (12) was transformed to corresponding aldehyde 13 by following a reported procedure.^[21] Aldehyde 13 was homologated to alkyne 14 with the use of dimethyl 1-diazo-2-(oxopropyl)phosphonate^[22] in a basic methanolic solution.^[23,24] The hydrobromination of alkyne 14 was carried out with gaseous hydrogen bromide,^[25] which resulted in a mixture of regioisomers. Required vinyl bromide 15, in which the amine group is deprotected, was isolated in 45% overall yield. Condensation of primary amine 15 with 1,4cyclohexanedione monoethylene acetal was troublesome, and the conversion of 15 to corresponding imine 16 was never complete. Consequently, after treatment with allylmagnesium bromide, homoallylamine 17 was formed together with a small amount of 4-allyl-4-hydroxycyclohexanone acetal.^[26]

The aminocyclization of homoallylamine 17 promoted by iodine proved to have a low stereoselectivity; azaspiranic derivatives 18 was isolated as a 3:2 mixture of diastereomers. To gain access to more stable and valuable compounds for the synthesis of FR901483, crude iodides 18 were converted into corresponding amino derivatives 20 by treatment with sodium azide, followed by reduction of azide intermediates 19 with triphenylphosphane. At this stage, both diastereomers at C-3 could be separated, but the absolute configuration was not ascertained. The nearly equimolecular mixture of isolated amines does not reflect the ratio of initially formed iodides 18. This could be due to the participation of the neighboring nitrogen atom at N-1 in the azide-formation step, which could lead to an aziridinium ion intermediate during the substitution process to a variable extent depending on the configuration of the starting iodide.

In summary, the results reported here demonstrate the utility of iodine-promoted aminocyclization reactions in the elaboration of the azaspirane ring system found in some natural products. Concerning the two approaches studied, we concluded that route (a), which proceeds through achiral azaspiranic ketone **3**, was the most satisfactory as it is shorter than those using chiral starting materials, and additionally, the enantiopure epimeric amino derivatives formed after the reductive amination can be isolated easily. Further studies are needed to determine if the stereocontrol at C-3 can be improved, which would provide a satisfactory synthetic route to enantiopure building blocks with the 3-substituted-1-azaspiro[4.5]decane pattern.^[27]

Experimental Section

General: All reactions were carried out under an argon atmosphere with dry, freshly distilled solvents under anhydrous conditions. Analytical TLC was performed on SiO₂ (silica gel 60 F₂₅₄, Merck) or Al₂O₃ (ALOX N/UV₂₅₄, Polygram), and the spots were located with iodoplatinate reagent or 1% aqueous KMnO₄. Chromatography refers to flash chromatography and was carried out on SiO₂ (silica gel 60, SDS, 230–240 mesh ASTM) or Al₂O₃ (aluminium oxide 90, Merck). Drying of organic extracts during work up of reactions was performed over anhydrous Na₂SO₄. Optical rotations were recorded with a Perkin–Elmer 241 polarimeter. ¹H and ¹³C NMR spectra were recorded with a Varian Gemini 200 or 300, or a Varian Mercury 400 instrument. Chemical shifts are reported in ppm downfield (δ) from Me₄Si.

4-Allyl-4-benzylaminocyclohexanone Ethylene Acetal (1): To a solution of 1,4-cyclohexanedione monoethylene acetal (10 g, 64 mmol) in CH₂Cl₂ (200 mL) were added benzylamine (8.4 mL, 77 mmol) and 4 Å molecular sieves (20 g). After stirring at room temp. for 4 h, the suspension was filtered through Celite, and the filtrate was concentrated to give the corresponding imine (see Scheme 2): ¹³C NMR (50 MHz, CDCl₃): δ = 25.1 (CH₂), 34.1 (CH₂), 34.8 (CH₂), 36.2 (CH₂), 54.4 (CH₂N), 64.3 (CH₂O), 107.8 (C-1), 126.4 (CH), 127.5 (CH), 128.3 (CH), 140.0 (C), 171.7 (CN) ppm. To a solution of this imine in CH₂Cl₂ (100 mL) was added dropwise allylmagnesium bromide (1.28 M in Et₂O, 100 mL, 128 mmol). The mixture was stirred at room temp. overnight, poured into saturated aqueous NH₄Cl, and extracted with CH₂Cl₂.

washed with brine, dried, and concentrated. After chromatography (Al₂O₃, hexanes/CH₂Cl₂, 1:1), amine **2** (18 g, 98%) was obtained. An analytical sample was obtained by crystallization. M.p. 42–44 °C (hexane). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.90$ (br. s, 1 H, NH), 1.50–1.75 (m, 6 H), 1.90–2.02 (m, 2 H), 2.26 (d, J = 7.4 Hz, 2 H, *CH*₂CH), 3.65 (s, 2 H, CH₂Ar), 3.95 (s, 4 H, OCH₂), 5.12 (dm, J = 14.7 Hz, 1 H, *cis*-H), 5.12 (dm, J = 9.3 Hz, 1 H, *trans*-H), 5.85 (ddt, J = 14.7, 9.3, 7.4 Hz, 1 H, *gem*-H), 7.20–7.40 (m, 5 H) ppm. ¹³C NMR (50 MHz, CDCl₃): $\delta = 30.2$ and 32.7 (C-2 and C-3), 42.0 (*C*H₂CH), 45.7 (CH₂Ar), 53.1 (C-4), 64.1 and 64.2 (CH₂O), 109.1 (C-1), 117.9 (=CH₂), 126.7 (*p*-Ar), 128.2 (*o*-Ar and *m*-Ar), 134.1 (=CH), 141.3 (*ipso*-Ar) ppm. IR (neat): $\tilde{v} = 3300$, 1627 cm⁻¹. C₁₈H₂₅NO₂ (287.38): calcd. C 75.23, H 8.77, N 4.87; found C 75.36, H 8.83, N 4.85.

