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A meso-Spiro[Cyclopentadiene-Isoporphyrin] from a Phenylethynyl
Porphyrin Platinum(II) Pincer Complex**
Shoma Anabuki, Hiroshi Shinokubo,* Naoki Aratani,* and Atsuhiro Osuka*

Pincer-type organometallic complexes have received much
attention as non-linear optical (NLO) materials, light emitting
dyes, and highly active and stable catalysts in a number of
organic transformations.[1] The tridentate ligand strongly
binds a metal to prevent ligand dissociation, thus achieving
high thermal stability. We have explored porphyrin pincer
complexes bearing palladium or platinum metal bound to the
tridentate ligand consisting of a porphyrin meso carbon and
two 2-pyridyl groups substituted at the adjacent b posi-
tions.[2–4] These porphyrin pincer complexes exhibit catalytic
reactivity in Heck reactions,[2a,b] redox-responsive pivotal
conformational switching,[4a] and large two-photon absorption
cross-sections.[2c] Porphyrin pincer complexes may serve as
precursors for peripheral functionalization of porphyrin, but
such a possibility has been scarcely tested to date. As a rare
case, we have reported that the oxidation of the phenyl-
platinum(II) pincer complex 1 with iodine induced a facile
meso-phenylation by reductive elimination (Scheme 1, (1)).[5]

Herein, we report quite different chemical behaviors of
(phenylethynyl)platinum(II) pincer complex 4 upon treat-
ment with iodine. Interestingly, in this case, reductive
elimination occurs to allow a carbon–carbon bond formation
but without liberation of platinum(II) metal, which is left
tightly bound by the two 2-pyridyl groups. Furthermore,
a meso-spiro[cyclopentadiene-isoporphyrin] was formed
unexpectedly as a doubly phenylethynylated product. Iso-
porphyrins are porphyrin tautomers that carry an interrupted

macrocyclic conjugation owing to the presence of an sp3-
hybridized meso carbon. The existence of this tautomer was
first suggested by Woodward in 1961,[6] whose prediction was
first confirmed by Dolphin et al. by their synthesis.[7] Iso-
porphyrins have been considered to be key intermediates in
the heme oxidation catalyzed by heme oxygenase,[8] but
synthetic investigations of isoporphyrins have been rather
limited.[9]

Pincer complex 3 was prepared according to our reported
procedure,[5] and was converted into phenylethynyl pincer
complex 4 by a ligand-exchange reaction (Scheme 2). This
complex was sensitive to hydrolytic cleavage on a silica gel
column and was thus isolated by recrystallization from
a mixture of CH2Cl2 and methanol in 72% yield

Scheme 1. Synthesis and transformations of porphyrin pincer com-
plexes 1–6, 9. Ar= 3,5-di-tert-butylphenyl.
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(Scheme 1, (2)). The high-resolution electrospray ionization
time-of-flight (HR-ESI-TOF) mass and 1H NMR spectra of 4
are consistent with the structure, which has been confirmed by
X-ray diffraction analysis (Figure 1a).[10] The porphyrin ring
of 4 is distorted to a saddle shape owing to the peripheral
metalation, which is similar to the porphyrin palladium(II)
pincer complexes.[2a]

To induce the reductive elimination of 4, oxidation of the
PtII center was attempted by treatment with iodine. Initially,
complex 4 was reacted with iodine under the reaction
conditions used for the meso-phenylation of 1.[5] Aqueous
work up produced a complicated mixture from which
a product was isolated in a trace amount. Fortunately, good-
quality crystals were obtained, allowing the structural deter-
mination by X-ray diffraction analysis as meso-phenacylated
porphyrin 5. In this complex, the platinum(II) ion is bound to
the a position of the phenacyl group, the two nitrogen atoms
of the 2-pyridyl groups, and iodide to give a square-planar
coordination (Figure 1b).[10] Consistent with the structure, the
parent ion peak of 5 was observed at m/z = 1524.4638 (calcd
for C80H83N6ONiPtI = 1524.4697 [M]+) in the HR-ESI-TOF
mass spectrum, and the 1H NMR spectrum of 5 at �60 8C
exhibits a singlet signal at 6.44 ppm for Ha, a set of three
signals for the phenyl group, and sets of non-equivalent
signals for both the porphyrinic b protons and pyridyl protons
(Supporting Information). On the basis of the consideration
that 5 should be a hydrolyzed product, we attempted to
improve the yield of 5 by the addition of water or hydroxide
ion. After extensive optimization, the complex 5 was obtained
in 39% yield by refluxing a mixture of 4 in chlorobenzene and
THF in the presence of I2 and aqueous KOH at 100 8C for 12 h
(Scheme 1, (3)).

In a next step, we examined the reaction of 4 with I2 under
rigorously anhydrous conditions. Treatment of 4 with I2 in
anhydrous CHCl3 at 0 8C for 12 h furnished meso-alkenylated
porphyrin 6 in 48 % yield after recrystallization from aceto-
nitrile (Scheme 1, (4)). The parent ion peak of 6 was observed
at m/z = 1634.3634 (calcd for C80H82N6NiPtI2 = 1634.3715
[M]+) in the HR-ESI-TOF mass spectrum, indicating an
addition of I2. The 1H NMR spectrum of 6 now exhibits higher
symmetry: a set of porphyrin signals were observed at 8.69–
8.61 ppm and the phenyl protons at 7.18–6.46 ppm. The X-ray
diffraction analysis revealed the structure of 6 to be a meso-
alkenyl porphyrin (Figure 1c).[10] Compound 6 is sensitive to
water and could be easily hydrolyzed by aqueous KOH to
afford 5 quantitatively.

