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Summary of main observation and conclusion An anodic oxidation enabled synthesis of hypervalent iodine(III) reagents from aryl iodides is 
demonstrated. Under mild electrochemical conditions, a range of aryliodine(III) reagents including iodosylarenes, (difunctionaliodo)arenes, benziodoxoles 
and diaryliodonium salts can be efficiently synthesized and derivatized in good to excellent yields with high selectivity. As only electrons serve as the 
oxidation reagents, this method offers a more straightforward and sustainable manner avoiding the use of expensive or hazardous chemical oxidants. 

 

Background and Originality Content 
Hypervalent iodine reagents have taken a privileged position 

in modern organic synthesis due to their electrophilicity, valuable 
oxidizing properties and excellent leaving group ability, along with 
their nontoxic, environment-friendly nature.[1] These reagents, 
especially aryliodine(III) compounds, find tremendous 
applications in diverse chemical settings, including oxygenation 
and oxidative functionalization of various organic substrates,[2] 

functionalization of C−H bonds,[3] as group-transfer reagents in 
numerous bond-forming reactions,[4] and as carbon and 
heteroatom radical precursors or acceptors.[5] Therefore, 
development of facile, sustainable methods for the efficient 
preparation and derivatization of aryliodine(III) reagents is highly 
demanded. 

Typically, synthesis of aryliodine(III) reagents from aryl iodide 
requires the use of stoichiometric amount or an excess of 
expensive or hazardous chemical oxidants, such as peroxides 
(m-chloroperbenzoic acid, hydrogen peroxide etc.), NaBO3, NaIO4, 
Oxone or Selectfluor, which makes the process cumbersome with 
a significant environmental footprint.[1a,1b,1i] Recently, utilization of 
O2 as a terminal oxidant, Miyamoto, Uchiyama et al. and Powers 
et al. respectively developed an elegant aerobic oxidation of 
iodine(I) precursors producing hypervalent iodine reagents via 
aldehyde autoxidation intermediates without or with metal 
catalyst.[6] Since oxidation of aryl iodides is necessary for the 
generation of aryliodine(III) reagents, directly using electrons to 
perform oxidative transformation is undoubtably more 
straightforward. In fact, organic electrochemistry is known for a 
long time, offering an efficient and mild alternative to 
conventional chemical approaches for redox transformations.[7] As 
only electrons serve as reagents, it provides a cleaner manner 
avoiding the generation of chemical waste. Moreover, organic 
electrochemistry also allows for precise, external control of the 
electroorganic transformation by regulating the applied potential, 
which gives rise to inherently higher reaction selectivity, better 
functional group tolerance, milder reaction conditions, and safer 

processes.[8] With the development of equipment and technology 
in electrochemistry, the use of electricity in organic synthesis is 
currently experiencing a renaissance. A few studies have shown 
that anodic oxidation of aryl iodides provide an effective approach 
for the generation of unstable hypervalent iodine reagents 
((difluoroiodo)arenes or (dialkoxyiodo)arenes), which are mainly 
used in situ as redox mediators for the further transformation of 
organic substrates.[9] For the electro-generation of stable 
aryliodine(III) reagents, the preliminary work is mainly focus on 
the electrochemical synthesis of diaryliodonium salts (Scheme 
1a).[10] With the continued interest in electrosynthesis and 
hypervalent iodine chemistry, we questioned whether one simple 
and general anodic oxidation setting could be established for the 
direct synthesis of various types of hypervalent iodine(III) reagents. 
Herein we present a general electrochemical method for the 
synthesis of diverse aryliodine(III) reagents by anodic oxidation. 
Under mild conditions, a range of aryliodine(III) reagents including 
iodosylarenes, (difunctionaliodo)arenes, benziodoxoles and 
diaryliodonium salts can be efficiently synthesized and derivatized 
in good to excellent yields with high selectivity (Scheme 1b). 
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Scheme 1 Anodic oxidation of aryl iodides to aryliodine(III) reagents. 
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Results and Discussion 
We initiated our investigation of anodic oxidation of aryl 