1-Benzyl-3-iodo-1-azaspiro[4.5]decan-8-one Ethylene Acetal (2): To a solution of amine 1 (0.5 g, 1.7 mmol) in CH₂Cl₂ (15 mL) and 5% aqueous NaHCO₃ (15 mL) was added dropwise a solution of I₂ (0.63 g, 2.5 mmol) in CH₂Cl₂ (15 mL). After stirring at room temp. overnight, saturated aqueous sodium thiosulfite (20 mL) was added. The mixture was extracted with CH₂Cl₂, and the organic extracts were concentrated and purified by chromatography (Al_2O_3 , hexanes/CH₂Cl₂, 1:1) to give 2 (0.51 g, 71%) as a yellow liquid, which crystallized on standing. An analytical sample was obtained by crystallization. M.p. 80-81 °C (Et₂O). ¹H NMR (500 MHz, CDCl₃, COSY, NOESY, HSQC, HMBC): $\delta = 1.40$ (ddd, J = 13.4, 2.5 Hz, 1 H, 6-H_{eq}), 1.60 (td, J = 13.5, 4.0 Hz, 1 H, 7-H_{ax}), 1.64 (td, J = 14.0, 4.5 Hz, 1 H, 9-H_{ax}), 1.71–1.83 (m, 3 H, 7-H_{eq}, 9-H_{eq}, and 10-H_{eq}), 1.86 (td, J = 13.5, 4.0 Hz, 1 H, 6-H_{ax}), 1.90 (td, J =13.5, 4.0 Hz, 1 H, 10-H_{ax}), 2.32 (dd, J = 14.0, 6.5 Hz, 1 H, 4-H), 2.54 (dd, J = 14.0, 8.5 Hz, 1 H, 4-H), 3.01 (dd, J = 10.5, 6.75 Hz, 1 H, 2-H), 3.06 (dd, J = 10.5, 7.0 Hz, 1 H, 2-H), 3.61 (d, J =13.5 Hz, 1 H, CH₂Ar), 3.72 (d, J = 13.5 Hz, 1 H, CH₂Ar), 3.94 (s, 4 H, OCH₂), 4.19 (dddd, J = 8.5, 7.0, 6.75, 6.5 Hz, 1 H, 3-H), 7.19-7.33 (m, 5 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 16.8 (C-3), 29.7 (C-10), 30.8 (C-6), 32.2 (C-9), 32.6 (C-7), 47.7 (C-4), 51.1 (CH₂Ar), 61.5 (C-2), 63.1 (C-5), 64.2 and 64.3 (CH₂O), 108.2 (C-8), 126.7 (p-Ar), 128.1 (o- and m-Ar), 140.0 (ipso-Ar) ppm. C₁₈H₂₄INO₂ (413.28): calcd. C 52.31, H 5.85, N 3.39, I 30.70; found C 52.29, H 5.70, N 3.40, I 30.65.

1-Benzyl-1-azaspiro[4.5]decan-3,8-dione 8-Monoethylene Acetal (3): To a solution of AgBF₄ (1.26 g, 6.4 mmol) in DMSO (80 mL) was added dropwise a solution of 2 (2.78 g, 6.7 mmol) in DMSO (60 mL). After stirring at room temp. overnight, triethylamine (1.12 mL, 8.0 mmol) was added and the stirring was maintained for an additional 1 h. The suspension was filtered through Celite, and the filtrate was partitioned between Et₂O and water. The dried organic extracts yielded crude ketone 3 (2 g) in quantitative yield. An analytical sample was obtained by crystallization. M.p. 105-107 °C. ¹H NMR (300 MHz, CDCl₃): δ = 1.54–1.68 (m, 4 H), 1.78– 1.89 (m, 2 H), 2.01–2.16 (m, 2 H), 2.46 (s, 2 H, 4-H), 3.07 (s, 2 H, 2-H), 3.75 (s, 2 H, CH₂Ar), 3.96 (s, 4 H, OCH₂), 7.20–7.35 (m, 5 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 28.8 (C-6 and C-10), 32.5 (C-7 and C-9), 47.9 (C-4), 52.0 (CH₂Ar), 58.7 (C-2), 61.9 (C-5), 64.3 and 64.4 (CH₂O), 108.0 (C-8), 127.0 (p-Ar), 128.1 and 128.3 (o- and m-Ar), 139.2 (ipso-Ar), 213.7 (C-3) ppm. IR (neat): $\tilde{v} = 1753 \text{ cm}^{-1}.C_{18}H_{23}NO_3$ (301.36): calcd. C 71.74, H 7.69, N 4.65; found C 71.92, H 7.74, N 4.67.

Reductive Amination of 3: α -(*S*)-Methylbenzylamine hydrochloride (0.5 g, 3.2 mmol) and portionwise NaCNBH₃ (0.25 g, 3.9 mmol) were added to a solution of ketone **3** (0.5 g, 1.6 mmol) in THF (10 mL). After stirring at room temp. for 24 h, water was added, and the two phases were separated. The aqueous layer was ex-

tracted with CH₂Cl₂, and the organic extracts were dried, concentrated, and purified by chromatography (Al₂O₃, hexane/CH₂Cl₂, 1:1). Firstly, amine 4a (247 mg, 38%) was eluted, and secondly, amine 4b (221 mg, 34%) was isolated. (3R or 3S)-1-Benzyl-3-[(S)-(1-phenylethyl)amino]-1-azaspiro[4.5]decan-8-one Ethylene Acetal (4a): ¹H NMR (300 MHz, CDCl₃): δ = 1.30 (d, J = 6.5 Hz, 3 H, CH₃), 1.32–2.05 (m, 9 H), 2.20 (dd, J = 12.9, 8.3 Hz, 1 H, 4-H), 2.48 (dd, J = 9.4, 5.1 Hz, 1 H, 2-H), 2.68 (dd, J = 9.4, 7.0 Hz, 1 H, 2-H), 3.10 (m, 1 H, 3-H), 3.47 (d, J = 13.1 Hz, 1 H, CH₂N), $3.64 (d, J = 13.1 Hz, 1 H, CH_2N), 3.73 (q, J = 6.5 Hz, 1 H, CHN),$ 3.94 (m, 4 H, OCH₂), 7.10–7.40 (m, 10 H) ppm. ¹³C NMR $(75 \text{ MHz}, \text{CDCl}_3)$: $\delta = 23.9 (\text{CH}_3)$, 28.8 (CH₂), 31.4 (CH₂), 32.6 (CH₂), 32.7 (CH₂), 42.2 (C-4), 52.0 (CH₂N), 52.5 (C-3), 56.0 (CHN), 57.1 (C-2), 62.1 (C-5), 64.2 and 64.3 (OCH₂), 108.6 (C-8), 126.5 (CH), 126.7 (CH), 126.9 (CH), 128.1 (CH), 128.4 (CH), 140.7 (C), 145.5 (C) ppm. HRMS (ESI-TOF): calcd. for C₂₆H₃₅N₂O₂ [M + H] 407.2693; found 407.2692. (3R or 3S)-1-Benzyl-3-[(S)-N-1-phenylethyl)amino]-1-azaspiro[4.5]decan-8-one Ethylene Acetal (4b): ¹H NMR (300 MHz, CDCl₃): $\delta = 1.26$ (d, J = 6.5 Hz, 3 H, CH₃), 1.26–2.05 (m, 9 H), 2.14 (dd, J = 12.9, 8.5 Hz, 1 H, 4-H), 2.64 (dd, J = 9.4, 4.6 Hz, 1 H, 2-H), 2.70 (dd, J = 9.4, 6.4 Hz, 1 H, 2-H), $3.02 \text{ (m, 1 H, 3-H)}, 3.46 \text{ (d, } J = 13.3 \text{ Hz}, 1 \text{ H}, \text{CH}_2\text{N}), 3.64 \text{ (d, } J$ = 13.3 Hz, 1 H, CH₂N), 3.73 (q, J = 6.5 Hz, 1 H, CHN), 3.92 (m, 4 H, CH₂O), 7.10–7.33 (m, 10 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 24.7 (CH₃), 28.1 (CH₂), 31.2 (CH₂), 32.4 (CH₂), 32.7 (CH₂), 42.7 (C-4), 51.9 (CH₂N), 52.4 (C-3), 56.4 (CHN), 56.5 (C-2), 61.7 (C-5), 64.1 and 64.2 (CH₂O), 108.5 (C-8), 126.5 (CH), 126.6 (CH), 126.8 (CH), 128.1 (CH), 128.2 (CH), 128.3 (CH), 140.8 (C), 145.4 (C) ppm. HRMS (ESI-TOF): calcd. for C₂₆H₃₅N₂O₂ [M + H] 407.2693; found 407.2691.

