Dehydrative Thioglycosylation of 1-Hydroxyl Glycosides Catalyzed by In Situ-Generated All_3

Shiue-Shien Weng,* Kun-Yi Hsieh and Zih-Jian Zeng

Department of Chemistry, ROC Military Academy, Kaohsiung 830, Taiwan, ROC

(Received: November 23, 2016; Accepted: January 4, 2017; DOI: 10.1002/jccs.201600828)

Thioglycosylation of 1-hydroxyl glycosides catalyzed by in situ-generated AlI₃ from elemental aluminium and molecular iodine has been developed. This method provides an alternative route to access anomeric thioglycosides without the use of hazard Lewis acidic activators or per-modified activated thiol sources. The major advantages of this dehydrative procedure are environmental friendly, ease of operation, high anomeric diastereoselectivity, and mild reaction conditions.

Keywords: Dehydrative thioglycosylation; In situ-generated AlI₃; 1-Hydroxyl glycosides; Thioglycosides.

INTRODUCTION

Sulfur-containing glycoconjugates, glycolipids, and glycopeptides play essential roles in many biological transformations.¹ Because thioglycosidic linkages exhibit high stability toward chemical or enzymatic hydrolysis and anomerization compared to their Oglycosidic counterparts,² S-glycans are commonly used as O-glycan mimics to study therapeutics, protein interactions, and signal transactions.³ In addition, by taking advantage of the tunable reactivity of different anomeric thiol substituents toward the activator, thioglycosides have been widely utilized as universal building blocks in the sequential, programmable one-pot synthesis of oligosaccharides.⁴ As such, the development of sustainable and more efficient methods for the preparation of thioglycosides is of great interest. One of the most conventional methods to produce thioglycosides is the direct thiolysis of peracetylated sugar derivatives in the presence of Lewis acids or acidic activators including TiCl₄,⁵ BF₃-Et₂O,⁶ ZrCl₄,⁷ SnCl₄,⁸ MoO₂Cl₂,⁹ TMSOTf-Me₃SiSMe,¹⁰ ZnI₂,¹¹ AlCl₃,¹² In(OTf)₃,¹³ Fe/ I_{2} , ¹⁴ Al/I₂, ¹⁵ Et₃SiH/I₂, ¹⁶ Me₃SiSiMe₃/I₂, ¹⁷ *p*-TSA, ¹⁸ Amberlyst resin, ¹⁹ and silica-supported perchloric acid.²⁰ The sequential multistep S_N2 substitution of glycosyl halide with the basic H₂S equivalent or Na₂S in the presence of a suitable promoter also serves as a complementary approach for the synthesis of glycosyl thiol derivatives.^{21,22} However, this nucleophilic reaction requires additional procedures for the preparation

of glycosyl halides in advance, thus limiting its application.

On the contrary, the direct dehydrative thioglycosylation of 1-hydroxy glycosides is more fascinating because it allows for the synthesis of diversified sulfurcontaining core units for the construction of complex glycans.²³ However, the traditional approach of appending thioglycoside units to 1-hydroxy sugars with thiols requires the use of stoichiometric dehydration reagents such as disulfide/phosphine,²⁴ (CF₃SO₂)₂O,²⁵ chlorothiophosphonic esters,²⁶ CBr₄/PPh₃,²⁷ thionyl halides/Ag(I),²⁸ DCC/Cu(I),²⁹ and TMSCl/Zn(OTf)₂,³⁰ which do not meet the requirements of green chemistry because a significant amount of toxic and undesired waste is produced during the reaction. Alternatively, employing moisture-sensitive or precious reagents such as SnCl₄,³¹ BF₃,³² ytterbrium(OTf)₃/2-methoxyacetic acid, 33 p-TSA, 34 and In(OTf)₃¹⁹ is a greener method to achieve high conversion and avoid the production of waste; nevertheless, these protocols are also hazardous and toxic, and premodified, expensive activated thiol derivatives are sometimes required, thus making these methods harsher and restricting their utility.

Notable methods using safer hexamethyldisilane or triethyl silane reagents coupled with molecular iodine as a Lewis acid have improved the inherently inert thioglycosylation process through their operational simplicity and efficiency. Because α -glycosyl iodide is involved in the reaction, high stereoselectivities are also achieved

^{*}Corresponding author: Email: wengss@mail.cma.edu.tw

in these thiolysis manipulations. We have previously developed thioglycosylation reactions of peracetylated sugars by employing nontoxic and environmentally benign, in situ-generated FeI₃ and AlI₃ catalyst systems. In this study, we further expand the utility of this inexpensive, nontoxic, and useful catalytic system using Al metal and molecular I_2 in the dehydrative thioglycosylation of 1-hydroxy sugars.