iodides for the generation of iodosylarenes, which are a broadly 
important class of hypervalent iodine(III) reagents to be used in 
many oxidation reactions.[1a,1b,1i] Normally, these iodosyl 
compounds are prepared by hydrolysis of (diacetoxyiodo)arenes 
or (dichloroiodo)arenes with aqueous NaOH. Therefore, we 
commenced our study of the anodic oxidation of iodobenzene 1a 
in the presence of H2O. After a careful examination of the anodic 
oxidation conditions, we found that the desired aryliodine(III) 
compound iodosylbenzene 2a can be obtained in 80% yield under 
15 mA constant current (j = 10 mA/cm2) in 1.5 h by utilizing LiClO4 
as the electrolyte, 2,2,2-trifluoroethanol (TFE) as the solvent, in 
the presence of 5.0 equivalent H2O (Table 1, entry 1). A lower 
yield was observed when nBu4NBF4 replaced LiClO4 as the 
electrolyte (entry 2). Either using platinum plate to replace the 
graphite anode or using graphite to replace the platinum plate 
cathode led to the decrease of reaction yields (entries 3 and 4). 
The solvent had a major influence on this anodic oxidation 
reaction. When the solvent was changed to CH3CN, the yield of 2a 
reduced sharply, while methanol was not suitable for this 
transformation at all (entries 5 and 6). When keeping electric 
quantity constant, both a decrease and an increase in current 
from the standardized value of 15 mA afforded slightly lower 
yields (entries 7 and 8). When the reaction was carried out in air 
without electricity, no oxidation product was obtained (entry 9). It 
is noteworthy that, in the absence of H2O, unstable 

(difunctionaliodo)arenes 2a’ could be obtained in 91% NMR yield 
(entry 10). 

Table 1 Effects of reaction parameters. 

I I
O

C(+) | Pt(-), I = 15 mA,
H2O (5.0 equiv)

LiClO4, TFE, rt, 1.5 h

1a 2a
undivided cell

I

2a'

OCH2CF3

CF3CH2O

 
Entry Variation from standard conditions 2a Yielda /% 

1 none 80 

2 nBu4NBF4 instead of LiClO4 57 

3 Pt (+) | Pt (-) instead of C (+) | Pt (-) 66 

4 C (+) | C (-) instead of C (+) | Pt (-) 12 

5 CH3CN instead of TFE 25 

6 MeOH instead of TFE trace 

7 10 mA instead of 15 mA, 2.3 h 70 

8 20 mA instead of 15 mA, 1.1 h 71 

9 without current n.d. 

10b without H2O 91 of 2a’  

Standard conditions: graphite anode, Pt plate cathode, constant current = 
15 mA (j = 10 mA/cm2), 1a (0.2 mmol), H2O (1.0 mmol), LiClO4 (0.4 mmol), 
TFE (3.0 mL), room temperature, 1.5 h, undivided cell (2.1 F/mol). 
aIsolated yields. n.d. = not detected; bNMR yield of 2a’, see Supporting 
Information for details. 

With the optimized reaction conditions in hand for the 
preparation of iodosylarenes, we applied various aryl iodides to 
this electrochemical method (Table 2). Since iodosylarenes are 
widely used as effective oxidizing reagents in synthetic chemistry, 
substitution of the aromatic ring would offer a synthetic handle to 
tune both their oxidation potential and aggregation state.[11] We 
found that aryl iodides with substituents at the para, meta and 
ortho position of the aromatic ring all provided the desired 
products in good yields (2b-2k). Electron-withdrawing substituted 
groups on the aromatic ring were well tolerated under the 
electrochemical conditions, such as fluoro, chloro, bromo, ester, 
cyano and trifluoromethyl groups (2d-2k). Aryl iodides displaying 
alkyl substituents, such as methyl and tert-butyl group could also 
be introduced giving the corresponding oxidation product (2b, 2c). 
Moreover, simply replacing H2O into AcOH, KCl, or changing the 
solvent into 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) in the 
absence of H2O, three classic (difunctionaliodo)arenes, 
PhI(OAc)2,PhICl2 and PhI[OCH(CF3)2]2 (2l-2n) could be obtained in 
good to excellent yields with high selectivity, which are common 
hypervalent iodine(III) reagents in organic synthesis. It is worth 
mentioning that the gram scale synthesis of 2l could also proceed 
smoothly in 84% yield. Unfortunately, electron-donating groups, 
such as methoxy, amino substituents, on the aromatic ring are not 
suitable in this process. Efforts to access dinuclear iodine(III) 
reagents from 2,2'-diiodo-1,1'-biaryl compounds under the 
current conditions are not successful. In addition, besides simple 
electron-transfer in oxidation reactions, the use of benziodoxoles 
as hetero- and carbon- atom transfer reagents offers a powerful 
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method in numerous bond-forming reactions.[4b, 12] Under slightly 
modified electrochemical conditions, we found that 2-iodobenzoic 
acid could successfully convert into benziodoxole reagents in high 
yields, containing OCH2CF3 and OH groups (2o, 2p). The 
electro-generation of these three types of aryliodine(III) species is 
proposed to proceed via a two electron anodic oxidation of 
iodoarene 1. The reduction of protons represents the cathodic 
half-reaction, rendering H2 as the by-product (see Scheme S1 in 
Supporting Information). 