(S)-1-[(tert-Butyldimethylsilyl)oxy]-3-(4-methoxyphenyl)-2-propylamine (5b): tBuMe₂SiCl (4 g, 26.5 mmol) and imidazole (3.73 g, 54.8 mmol) were added to a solution of (S)-2-amino-3-(4-methoxyphenyl)propanol (5a, 4g, 22.1 mmol) in DMF (40 mL). The mixture was stirred at room temp. for 12 h, and H₂O and Et₂O were then added. The aqueous phase was extracted with CH₂Cl₂ $(3 \times 50 \text{ mL})$, and all organic extracts were dried, concentrated, and purified by chromatography (Al₂O₃, CH₂Cl₂) to afford silvl ether **5b** (5 g, 77%). ¹H NMR (300 Hz, CDCl₃): δ = 0.06 (s, 6 H, SiCH₃), 0.91 (s, 9 H, tBu), 1.40 (br. s, 2 H, NH₂), 2.45 (dd, J = 13.5, 8.4 Hz, 1 H, CH₂Ar), 2.73 (dd, J = 13.5, 5.4 Hz, 1 H, CH₂Ar), 3.05 (m, 1 H, CH), 3.43 (dd, J = 9.7, 6.5 Hz, 1 H, CH₂O), 3.57 (dd, J = 9.7, 4.4 Hz, 1 H, CH₂O), 3.80 (s, 3 H, OCH₃), 6.85 (d, J = 8.6 Hz, 2 H, *m*-Ar), 7.12 (d, *J* = 8.6 Hz, 2 H, *o*-Ar) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = -5.5$ (CH₃Si), 18.1 (CSi), 25.7 (CH₃), 39.3 (CH₂Ar), 54.3 (CH), 55.0 (CH₃O), 67.3 (CH₂O), 113.6 (*m*-Ar), 130.0 (*o*-Ar), 131.0 (*ipso*-Ar), 157.8 (*p*-Ar) ppm.

(S)-3-[(4-Methoxyphenyl)methyl]-1,4-oxazaspiro[4.5]decan-8-one Ethylene Acetal (6): To a solution of 1,4-cyclohexanedione monoethylene acetal (0.86 g, 5.5 mmol) in CH_2Cl_2 (6 mL) were added amino alcohol 5a (1 g, 5.5 mmol) and 4 Å molecular sieves (2 g). After stirring at room temp. for 2 h, the suspension was filtered through Celite, and the filtrate was concentrated to give 6 (1.8 g, quantitative). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.50-1.90$ (m, 9 H), 2.63 (dd, J = 13.6, 7.7 Hz, 1 H, CH₂Ar), 2.93 (dd, J = 13.6, 5.9 Hz, 1 H, CH₂Ar), 3.38 (t, J = 7.8 Hz, 1 H, 2-H), 3.61 (dddd, J = 7.8, 7.7, 6.5, 5.9 Hz, 1 H, 3-H), 3.79 (s, 3 H, OMe), 3.84 (dd, J = 7.8, 6.5 Hz, 1 H, 2-H), 3.94 (s, 4 H, OCH₂), 6.84 (d, J = 8.6 Hz, 2 H, m-Ar), 7.12 (d, J = 8.6 Hz, 2 H, o-Ar) ppm. ¹³C NMR (75 MHz, $CDCl_3$): $\delta = 31.8, 31.9, 32.2, 34.6, 38.7, 55.1, 58.8, 64.1, 69.7, 95.1, 58.8, 64.1, 69.7, 95.1, 58.8, 64.1, 69.7, 95.1, 58.8, 64.1, 69.7, 95.1, 58.8, 64.1, 69.7, 95.1, 58.8, 58.8, 59.8, 5$ 108.3, 113.8, 129.7, 130.1, 158.1 ppm. C₁₈H₂₅NO₄·1/2H₂O (328.49): calcd. C 65.83, H 7.98 N 4.27; found C 65.93, H 8.04, N 4.09.

(S)-4-Allyl-4-(1-[(tert-butyldimethylsilyl)oxymethyl]-2-(4-methoxyphenyl)ethylaminocyclohexanone Ethyelene Acetal (8): Following the above procedure for the preparation of 1 with the use of 1,4cyclohexanedione monoethylene acetal (1 g, 6.4 mmol) and (S)-1-[(tert-butyldimethylsilyl)oxy]-3-(4-methoxyphenyl)-2-propylamine (5, 2.5 g, 8.3 mmol), corresponding imine 7 was formed. After treatment with allylmagnesium bromide (1 M in Et₂O, 12.8 mL, 12.8 mmol), the crude product was purified by chromatography (CH₂Cl₂/MeOH, 99.5:0.5) to afford 8 (2.2 g, 72%). ¹H NMR $(300 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 0.03$ (s, 6 H, CH₃Si), 0.91 (s, 9 H, tBu), 1.30 (br. s, 1 H, NH), 1.40-1.60 (m, 6 H), 1.65 (m, 1 H), 1.75 (m, 1 H), 2.16 (m, 2 H, CH_2 CH), 2.64 (dd, J = 13.5, 5.8 Hz, 1 H, CH₂Ar), 2.76 (dd, J = 13.5, 7.1 Hz, 1 H, CH₂Ar), 2.90 (m, 1 H, CHN), 3.31 (dd, J = 9.8, 5.9 Hz, 1 H, CH₂O), 3.45 (dd, J = 9.8, 4.4 Hz, 1 H, CH₂O), 3.79 (s, 3 H, CH₃O), 3.92 (s, 4 H, OCH₂), 5.02 (dd, J = 16.0, 2.2 Hz, 1 H, cis-H), 5.03 (dd, J = 10.2, 2.2 Hz, 1 H, trans-H), 5.80 (m, 1 H, gem-H), 6.82 (d, J = 8.6 Hz, 2 H, m-Ar), 7.10 (d, J = 8.6 Hz, 2 H, o-Ar) ppm. ¹³C NMR (75 MHz, $CDCl_3$): $\delta = -5.4$ (CH₃Si), 18.2 (CMe₃), 25.9 (CH₃), 30.5 and 30.6 (C-3 and C-5), 33.1 (C-2 and C-6), 39.4 (CH₂Ar), 42.7 (CH₂CH), 53.6 (C-4), 53.8 (CHN), 55.2 (CH₃O), 64.1 (OCH₂CH₂O), 65.5 (CH₂O), 108.8 (C-1), 113.6 (m-Ar), 117.3 (=CH₂), 130.4 (o-Ar), 131.7 (ipso-Ar), 134.8 (=CH), 157.9 (p-Ar) ppm. C₂₇H₄₅NO₄Si (475.72): calcd. C 68.17, H 9.53, N 2.94; found C 68.08, H 9.74, N 2.93