RESULTS AND DISCUSSION

Screening of catalyst and optimized condition

To investigate this promising catalytic system, a series of in situ-generated metal iodides were screened for a model thioglycosylation reaction between 1.5 equiv of benzenethiol and an anomeric mixture of 1-hydroxyl-2,3,4,6-tetraacetyl glucoside ($\alpha/\beta = 36/64$) in CH₂Cl₂ at room temperature under N₂ atmosphere for 2 h. The reaction of 20 mol% in situ-generated TMSI with both (Me₃Si)₂ and Et₃SiH showed incomplete catalytic reactivity (Table 1, entries 1 and 2), providing the thioglucoside **1a** in 43 and 41% yields, respectively.

Weng et al.

 ZnI_2 and alkali MgI_2 performed sluggishly with low productivities,³⁵ and the product **1a** was obtained in only 24 and 11% yields, respectively (Table 1, entries 3 and 4). In situ-generated CeI₃³⁶ from CeCl₃ and NaI showed inactive efficiency (Table 1, entry 5).

Next, the studies were continued by screening other metal iodides. The yield significantly improved in the presence of 20 mol% FeI_3 ,¹⁴ and the product 1a was obtained in 58% yield (Table 1, entry 6). With the exception of InI_3^{35} (Table 1, entry 7), the group IIIa species provided the best reactivity. BI₃ generated from NaBH₄ and I_2^{37} afforded **1a** in 67% yield, although this procedure is toxic (Table 1, entry 8). Nontoxic AlI₃ showed the best reactivity,¹⁵ providing **1a** in 71% yield with exclusive β -diastereoselectivity (Table 1. entry 9). The best yield was obtained by employing 30 mol% All₃ to afford **1a** in 82% yield (Table 1, entry 10). It is noteworthy that β -anomeric diastereoselectivity was observed in the reactions because a-geometrical intermediary glycosyl iodide and neighboring 2-acetate group might be involved in these transformations. In

Table 1. Catalyst screening

Entry	Catalyst	Solvent	Yield ^a	
1 ^b	20 mol% (Me ₃ Si) ₂ /20 mol% I ₂	CH ₂ Cl ₂	43	
2 ^b	20 mol% Et ₃ SiH/20 mol% I ₂	CH_2Cl_2	41	
3 ^b	20 mol% Zn/10 mol% I ₂	CH_2Cl_2	24	
4 ^b	20 mol% Mg/60 mol% I ₂	CH_2Cl_2	11	
5 ^b	20 mol% CeCl ₃ /60 mol% NaI	CH_2Cl_2	6	
6 ^b	20 mol% Fe/30 mol% I ₂	CH_2Cl_2	58	
7 ^b	20 mol% In/30 mol% I ₂	CH_2Cl_2	38	
8 ^b	20 mol% NaBH ₄ /80 mol% I ₂	CH_2Cl_2	67	
9 ^b	20 mol% Al/30 mol% I ₂	CH_2Cl_2	71	
10 ^c	30 mol% Al/45 mol% I ₂	CH_2Cl_2	82	
11 ^c	30 mol% Al/45 mol% I ₂	EtOAc	67	
12 ^c	30 mol% Al/45 mol% I ₂	THF	55	
13 ^c	30 mol% Al/45 mol% I_2	DMF	38	
<u>14^c</u>	30 mol% Al/45 mol% I ₂	Toluene	16	

^a Isolated yield.

^b Reaction conditions: 1-hydroxyl-2,3,4,6-tetraacetate (0.5 mmol), silane or metal powder (20–30 mol%), I₂ or NaI (10–60 mol%), *para*-thiocresol (0.75 mmol), 2.5 mL of solvent, room temperature, N₂ atmosphere, 2 h.

^c Reaction conditions: 1-hydroxyl-2,3,4,6-tetraacetate (0.5 mmol), Al powder (30 mol%), I_2 (45 mol%), 2.5 mL of solvent, room temperature, N_2 atmosphere, 2 h.