Table 2 Anodic oxidation for the synthesis of diverse aryliodine(III) 
reagents from aryl iodidesa. 

I
O

I
O

I
O

I
O

I
O

I
O

I
O

I
O

2b, 80% 2c, 75% 2d, 81%

2e, 78% 2f, 67% 2g, 75%

2h, 77% 2i, 86%

I

2j, 76%

I

2k, 77%

I
OAc

AcO

2l, 94%,b
 

84% (1.36 g)c

I
Cl

Cl

2m, 81%d

I OCH2CF3

2o, 86%f

I OH

2p, 97%g2n, 86%e

F

MeO2C

O

O

Me

Cl

MeO2C

tBu

Br

O

O

O

O

F3C

CN

NC

I
C(+) | Pt(-), I = 15 mA,

H2O (5.0 equiv)

LiClO4, TFE, rt, 1.5 h
undivided cell

I
L

L

R R

1 2

I
OCH(CF3)2

(F3C)2HCO

 
aStandard conditions: graphite anode, Pt plate cathode, constant current = 
15 mA (j = 10 mA/cm2), 1 (0.2 mmol), H2O (1.0 mmol), LiClO4 (0.4 mmol), 
TFE (3.0 mL), room temperature, 1.5 h, undivided cell (2.1 F/mol), isolated 
yields. b1a (1.0 mmol), AcOH (5.0 mmol) instead of H2O, LiClO4 (0.2 mmol), 
TFE (6.0 mL), 7.5 h. cgram scale synthesis, see Supporting Information for 
details. dKCl (0.6 mmol) instead of water. e1a (0.6 mmol), without H2O, 
nBu4NBF4 (0.6 mmol) instead of LiClO4, HFIP (3.0 mL) instead of TFE, 3.0 h, 
NMR yield. fwithout H2O. gCH3CN (3.0 mL) instead of TFE. 

We next explored the capability of this electrochemical setting 
for the anodic oxidative preparation of diaryliodonium salts. 

Diaryliodonium salts are usually air- and moisture-stable 
compounds, which are widely employed as exceptional aryl-group 
transfer reagents in cross-coupling reactions.[4a, 13] A few 
preliminary studies have shown that these compounds can be 
produced under electrochemical conditions.[10] After some further 
investigations, we found that utilizing trifluoromethanesulfonic 
acid (TfOH) as both the electrolyte and counteranion, CH3CN and 
TFE as the mixed solvent, a variety of diaryliodonium salts could 
be obtained in good to excellent yields under 5 mA constant 
current in 2 h (Table 3). Both cyclic (4a-4c) and acyclic (4d-4h) 
iodonium salts could be produced smoothly by this 
electrosynthesis method. Halogen substituted groups F, Cl, and Br 
on the aromatic ring were well tolerated in the anodic oxidation 
(4b, 4f-4h). 

Table 3 Anodic oxidation for the synthesis of diaryliodonium saltsa. 

C(+) | Pt(-), I = 5 mA

CH3CN/TFE (1.0/2.0 mL)

TfOH (5.0 equiv)

OTf
I

R'

I

R' RR

3 4
undivided cell

rt, 2 h

I

OTf

I

OTf Me

Me

4g, X = Cl, 69%
4f, X = F, 60%4e, 73%b

OTf
I

4a, 90% 4b, 67%

OTf
I

OTf
I

4c, 52%

4d, 81%b

Me Me X Me

I

OTf

Me Me

Me

Me

4h, X = Br, 73%

Me Me

F

 
aStandard conditions: graphite anode, Pt plate cathode, constant current = 
5 mA (j = 3.3 mA/cm2), aryl iodide (0.2 mmol), arene (0.3 mmol, for 
intermolecular reaction), TfOH (1.0 mmol), CH3CN (1.0 mL), TFE (2.0 mL), 
room temperature, 2 h, undivided cell (0.93 F/mol), isolated yields. bTFE 
(3.0mL), without CH3CN. 