(S)-4-Allyl-4-[1-(hydroxymethyl)-2-(4-methoxyphenyl)ethylamino]cyclohexanone Ethylene Acetal (9): To a solution of ether 8 (2 g, 4.2 mmol) in THF (10 mL) was added a solution of TBAF (1 м in THF, 12.6 mL, 12.6 mmol). After stirring for 1 h at room temp., the reaction was quenched with water and extracted with EtOAc. The dried organic extract was concentrated and purified by chromatography (CH₂Cl₂/MeOH, 100:0 to 97:3) to afford alcohol **9** (1.27 g, 84%). ¹H NMR (300 MHz, CDCl₃): δ = 1.35–1.75 (m, 8 H), 2.20 (m, 2 H, *CH*₂CH), 2.65 (dd, *J* = 13.5, 8.3 Hz, 1 H, CH_2Ar), 2.71 (dd, J = 13.5, 6.2 Hz, 1 H, CH_2Ar), 3.02 (m, 1 H, CHN), 3.23 (dd, J = 10.5, 3.3 Hz, 1 H, CH₂O), 3.37 (dd, J = 10.5, 4.1 Hz, 1 H, CH₂O), 3.79 (s, 3 H, OCH₃), 3.92 (s, 4 H, OCH₂), 5.07 (dm, J = 16.5 Hz, 1 H, *cis*-H), 5.09 (dm, J = 10.7 Hz, 1 H, trans-H), 5.71 (ddt, J = 16.5, 10.7, 7.3 Hz, 1 H, gem-H), 6.84 (d, J = 8.7 Hz, 2 H, *m*-Ar), 7.10 (d, J = 8.7 Hz, 2 H, *o*-Ar) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 30.5 and 30.7 (C-3 and C-5), 32.4 and 33.3 (C-2 and C-6), 39.6 (CH₂Ar), 41.8 (CH₂CH), 52.9 (CHN), 54.0 (C-4), 55.1 (CH₃O), 63.2 (CH₂O), 64.0 (OCH₂), 108.4 (C-1), 113.8 (m-Ar), 118.1 (=CH₂), 130.2 (o-Ar), 130.6 (ipso-Ar), 133.9 (=CH), 158.1 (*p*-Ar) ppm. C₂₁H₃₁NO₄ (361.46): calcd. C 69.78, H 8.64, N 3.87; found C 69.50, H 8.81, N 3.83.

7-Iodo-3-[(4-methoxyphenyl)methyl]-2,3,4,5,6,7,7a-hexahydropyrrolo[2,1-b]oxazol-5-spirocyclohexanon-4-one Ethylene Acetal (10): Iodine (1.18 g, 4.6 mmol) in CH₂Cl₂ (50 mL) was slowly added to a solution of homoallylamine 9 (0.82 g, 2.27 mmol) in CH₂Cl₂ (30 mL) and 5% aqueous NaHCO₃ solution (30 mL). The mixture was stirred at room temp. overnight. The reaction mixture was quenched with saturated aqueous Na₂SO₃ solution (50 mL), and the aqueous layer was extracted with CH_2Cl_2 (2×80 mL). The dried organic extracts were concentrated and purified by chromatography (Al₂O₃, hexane/EtOAc, 8:2) to yield 10 (0.68 g, 62%). ¹H NMR (300 MHz, CDCl₃): δ = 1.20–1.80 (m, 8 H), 2.15 (dd, J = 12.7, 10.7 Hz, 1 H, 6-H), 2.52 (dd, J = 13.6, 7.4 Hz, 1 H, CH₂Ar), 2.71 (dd, J = 13.6, 7.5 Hz, 1 H, CH₂Ar), 2.80 (dd, J =12.7, 7.5 Hz, 1 H, 6-H), 3.45–3.60 (m, 1 H, 3-H), 3.47 (dd, J = 7.5, 3.4 Hz, 1 H, CH₂O), 3.69 (dd, J = 7.5, 6.6 Hz, 1 H, CH₂O), 3.79 (s, 3 H, CH₃O), 3.89 (s, 4 H, OCH₂), 4.12 (ddd, J = 10.7, 7.7, 2.8 Hz, 1 H, CHI), 5.31 (d, J = 2.8 Hz, 1 H, CHNO), 6.82 (d, J =

8.7 Hz, 2 H, *m*-Ar), 7.12 (d, J = 8.7 Hz, 2 H, *o*-Ar) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 20.7$ (CHI), 27.6 (C-2'), 32.7 (C-3'), 32.9 (C-5'), 36.0 (C-6'), 40.6 (CH₂Ar), 48.2 (C-6), 55.2 (CH₃O), 58.0 (C-3), 64.2 i 64.3 (OCH₂CH₂O), 64.7 (C-5), 70.7 (C-2), 105.6 (C-7a), 107.7 (C-4'), 113.6 (*m*-Ar), 130.5 (*o*-Ar), 130.9 (*ipso*-Ar), 158.1 (*p*-Ar) ppm. MS (CI): m/z (%) = 486 (23) [M + 1]⁺, 374 (100).

(3S)-1-[(1S)-1-Hydroxymethyl-2-(4-methoxyphenyl)ethyl]3-iodo-1azaspiro[4.5]decan-8-one Ethylene Acetal (11): NaBH₄ (56 mg, 1.5 mmol) was added to a solution of oxazolidine 10 (240 mg, 0.50 mmol) in MeOH (12 mL), and the reaction mixture was stirred at room temp. for 2 h. After quenching with H₂O (20 mL), the solution was extracted with EtOAc (3×30 mL). The dried organic extracts furnished 11 (223 mg, 93%). ¹H NMR (200 MHz, CDCl₃): δ = 1.43–1.99 (m, 8 H), 2.18 (dd, J = 14.0, 8.1 Hz, 1 H, 4-H), 2.40– 2.68 (m, 3 H, 4-H and CH₂Ar), 2.91 (m, 1 H, CHN), 3.12-3.39 (m, 4 H, 2-H and CH₂O), 3.79 (s, 3 H, OCH₃), 3.94 (m, 4 H, OCH₂), 4.32 (m, 1 H, 3-H), 6.83 (d, J = 8.6 Hz, m-Ar), 7.07 (d, J = 8.6 Hz, o-Ar) ppm. ¹³C NMR (50 MHz, CDCl₃): δ = 15.7 (C-3), 31.5 and 32.0 (C-6 and C-10), 33.0 and 34.8 (C-7 and C-9), 36.3 (CH₂Ar), 48.0 (C-4), 54.1 (C-2), 55.2 (OCH₃), 56.1 (CHN), 60.5 (CH₂OH), 63.5 (C-5), 64.1 and 64.3 (OCH2), 108.0 (C-8), 113.8 (m-Ar), 129.6 (o-Ar), 130.5 (ipso-Ar), 158.0 (p-Ar) ppm. MS (EI): m/z (%) = 456 (3), 366 (44), 360 (3), 238 (83), 121 (100), 101 (27), 99 (25), 91 (38).