Dehydrative Thioglycosylation of 1-Hydroxyl Sugars

Table 2. The scope of thiol nucleophile

_OAc	30 mol% Al _(s)	OAc
0 + B-SH	45 mol% l2	AcO SR
ACO OH		AcO
$\alpha/\beta=33/67$ OAC	∏, ∠∏	

Entry	R	Product	Yield ^a
1 ^b	4-Me-C ₆ H ₄ -	1b	81
2 ^b	2-Me-C ₆ H ₄ -	1c	77
3 ^b	4-MeO-C ₆ H ₄ -	1d	62
4 ^b	$4-Cl-C_6H_4-$	1e	79
5 ^b	2-Naphthyl-	1f	80
6 ^c	PhCH ₂ -	1g	85
7 ^c	CH ₃ CH ₂ -	1h	84
8 ^c	$(CH_3)_2CH$ -	1i	79
9 ^c	Cyclohexyl-	1j	82
10 ^c	tert-Butyl-	1k	45
11 ^c	AcSH	11	73
12 ^c	AcSK	11	13

^a Isolated yield.

^bReaction conditions: 1-hydroxyl-2,3,4,6-tetraacetate (0.5 mmol), Al powder (30 mol%), I₂ (45 mol%), 2.5 mL of solvent, room temperature, N₂ atmosphere, 2 h.

^c 2.5 equiv of thiol was used.

addition, the formation of metal oxides (e.g., ZnO, In₂O₃, Al₂O₃, and Fe₂O₃) was also observed after the basic and aqueous termination of the reactions. These results implied that the dehydrative process might proceed through an interaction between the 1-hydroxyl group and the metal iodide. Furthermore, the metal iodide might also serve as a Lewis acid catalyst because the use of catalytic amounts of metal iodide could achieve moderate yields. The solvent effect strongly influences the yield in the dehydrative thiolysis process. It was found that oxygenated solvents such as EtOAc, THF, and DMF deactivated the reactions (Table 1, entries 11-13). The less polar toluene solvent showed the worst reactivity, probably due to the incomplete formation of AlI₃ and the poor solubility of 1-hydroxyl glucoside (Table 1, entry 14).

The scope of thiol nucleophile

The application of this methodology to other mercaptans was also done (Table 2). Aromatic thiols with different electronic and steric properties were properly reacted with 1-hydroxyl-2,3,4,6-percatylated glucose using the AlI₃ catalyst to afford the thioglycosides 2-6in excellent yields. Electron-rich *para*-thiocresol showed similar reactivity to benzenethiol (Table 2, entry 1). The more sterically hindered ortho-substituted methyl group slightly influenced the reaction (Table 2, entry 2). The reaction of 4-methoxyphenyl mercaptan was sluggish, and only 62% of the desired product 1d was obtained (Table 2, entry 3), as the deprotection of the methoxy group was observed during the reaction. Both 4-chloroand 2-naphthyl thiols were suitable substrates for this manipulation, affording le and lf in excellent yields (Table 2, entries 4 and 5). We next screened the reactions of more nucleophilic aliphatic thiols. It was found that the aliphatic thiols were indeed more efficient than the aromatic ones, providing the thioglycosides 1g-1j in excellent yields (Table 2, entries 6-9). However, 2.5 equiv of aliphatic thiol is needed to achieve high yields because of the fast disulfide formation that occurred under the reaction conditions. The sterically encumbered tert-butyl mercaptan was a poor substrate for this transformation (Table 2, entry 10), and the desired product 1k was obtained in only 45% yield due to steric hindrance. The less nucleophilic thioacetic acid could also be applied to this dehydrative reaction, although with decreased conversion (Table 2, entry 11). In

Table 3. The scope of 1-hydroxyl glycosides^a

Entry	1-Hydroxyl glycosides	Product	Yield (%) ^b
1	AcO OAc AcO OAc AcO OH	AcO OAc AcO O AcO 2 SPh	71
2	AcO OAc AcO OAc OAcOH	Aco OAc Aco SPh	81
3	AcO AcO OAcOH	AcO SPh AcO 4 OAc	84
4		Aco SPh 5 OAc	82
5	AcO O OAc	Aco SPh	79
6	BzO BzO OBz	BZO BZO 7 OBZ 7 OBZ	83
7	1-Hydroxyl-D-lactose peracetate	AcO OAc ACO OAc AcO OAC SPh	77
8	1-Hydroxyl-D-maltose peracetate	A_{CO} A_{CO} A_{CO} O_{AC} O	81
9	AcO AcO NHAc		66
10	AcO AcO NHTroc	AcO O STOI ACO 11 NHTroc	78
11	Bno OBn BnO OBn OBn	BnO OBn BnO STol	64
12		HO OH HO STol	76
13	H HO HO OH	HO OH HO STOI	71

^a Reaction conditions: 1-hydroxyl sugar (0.5 mmol), benzenethiol or *p*-thiocresol (1.5 mmol), Al powder (30 mol%), I₂ (45 mol %), 2.5 mL of solvent, room temperature, N₂ atmosphere, 2 h. ^b Isolated yield.

contrast, the potassium salt of thioacetic acid was inefficiently substituted onto the anomeric center, affording thioglycoside **11** in low yield (Table 2, entry 12). This result implies that the S_N2 substitution of glycosyl iodide might not be involved in the reaction and that the β -anomeric diastereoselectivities of thioglucosides **1a–11** might be dominated by the anchimeric assistance of the 2-acetyl group.