Moreover, to demonstrate the efficacy of this electrochemical 
process for the anodic oxidation synthesis of diverse hypervalent 
iodine(III) reagents, we showed that simple iodobenzene can be 
efficiently transferred into phenyliodine diacetate (PIDA) under 
mild electrochemical conditions (Scheme 2). Further treatment 
with some common reagents led to the facile ligand exchange, 
derivatizing a variety of useful hypervalent iodine(III) reagents in 
good to excellent yields with high selectivity, including 
[hydroxy(phosphoryloxy)iodo] benzene (5),[14] Koser’s reagent 
(6),[15] amidoiodane (7),[16] iodonium imide (8),[17] alkynyliodonium 
salt (9),[18] aryliodonium ylide (10),[19] and Weiss’ reagent (11),[20] 
which all find numerous applications in various bond-forming 
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reactions. Furthermore, a range of important benziodoxole 
reagents containing useful OMe (12), OAc (13), CN (14), and 
acetylene (15) groups could be obtained in good to high yields via 
the ligand exchange from crude hydroxy benziodoxolone 2p 
(Scheme 3). 

Scheme 2 Derivatization of PIDA in the anodic oxidation process. 
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Scheme 3 Derivatization of hydroxy benziodoxolone in the anodic 
oxidation process. 
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Finally, as hypervalent iodine(III) reagents can be generated 
under electrochemical conditions, the development of anodic 
oxidation enabled aryl iodide catalyzed reactions have started to 
attract the attention of synthetic chemists more recently. 
Nevertheless, stoichiometric amount of aryl iodide is often 
needed in most of these in situ anodic oxidation reactions.[9a, 9b] 
Here we illustrate two oxidative transformations using 20 mol% 

iodobenzene 1a as the catalyst precursor enabled by anodic 
oxidation (Scheme 4). The difunctionalization of alkene 16 and 
tosyloxylation of 18 proceed smoothly under mild aryl iodide 
catalyzed electrochemical conditions. 

Scheme 4 Anodic oxidation enabled aryl iodide catalyzed reactions. 
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OTs
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O
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Conclusions 
In summary, we have developed a general electrochemical 

method for the efficient and sustainable synthesis of diverse 
aryliodine(III) reagents by anodic oxidation. This process works for 
a variety of aryl iodide to generate a range of aryliodine(III) 
reagents including iodosylarenes, (difunctionaliodo)arenes, 
benziodoxoles and diaryliodonium salts in good to excellent yields 
with high selectivity under mild electrochemical conditions. All 
the aryliodine(III) products were easily produced with one simple 
anodic oxidation setting, and purified by simple filtering, washing, 
or  extraction. We also demonstrate that simple aryl iodide can 
be used as catalyst precursor or catalytic mediator under anodic 
oxidation, which provides a more efficient and sustainable tactic 
for the rapid transformation of organic molecules. 

Experimental 
General Procedure for the electrosynthesis of iodosylbenzene 

(2a): To an ElectraSyn vial (5 mL) with a stir bar was added LiClO4 
(42.6 mg, 0.4 mmol, 2.0 equiv) and 2,2,2-trifluoroethanol (TFE, 3.0 
mL). Iodobenzene (1a) (40.8 mg, 0.2 mmol, 1.0 equiv), H2O (18.0 
mg, 1.0 mmol, 5.0 equiv) were added to the above solution. The 
EletraSyn vial cap equipped with anode (graphite) and cathode 
(platinum) were inserted into the mixture. The reaction mixture 
was electrolyzed under a constant current of 15 mA for 1.5 h at 
room temperature. The EletraSyn vial cap was then removed and 
electrodes were rinsed with CH2Cl2. The solvent was removed in 
vacuo and residue was washed by H2O (1.0 mL) and diethyl ether 
(1.0 mL), dried in vacuo to afford 35.2 mg of iodosylbenzene (2a) 
as yellow solid (80% yield). 

Supporting Information  
The supporting information for this article is available on the 
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An anodic oxidation enabled efficient synthesis of hypervalent iodine(III) reagents from aryl 
iodides is demonstrated. Under mild electrochemical conditions, a range of aryliodine(III) reagents 
including iodosylarenes, (difunctionaliodo)arenes, benziodoxoles and diaryliodonium salts can be 
efficiently synthesized and derivatized in good to excellent yields with high selectivity. As only 
electrons serve as the oxidation reagents, this method offers a more straightforward and 
sustainable manner avoiding the use of expensive or hazardous chemical oxidants. Bing Zu, Jie Ke, Yonghong Guo, and Chuan He*  
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