1-[(1S)-1-(Hydroxymethyl)-2-(4-methoxyphenyl)ethyl]-1-azaspiro-[4.5]decan-8-one (12): To a solution of iodide 11 (88 mg, 0.18 mmol) in benzene (3 mL) were added AIBN (2 mg, 0.01 mmol) and Bu₃SnH (0.1 mL, 0.38 mmol). The reaction mixture was heated at reflux for 2 h, cooled, and concentrated. The residue was purified by chromatography (SiO₂, CH₂Cl₂/MeOH, 100:0 to 96:4), to give **12** (46 mg, 70%). ¹H NMR (300 MHz, CDCl₃, COSY, HSQC): δ = 1.60–1.94 (m, 12 H), 2.53 (m, 1 H, CH₂Ar), 2.89 (m, 3 H, CH₂Ar and 2-H), 3.22 (m, 2 H, CHN and CH₂O), 3.36 (m, 1 H, CH₂O), 3.79 (s, 3 H, OCH₃), 3.95 (m, 4 H, OCH₂), 6.84 (d, J = 8.6 Hz, 2 H, *m*-Ar), 7.09 (d, J = 8.6 Hz, 2 H, *o*-Ar) ppm. ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 22.1$ (C-3), 30.0 (C-6 and C-10), 32.4 and 33.0 (C-7) and C-9), 34.2 (C-4), 35.9 (CH₂Ar), 43.3 (C-2), 55.2 (OCH₃), 56.8 (CHN), 60.3 (CH₂OH), 64.2 and 64.3 (OCH₂), 108.8 (C-8), 113.9 (m-Ar), 129.8 (o-Ar), 130.6 (ipso-Ar), 158.1 (p-Ar) ppm. MS (EI): m/z (%) = 362 (1), 330 (8), 241 (15), 240 (100), 135 (14), 121 (29), 74 (13), 55 (14). C₂₁H₃₁NO₄ (361.46): calcd. C 69.77, H 6.45, N 3.07; found C 69.39, H 6.67, N 2.99.

(2S)-N-(tert-Butoxycarbonyl)-1-(4-methoxyphenyl)but-3-yn-2-amine (14): Dimethyl 1-diazo-2-oxopropylphosphonate (2.66 g, 13.8 mmol) in MeOH (20 mL) and K₂CO₃ (2.55 g, 18.4 mmol) were added in sequence to a solution of aldehyde 13 (2.57 g, 9.2 mmol) in MeOH (20 mL) at 0 °C. The reaction mixture was stirred at room temp. overnight, then quenched with saturated aqueous NH₄Cl solution (50 mL), and extracted with CH₂Cl₂ $(5 \times 50 \text{ mL})$. The dried organic extracts were concentrated and purified by chromatography (SiO₂, CH₂Cl₂) to give 14 (1.87 g, 74%) as a yellowish solid. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.49$ $[s, 9 H, C(CH_3)_3], 2.35 (s, 1 H, \equiv CH), 2.94 (m, 2 H, 4-H), 3.81 (s, 2 H, 4-H), 3.81 (s, 3 H, H$ $3 \text{ H}, \text{ OCH}_3$, 4.68 (m, 1 H, 3-H), 5.07 (m, 1 H, NH), 6.89 (d, J =8.4 Hz, 2 H, *m*-Ar), 7.24 (d, J = 8.4 Hz, 2 H, *o*-Ar) ppm. ¹³C NMR $(75 \text{ MHz}, \text{CDCl}_3)$: $\delta = 28.0 [C(CH_3)_3], 40.5 (C-4), 43.7 (C-3), 54.8$ (OCH_3) , 71.9 (=CH), 79.5 [$C(CH_3)_3$], 82.7 (C-2), 113.4 (*m*-Ar), 128.1 (ipso-Ar), 130.4 (o-Ar), 154.3 (NHCO), 158.2 (p-Ar) ppm. HRMS: calcd. for C₁₆H₂₁NO₃ 275.3505; found 275.3521.

(2*S*)-3-Bromo-1-(4-methoxyphenyl)but-3-en-2-amine (15): Hydrogen bromide gas (900 mg, 11.1 mmol) was bubbled through a solution of Et_4NBr (840 mg, 4.0 mmol) in CH_2Cl_2 (10 mL) at 0 °C. A solution of amine 14 (1 g, 3.6 mmol) in CH_2Cl_2 (5 mL) was added, and

the reaction mixture was stirred for 24 h, basified with aqueous 1 N NaOH solution, and extracted with $CHCl_3$ (4 × 100 mL). The dried organic extracts were concentrated and purified by chromatography (SiO₂, CH₂Cl₂/MeOH, 100:0 to 99.5:0.5) to yield vinyl bromide 15 (420 mg, 45%) and its regioisomer 15' -not shown -(159 mg, 17%). **15**: $[a]_D = +38.9 (c = 0.59, CH_3OH)$. ¹H NMR (300 MHz, CDCl₃): δ = 1.65 (s, 2 H, NH₂), 2.71 and 2.86 (2dd, J = 13.5, 6.8 Hz, 1 H each, CH₂), 3.55 (t, J = 6.8 Hz, 1 H, CH), 3.78 (s, 3 H, OMe), 5.41 $(d, J = 1.8 \text{ Hz}, 1 \text{ H}, = \text{CH}_2), 5.61 (d, J = 1.8 \text{ Hz}, 1 \text{ H}, = \text{CH}_2), 6.83$ (d, J = 8.7 Hz, 2 H, m-Ar), 7.13 (d, J = 8.7 Hz, 2 H, o-Ar) ppm.¹³C NMR (75.5 MHz, CDCl₃): δ = 41.0 (CH₂), 55.1 (OMe), 60.9 (CH), 113.7 (m-Ar), 116.4 (=CH₂), 129.8 (ipso-Ar), 130.2 (o-Ar), 139.9 (=CBr), 158.1 (*p*-Ar) ppm. IR (NaCl): \tilde{v} = 3374, 1612, 1512, 1247 cm⁻¹. HRMS: calcd. for C₁₁H₁₄BrNO 256.1452; found 256.1460. (Z)-(2S)-4-Bromo-1-(4-methoxyphenyl)but-3-en-2-amine (15'). ¹H NMR (300 MHz, CDCl₃): δ = 1.46 (s, 2 H, NH₂), 2.62 $(dd, J = 13.5, 8.1 Hz, 1 H, CH_2), 2.82 (dd, J = 13.5, 5.1 Hz, 1 H,$ CH₂), 3.79 (s, 3 H, OMe), 4.06 (ddd, J = 8.1, 7.8, 5.1 Hz, 1 H, CH), 6.08 (dd, J = 7.8, 6.9 Hz, 1 H, CH=), 6.19 (dd, J = 6.9, 0.9 Hz, 1 H, =CHBr), 6.85 (d, J = 8.4 Hz, 2 H, m-Ar), 7.16 (d, J = 8.4 Hz, 2 H, *o*-Ar) ppm. ¹³C NMR (75.5 MHz, CDCl₃): δ = 41.7 (CH₂), 52.5 (CH), 55.2 (OCH₃), 107.6 (=CHBr), 113.8 (m-Ar), 129.8 (ipso-Ar), 130.3 (o-Ar), 138.6 (CH=), 158.2 (p-Ar) ppm.