The scope of 1-hydroxyl glycosides

To extend the scope and generality of the current dehydrative thioglycosylation protocol, reactions of other glycosyl donors were also performed (Table 3). 1-Hydroxyl peracetyl mannose exhibited anchimeric assistance with 2-axial acetate, affording the α -thioglycoside 2 in 71% vield (Table 3, entry 1). Galactosyl, xylosyl, and arabinosyl donors were smoothly reacted with benzenethiol to afford the β -thioglycosides 3–5 in 81–84% vields (Table 3, entries 2-4). Furanosyl D-ribose and 1hydroyl perbenzoyl glucose were tolerated under the reaction conditions, providing products 6 and 7 in excellent yields (Table 3, entries 5 and 6). Disaccharides with α or $\beta 1 \rightarrow 4'$ glycosidic linkages remained intact under the reaction conditions and exclusively formed the β -thioglycosides 8 and 9 in high yields (Table 3, entries 7 and 8). The current protocols tolerated N-acetyl (Ac-) and N-2,2,2-trichloroethyl carbonate (Troc-) protecting groups, and the corresponding 2-deoxy-2-N-acetyl and 2-deoxy-2-*N*-Troc- β -D-glucosides **10** and **11** were obtained in 66 and 78% yield, respectively (Table 3, entries 9 and 10). The low conversion of 10 might result from the strongly coordinated acetamide group and undesired oxazoline by-product formation. It should be noted that β -thioglycoside **12** was obtained almost exclusively in moderate yield when perbenzylated 1-hydroxyl galactose was applied under optimized conditions (Table 3, entry 11). In this case, we observed that the benzyl groups were randomly cleaved during the course of the reaction, thus decreasing the conversion of the desired product. The anomeric geometry of 12 might result from the 2-equatorial benzyl group and the α -geometry of the glucosyl iodide intermediate. The 1-hydroxyl-2,3,4,6-Oacetonide protection of isopropylidene glucoside and 4,6-O-benzylidene glucoside was also applicable, although deprotection of the acetal occurred after the aqueous workup, and both provided the corresponding product 13 in high yield (Table 3, entries 12 and 13).

Scheme 1. Synthesis of S-linked-thiodisaccharide.

We further applied the current dehydrative protocol to the direct thioglycosylation of 1-hydroxyl peracetylated glucose with methyl 2,3,4-tri-O-benzyl-6thio- α -D-glucose 14 (Scheme 1). It was found that residual 6-sulfhydryl group of 14 was smoothly reacted with anomeric carbon of 14 and afforded the desired β -(1 \rightarrow 6)-S-linked-thiodisaccharide 15 in 72% yield.

CONCLUSIONS

In conclusion, we have presented a new and handy method of dehydrative thioglycosylation of 1-hydroxyl sugars catalyzed by in situ-generated AlI₃. This operationally simple dehydrative thiolysis reaction gives rapid access to anomeric thioglycosides using nontoxic aluminium metal and I_2 which meet the recent standards of green chemistry. The current dehydrative processes occur with good to excellent diastereoselectivity, and afford product yields which provide practical alternative to access valuable *S*-glycosides.

EXPERIMENTAL

General

¹H NMR and ¹³C NMR spectra were recorded on Jeol JVM-EX400: JEOL Ltd., Tokyo, JAPAN: or Varian Unity INOVA-500 Varian Inc., California USA spectrometers in deuterochloroform with chloroform as an internal reference unless otherwise stated. Chemical shifts are reported in ppm (δ). Coupling constants, J, are reported in Hz. Electrospray (ESI) mass spectra are reported with data in the form m/e (intensity relative to base peak). Analytical TLC was visualized with UV light or with phosphomolybdic acid (PMA) and KMnO₄ staining agents. Column (flash) chromatography was performed using 32-63 m silica gel. Solvents such as CH₂Cl₂, THF, EtOAc, and DMF were dried over CaH2 before use. All reactions were run under nitrogen or Argon atmosphere and the end products were isolated as spectroscopically pure materials. The aluminum (20 µm, spherical powder, 99+%) was obtained from commercial suppliers, and was used

without further treatment. The 1-hydroxyl peracylglycosides were prepared by the transamidation of 1-acyl group of peracylated glycosides with hydrazinium acetate or primary amine^{38–40} or purchased from a commercial supplier.