The formation of 5 and 6 can be understood in terms of
iodination of 4 to form PtIV pincer porphyrin 7[11] and
subsequent reductive elimination to yield meso-ethynyl
porphyrin 8 (Scheme 2). The acetylene moiety in 8 is
activated by the interaction with the captured PtII ion, so
that nucleophilic attack on the ethynyl group in 8 by
hydroxide or iodide ion is facilitated to form 5 or 6
(Scheme 2).

Furthermore, during the analysis of the reaction of 4 with
I2 under anhydrous conditions, we noticed the formation of
a very polar byproduct in addition to 6, which was charac-
terized as meso-spiro[cyclopentadiene-isoporphyrin] 9. This
unique product was obtained in 22% yield (on the basis of the

Figure 1. X-ray crystal structures of a) 4, b) 5, c) 6, and d,e) 9.
Ni green, Pt yellow, N blue, O red, I purple. tert-Butyl groups, hydrogen
atoms, disordered parts, and solvent molecules are omitted for clarity.
Ellipsoids are set at 50% (4) and 30% probability (5, 6, and 9).
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amount of 4) and 44 % yield (on the
basis of the phenylethynyl moiety)
under the conditions shown in
Scheme 1, (5). The parent ion peak of
9 was observed at m/z = 1735.4126
(calcd for C88H87N6NiPtI2 = 1735.4106
[M�I3]

+) in its HR-ESI-TOF mass
spectrum, thus indicating the presence
of an additional phenylethynyl unit.
The 1H NMR spectrum of 9 exhibited
less-deshielded signals for the porphyr-
inic b protons, thus indicating a loss of a diatropic ring
current. Single crystals of 9 suitable for X-ray diffraction
analysis were grown by slow vapor diffusion of methanol into
its chloroform solution. The X-ray diffraction study revealed
a newly formed cyclopentadiene moiety that is connected at
the meso position in a spiro manner with a dihedral angle of
73.28 relative to the porphyrin mean plane, thus disrupting
a porphyrin conjugated aromatic circuit to form an isopor-
phyrin skeleton (Figure 1d,e).[10] The diamagnetic character
of 9 indicates a low-spin NiII ion in the isoporphyrin ligand. As
an isoporphyrin is a monoanionic ligand, I3

� is found as
a counterion to balance the charge for the resulting NiII

isoporphyrin cation. It is worth noting that 9 is the first
example of nickel(II) isoporphyrin.[9l]

A plausible reaction mechanism for the formation of 9 is
shown in Scheme 2, which involves the reductive elimination

of 7 to afford pincer complex iodide 10 and
iodoethynylbenzene. Subsequent insertion of
iodoethynylbenzene to 4 to form 1,3-enyny-
lated pincer complex 11, which is converted
into 9 via I2-assisted intramolecular cycliza-
tion.[12] To confirm this mechanism, the reac-
tion of 4 with iodine in the presence of 5 equiv
iodoethynylbenzene was attempted, which
indeed led to the formation of 9 in 68 % yield.

As a separate test reaction, we examined
the reaction of meso-[phenylethynylbis(tri-
phenylphosphino)platinum(II)] porphyrin
13[13] with iodine (Scheme 3). Interestingly,
this reaction did not produce the reductive
elimination product but instead afforded
iodinated PtII complex 14 in 85 % yield,
suggesting that the unique reactivity of the
complex 4 arises from the tightly bound
pincer structure.

The UV/Vis absorption spectra of 4–6 and
9 are shown in Figure 2. The complexes 5 and
6 exhibit broader Soret bands and red-shifted
Q bands relative to those of 4. The cationic
isoporphyrin 9 displays a significantly red-
shifted Q band reaching to infrared region up
to 1200 nm, which is characteristic of isopro-
phyrins but much more red-shifted than those
of other isoporphyrin metal complexes (typ-
ically around 800–900 nm).[9]

In summary, the oxidation of phenyl-
ethynyl PtII pincer complex 4 with iodine led

Scheme 2. Plausible mechanisms for the formation of 5, 6, and 9.

Scheme 3. Formation of 14 from the reaction of 13 with iodine.

Figure 2. UV/Vis absorption spectra of 4–6 and 9 in CH2Cl2.
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to formal reductive elimination, but without the liberation of
PtII, which was caught by the 2-pyridyl pincer substituents.
Importantly, the remaining PtII ion activates the ethynyl
moiety by p coordination to assist the facile formations of 5
and 6. We also found the reaction conditions under which
meso-spiro[cyclopentadiene-isoporphyrin] 9 was formed in
good yield by an additional coordination–insertion of iodoe-
thynylbenzene to 4 followed by I2-assisted intramolecular
cyclization. Further exploration of unique reactions of
porphyrin pincer complexes for porphyrin peripheral modi-
fications is actively in progress in our laboratories.
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