4-Allyl-4-{N-[(S)-3-bromo-1-(4-methoxyphenyl)but-3-en-2-yl]amino}cyclohexanone Ethylene Acetal (17): To a solution of amine 15 (100 mg, 0.39 mmol) in CH₂Cl₂ (4 mL) were added molecular sieves 4 Å (600 mg) and 1,4-cyclohexanedione monoethylene acetal (51 mg, 0.33 mmol). The reaction mixture was heated at reflux, stirred for 4 h, and then filtered through Celite to give a solution of crude imine 16. To this solution was added allylmagnesium bromide (1 M in Et₂O, 0.36 mL, 0.36 mmol), and the reaction mixture was stirred at room temp. for 4 h, quenched with saturated NH₄Cl aqueous solution (15 mL), and extracted with CH_2Cl_2 (4×15 mL). The dried organic extracts were concentrated and purified by chromatography (SiO₂, CH₂Cl₂) to give 17 (106 mg, 75%). $[a]_{D} =$ + 17.5 (c = 0.23, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 1.10 (s, 1 H, NH), 1.38–1.70 (m, 7 H), 1.77–1.86 (m, 1 H), 2.16 (d, J = 7.2 Hz, 2 H, $CH_2C=$), 2.66 (dd, J = 13.5, 6.3 Hz, 1 H, CH_2Ar), 2.77 (dd, J = 13.5, 7.5 Hz, 1 H, CH₂Ar), 3.42 (dd, J = 7.5, 6.3 Hz, 1 H, CHN), 3.78 (s, 3 H, OMe), 3.90 (s, 4 H, OCH₂), 5.01 (dm, J = 18.9 Hz, 1 H, cis-H), 5.03 (dm, J = 9.3 Hz, 1 H, trans-H), 5.35 and 5.53 (2d, J = 1.7 Hz, 1 H each, CBr=CH₂), 5.64-5.78 (m, 1 H, gem-H), 6.81 (d, J = 8.7 Hz, 2 H, m-Ar), 7.09 (d, J = 8.7 Hz, 2 H, o-Ar) ppm. $^{13}\mathrm{C}$ NMR (75 MHz, CDCl₃): δ = 30.3 and 30.7 (C-3 and C-5), 32.9 and 33.1 (C-2 and C-6), 42.1 and 42.8 (CH₂C = and CH₂Ar), 54.3 (C-4), 55.2 (OCH₃), 61.2 (CHN), 64.1 (OCH₂), 108.7 (C-1), 113.6 (*m*-Ar), 116.9 (= CH_2), 117.4 (= CH_2), 130.1 (*ipso*-Ar), 130.3 (*o*-Ar), 134.6 (=CH), 141.8 (=CBr), 158.1 (*p*-Ar) ppm. HRMS: calcd. for C₂₂H₃₀BrN₂O 435.1409; found 435.1418.

1-[(*S***)-3-Bromo-1-(4-methoxyphenyl)but-3-en-2-yl]-3-iodo-1-azaspiro[4.5]decan-8-one Ethylene Acetal (18):** A solution of I₂ (252 mg, 0.99 mmol) in CH₂Cl₂ (7.5 mL) was added dropwise to a solution of amine **17** (289 mg, 0.66 mmol) in CH₂Cl₂ (2.5 mL) and 5% aqueous NaHCO₃ (7.5 mL). After stirring for 2 h at room temp., 10% aqueous Na₂S₂O₃ (20 mL) was added. The mixture was extracted with CH₂Cl₂ (4×20 mL), and the organic extracts were concentrated to give a diastereomeric mixture of iodides **18**, which was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃, COSY, HSQC): δ = 1.43–1.61 (m, 3 H), 1.76 (m, 4 H), 1.99 (m, 1 H), 2.05 (m, 1 H, 4-H), 2.50 (m, 1 H, 4-H), 2.85 (dd, *J* = 14.0, 3.6 Hz, 1 H, CH₂Ar), 3.04 (dd, *J* = 14.0, 8.8 Hz, 1 H, CH₂Ar), 3.28 (dd, *J* = 10.2, 3.2 Hz, 1 H, 2-H), 3.52 (dd, *J* = 8.8, 3.2 Hz, 1 H, 2-H), 3.78 (s, 3 H, OCH₃), 3.80 (masked, 1 H, NCH), 3.94 (m, 4 H, CH₂O), 4.16 (m, 1 H, 3-H), 5.40 (d, J = 1.4 Hz, 1 H, =CH₂), 5.58 (d, J = 1.4 Hz, 1 H, =CH₂), 6.79 (dm, J = 8.8 Hz, 2 H, *m*-Ar), 7.11 (dm, J = 8.8 Hz, 2 H, *o*-Ar) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 15.3$ (C-3), 31.6, 31.9, 32.3, 33.3 (CH₂), 38.8 (CH₂Ar), 47.9 (C-4), 55.4 (OCH₃), 56.7 (C-2), 61.0 (C-5), 62.4 (NCH), 64.5 (CH₂O), 107.9 (C-8), 113.7 (*m*-Ar), 117.5 (=CH₂), 130.2 (*o*-Ar), 130.8 (*ipso*-Ar), 138.4 (C=), 157.9 (*p*-Ar) ppm.

1-[(S)-3-Bromo-1-(4-methoxyphenyl)but-3-en-2-yl]-3-azido-1-azaspiro[4.5]decan-8-one Ethylene Acetal (19): NaN₃ (86 mg, 1.32 mmol) was added to a solution of the diastereomeric mixture of iodides 18 (0.66 mmol) in DMF (15 mL) The mixture was stirred at 50 °C for 3 h, the solvent was evaporated, and the crude product was purified by chromatography (SiO₂, CH₂Cl₂) to afford azide **19** (184 mg, 58% from **17**) as a diastereomeric mixture. ¹H NMR (300 MHz, CDCl₃): δ = 1.31 (dm, J = 12.2 Hz, 1 H), 1.41 (ddd, J = 12.6, 6.3, 3.0 Hz, 1 H), 1.51–1.62 (m), 1.66–1.87 (m), 2.06 (dd, J = 13.5, 7.5 Hz, 1 H), 2.14 (dd, J = 13.5, 7.5 Hz, 1 H), 2.76 (dd, J= 13.5, 6.6 Hz, 1 H), 2.82 (dd, J = 13.5, 5.7 Hz, 1 H), 2.99 (dd, J= 13.8, 8.7 Hz, 1 H), 3.02 (dd, J = 14.1, 9.0 Hz, 1 H), 3.12 (dd, J= 9.6, 5.1 Hz, 1 H), 3.34 (dd, J = 9.6, 4.2 Hz, 1 H), 3.40 (dd, J = 9.6, 5.7 Hz, 1 H), 3.59 (dd, J = 9.6, 6.0 Hz, 1 H), 3.78 (s, 3 H, OCH₃), 3.79 (s, 3 H, OCH₃), 3.79 [m, 2 H, N(1)CH], 3.92 (m, 8 H, CH₂O), 3.93 (m, 2 H, 3-H), 5.39 (d, J = 1.8 Hz, 1 H, =CH₂), 5.42 $(d, J = 1.8 \text{ Hz}, 1 \text{ H}, = \text{CH}_2), 5.51 (d, J = 1.8 \text{ Hz}, 1 \text{ H}, = \text{CH}_2), 5.65$ $(d, J = 1.8 \text{ Hz}, 1 \text{ H}, = \text{CH}_2), 6.81 (dm, J = 8.1 \text{ Hz}, 2 \text{ H}, m\text{-Ar}), 6.82$ (dm, J = 8.4 Hz, 2 H, m-Ar), 7.11 (dm, J = 8.1 Hz, 2 H, o-Ar), 7.14 (dm, J = 8.4 Hz, 2 H, o-Ar) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 30.9 (CH₂), 31.2 (CH₂), 32.8 (CH₂), 32.9 (CH₂), 33.0 (CH₂), 37.6 and 38.0 (CH₂Ar), 40.5 (C-4), 50.7 (C-2), 55.2 (OCH₃), 58.0 and 58.1 (C-3), 62.6, 62.7 and 62.8 [C-5 and N(1)CH], 64.3 (CH₂O), 107.9 (C-8), 113.5 (m-Ar), 117.6 and 117.8 (=CH₂), 130.0 and 130.1 (o-Ar), 130.7 and 130.8 (ipso-Ar), 138.0 (C=), 157.9 (p-Ar) ppm.

1-[(S)-3-Bromo-1-(4-methoxyphenyl)but-3-en-2-yl]-3-amino-1-azaspiro[4.5]decan-8-one Ethylene Acetal (20): Triphenylphosphane (23 mg, 0.09 mmol) was added to the diastereomeric mixture of azides 19 (14 mg, 0.03 mmol) in THF (2 mL), and the reaction mixture was stirred at room temp. for 24 h. H₂O (0.1 mL) was added and the stirring was maintained for 3 d. The reaction mixture was extracted with 1 N HCl ($2 \times 5 \text{ mL}$), and the aqueous phase was basified with K_2CO_3 and extracted with CH_2Cl_2 (4×10 mL). The dried organic extracts were concentrated and purified by chromatography (SiO₂, CH₂Cl₂/MeOH, 1:0 to 8:2) to yield a mixture of primary amines 20, from which one diastereomer was isolated in a pure form after an additional chromatographic process. **20a**: $[a]_D = +12.3$ (c = 0.46, CHCl₃). ¹H NMR (400 MHz, CDCl₃, COSY, HSQC, NOESY): δ = 1.08 (dm, J = 12.2 Hz, 1 H), 1.40 (m, 2 H), 1.57 (m 1 H), 1.68 (m, 3 H), 1.78 (m, 2 H), 2.15 (dd, J = 13.0, 7.4 Hz, 1 H, 4-H), 2.84 (dd, J = 14.0, 6.8 Hz, 1 H, CH₂Ar), 2.87 (m, 1 H, 2-H), 3.00 (dd, J = 14.0, 7.6 Hz, 1 H, CH₂Ar), 3.39 (m, 1 H, 3-H), 3.46 (dd, J = 8.4, 5.6 Hz, 1 H, 2-H), 3.78 (s, 3 H, OCH₃), 3.80 [m, 1 H, N(1)CH], 3.91 (m, 4 H, OCH₂), 5.42 (d, J = 1.8 Hz, 1 H, =CH₂), 5.59 (d, J = 1.8 Hz, 1 H, =CH₂), 6.82 (dm, J = 8.4 Hz, 2 H, *m*-Ar), 7.15 (dm, J = 8.4 Hz, 2 H, *o*-Ar) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 32.5 (CH₂), 32.7 (CH₂), 32.8 (CH₂), 32.9 (CH₂), 38.1 (CH₂Ar), 44.7 (C-4), 49.3 (C-3), 54.2 (C-2), 55.2 (OCH₃), 62.6 and 62.7 (C-5 and N(1)CH), 64.3 (CH₂O), 108.1 (C-8), 113.6 (m-Ar), 117.5 (=CH₂), 130.1 (o-Ar), 131.1 (ipso-Ar), 138.8 (C=), 158.0 (*ipso*-Ar) ppm. HRMS: calcd. for $C_{22}H_{31}BrN_2O_3$ 451.4071; found 451.4058. 20b (from a mixture): ¹H NMR (400 MHz, CDCl₃, COSY, HSQC, NOESY): $\delta = 1.20$ (m, 1 H), 1.48 (m, 1 H), 1.60 (m, 1 H, 4-H), 1.66 (m), 1.92 (td, J = 13.6, 4.0 Hz, 1 H), 2.14 (dd, J = 12.8, 7.6 Hz, 1 H, 4-H), 2.41 (br. s, 2

FULL PAPER

H, NH₂), 2.81 (dd, J = 14.0, 5.6 Hz, 1 H, CH₂Ar), 2.92 (dd, J = 14.0, 9.2 Hz, 1 H, CH₂Ar), 3.09 (dd, J = 8.8, 3.6 Hz, 1 H, 2-H), 3.26 (dd, J = 8.8, 5.2 Hz, 1 H, 2-H), 3.36 (m, 1 H, 3-H), 3.76 [m, 1 H, N(1)CH], 3.79 (s, 3 H, OCH₃), 3.92 (m, 4 H, OCH₂), 5.36 (d, J = 2.0 Hz, 1 H, =CH₂), 5.52 (d, J = 2.0 Hz, 1 H, =CH₂), 6.81 (dm, J = 8.6 Hz, 2 H, *m*-Ar), 7.11 (dm, J = 8.6 Hz, 2 H, *o*-Ar) ppm. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 30.2$ (CH₂), 32.6 (CH₂), 33.2 (CH₂), 35.1 (CH₂), 37.5 (CH₂Ar), 44.6 (C-4), 49.5 (C-3), 54.0 (C-2), 55.4 (OCH₃), 62.7 [C-5 and N(1)CH], 64.5 (CH₂O), 108.3 (C-8), 113.8 (*m*-Ar), 117.5 (=CH₂), 130.3 (*o*-Ar), 131.1 (*ipso*-Ar), 139.0 (C=), 158.2 (*ipso*-Ar) ppm.

Acknowledgments

This research was supported by the MEC (Spain)-FEDER through project CTQ2004-04701/BQU. Thanks are also due to the DURSI (Catalonia) for Grant 2005SGR-00442.

- J. Bonjoch, F. Diaba, G. Puigbó, D. Solé, V. Segarra, L. Santamaría, J. Beleta, H. Ryder, J.-M. Palacios, *Bioorg. Med. Chem.* 1999, 7, 2891–2897.
- [2] G. Puigbó, F. Diaba, J. Bonjoch, *Tetrahedron* 2003, 59, 2657– 2665.
- [3] J. Bonjoch, F. Diaba, G. Puigbó, E. Peidró, D. Solé, *Tetrahe*dron Lett. 2003, 44, 8387–8390.
- [4] F. Diaba, E. Ricou, D. Solé, E. Teixidó, N. Valls, J. Bonjoch, ARKIVOC 2007, iv, 320–330.
- [5] For a review on the synthesis of 1-azaspiro[4.5]decanes, see: G. Dake, *Tetrahedron* 2006, 62, 3467–3492.
- [6] For synthetic uses of molecular iodine in organic synthesis, see: H. Togo, S. Iida, *Synlett* 2006, 2159–2175.
- [7] For the use of iodine as a promoter in homoallylamine cyclizations through a 5-endo-trig process, see: a) ref.^[1]; b) K.-T. Chang, K. C. Jang, H.-Y. Park, Y.-K. Kim, K. H. Park, W. S. Lee, *Heterocycles* 2001, 55, 1173–1179; c) J. H. Kim, M. J. C. Long, J. Y. Kim, K. H. Park, Org. Lett. 2004, 6, 2273–2276.
- [8] For iodine-promoted cyclization of other aminoalkenes, see: a)
 S. R. Wilson, R. A. Sawicki, J. Org. Chem. 1979, 44, 287–291;
 b) D. Tanner, M. Sellén, J.-E. Bäckvall, J. Org. Chem. 1989, 54, 3374–3378;
 c) H. M. Hügel, A. B. Hugues, K. Khalil, Aust. J. Chem. 1998, 51, 1149–1155;
 d) H. M. C. Ferraz, F. L. C. Pereira, F. S. Leite, M. R. S. Nunes, M. E. Payret-Arrúa, Tetrahedron 1999, 55, 10915–10924;
 e) C. Fiorelli, C. Marchioro, G. Martelli, M. Monari, D. Savoia, Eur. J. Org. Chem. 2005, 3987–3993.
- [9] For iodoaminocyclization of tertiary amines, see: S. G. Davies, R. L. Nicholson, P. D. Price, P. M. Roberts, A. D. Smith, *Synlett* 2004, 901–903.
- [10] For pyrrolidine ring formation through iodine-promoted cyclization of homoallylic amides or carbamates, see inter alia: a)
 A. D. Jones, D. W. Knight, D. E. Hibbs, J. Chem. Soc., Perkin Trans. 1 2001, 1182–1203; b) D. W. Knight, A. L. Redfern, J. Gilmore, J. Chem. Soc., Perkin Trans. 1 2001, 2874–2883; c) T. Hashihayata, H. Sakoh, Y. Goto, K. Yamada, H. Morishima, Chem. Pharm. Bull. 2002, 50, 423–425; d) M. Amjad, D. W. Knight, Tetrahedron Lett. 2006, 47, 2825–2828; e) F. A. Davis,

M. Song, A. Augustine, *J. Org. Chem.* **2006**, *71*, 2779–2786; f) M. C. Marcotullio, V. Campagna, S. Sternativo, F. Costantino, M. Curini, *Synthesis* **2006**, 2760–2766.

- [11] For a review on the synthesis of FR901483 and TAN1251 derivatives, see: J. Bonjoch, F. Diaba, *Stud. Nat. Prod. Chem.* 2005, 32, 3–60.
- [12] J. E. Kropf, I. C. Meigh, W. P. Bebbington, S. M. Weinreb, J. Org. Chem. 2006, 71, 2046–2055.
- [13] D. M. Lemal, A. J. Fry, J. Org. Chem. 1964, 29, 1673-1676.
- [14] M. Ousmer, N. A. Braun, C. Bavoux, M. Perrin, M. A. Ciufolini, J. Am. Chem. Soc. 2001, 123, 7534–7538.
- [15] For similar procedures reducing the corresponding N-protected methyl ester, see: a) M. K. Gurjar, S. Karmakar, D. K. Mohapatra, U. D. Phalgune, *Tetrahedron Lett.* 2002, 43, 1897– 1900; b) M. P. Bosch, F. Campos, I. Niubó, G. Rosell, J. L. Díaz, J. Brea, M. I. Loza, A. Guerrero, *J. Med. Chem.* 2004, 47, 4041–4053.
- [16] For a recent example of the allylation reaction using phenylglycinol-based oxazolidines or imine, see: G. Chaume, M.-C. Van Severen, S. Marinkovic, T. Brigaud, *Org. Lett.* 2006, *8*, 6123–6126.
- [17] A possible interpretation of this generation could be that a primary alkoxyl radical was initially formed by iodine, which then evolved through an intramolecular 1,5-hydrogen abstraction to an α -aminoalkyl radical that was easily oxidized in the reaction medium to the iminium salt.
- [18] For processes in which N-(2-hydroxyethyl)pyrrolidines undergo an oxidative cyclization to the corresponding oxazolidines, see: a) J. T. Yli-Kauhaluoma, C. W. Harwig, P. Wentworth Jr, K. D. Janda, *Tetrahedron Lett.* **1998**, *39*, 2269–2272; b) A. J. Pearson, Y. Kwak, *Tetrahedron Lett.* **2005**, *46*, 3407–3410.
- [19] M. G. Constantino, G. V. J. da Silva, *Tetrahedron* 1998, 54, 11363–11374.
- [20] a) L. Belvisi, C. Gennari, G. Poli, C. Scolastico, B. Salom, *Tetrahedron: Asymmetry* 1993, 4, 273–280; b) V. I. Tararov, R. Kadyrov, T. H. Riermeier, A. Börner, *Synthesis* 2002, 3, 375–380.
- [21] J. Jurczak, D. Gryko, E. Kobrzycka, H. Gruza, P. Prokopowicz, *Tetrahedron* 1998, 54, 6051–6064.
- [22] P. Callant, L. D'Haenens, M. Vandewalle, Synth. Commun. 1984, 14, 155-161. For a recent alternative procedure to synthesize this reagent, see:J. Pietruska, A. Witt, Synthesis 2006, 4266–4268.
- [23] a) S. Ohira, Synth. Commun. 1989, 19, 561–564; b) G. J. Roth,
 B. Liepold, S. G. Müller, H. J. Bestmann, Synthesis 2004, 59–62.
- [24] For other procedures applied to N-Boc-α-aminoaldehydes, see: G. Reginato, A. Mordini, F. Messina, A. Degl'Innocenti, G. Poli, *Tetrahedron* **1996**, *52*, 10985–10996.
- [25] J. Cousseau, Synthesis 1980, 805-806.
- [26] ¹H NMR (200 MHz, CDCl₃): δ = 1.52–1.73 (m, 5 H), 1.75–2.02 (m, 3 H), 2.24 (d, *J* = 7.8 Hz, 2 H, CH₂C=), 3.95 (m, 4 H, CH₂O), 5.15 (dm, *J* = 17.0 Hz, 1 H, *cis*-H), 5.17 (dm, *J* = 8.2 Hz, 1 H, *trans*-H), 5.88 (m, 1 H, *gem*-H) ppm. MS (CI): *m/z* (%) = 198 (1), 181 (28), 157 (32), 113 (15), 100 (85), 99 (100), 95 (51), 86 (46), 71 (21), 67 (21), 57 (22), 56 (14), 55 (48), 53 (11).
- [27] For related studies about 5-endo-trig cyclizations of homoallylic amines in the field of FR901483 synthesis, see ref.^[12] Received: January 22, 2007

Published Online: April 30, 2007