General procedure for synthesis of thioglycoside from 1hydroxyl sugars

To a solution of aluminum powder (20 µm, spherical powder, 0.15 mmol, 4.5 mg) in anhydrous CH₂Cl₂ solution (2 mL) was added I₂ (0.225 mmol, 57 mg) at room temperature under nitrogen atmosphere. After being stirred for 1 h, the solution became brown purple and the aluminum powder completely disappeared. To a solution of 1-hydroxyl-2,3,4,6pentaacetyl glucose (0.5 mmol,174 mg) and $(0.75 \text{ mmol}, 83 \text{ mg}, 77 \mu \text{L})$ benzenethiol in 2 mL CH₂Cl₂ was added. The resulting dark brown mixture was stirred at ambient temperature for 2 h. The reaction was quenched by adding 3 mL saturated NaHCO₃(aq) solution. The organic layer was separated and dried over MgSO4 and filtered. The crude product was concentrated under reduced pressure and loaded directly on top of an eluent-filled silica gel column and purified by flash column chromatography, to provide 15 in 82% yield (181 mg).

Phenyl-2,3,4,6-tetra-*O*-acetyl-1-thio-β-D-glucopyra noside (1a). ¹H NMR (CDCl₃, 400 MHz): δ 7.51–7.50 (m, 2H), 7.32–7.26 (m, 3H), 5.22 (t, 1H, J = 9.2 Hz), 5.02 (dd,1H, J = 9.8; 9.7 Hz), 4.97 (dd, 1H, J = 10.1; 6.1Hz), 4.70 (d, 1H, J = 10.4 Hz), 4.21–4.19 (m, 2H), 3.72 (m, 1H), 2.09 (s, 3H), 2.07 (s, 3H), 2.01 (s, 3H), 1.98 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 170.5 170.1, 169.3, 169.2, 133.1, 131.6, 128.9, 128.4, 85.7, 75.8, 73.9, 69.9, 68.2, 62.1, 20.7, 20.7, 20.5, 20.5; ESI MS (C₂₀H₂₄O₉S, *m*/*z* 440.46): 463, (M + Na⁺); white solid; mp 118–120°C; TLC: $R_{\rm f} = 0.35$ (ethyl acetate/ hexane, 1/2).¹⁴

p-Tolyl-2,3,4,6-tetra-*O*-acetyl-1-thio-β-D-glucopyra noside (1b). ¹H NMR (CDCl₃, 400 MHz): δ 7.39 (d, 2H, J = 8.1 Hz), 7.39 (d, 2H, J = 7.9 Hz), 5.21 (dd, 1H, J = 10.0, 9.4 Hz), 5.03 (dd, 1H, J = 9.4; 9.3 Hz), 4.94 (t, 1H, J = 10.1 Hz), 4.63 (d, 1H, J = 10.0 Hz), 4.21–4.18 (m, 2H), 3.70 (ddd, 1H, J = 10.1, 4.7, 2.7 Hz), 2.35 (s, 3H), 2.09 (s, 3H), 2.08 (s, 3H), 2.01 (s, 3H), 1.98 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 170.6, 170.2, 169.4, 169.2, 138.8, 129.7, 127.6, 85.8, 75.8, 74.0, 69.9, 68.2, 62.1, 21.2, 20.7, 20.7, 20.6, 20.6; ESI MS ($C_{21}H_{26}O_9S$, m/z 454): 477 (M + Na⁺); white crystalline; mp 114–116°C; TLC: $R_f = 0.32$ (ethyl acetate/hexane, 1/2).¹⁴

o-Tolyl-2,3,4,6-tetra-*O*-acetyl-1-thio-β-D-glucopyra noside (1c). ¹H NMR (CDCl₃, 400 MHz): δ 7.49 (d, 1H, J = 7.7 Hz), 7.21–7.13 (m, 3H), 5.20 (t, 1H, J = 12.0 Hz), 5.10–5.01 (m, 2H), 4.66 (dd, 1H, J = 10.2 Hz), 4.21 (dd, 1H, J = 12.3 Hz), 4.12 (dd, 1H, J = 12.3; 2.2 Hz), 3.67 (m, 2H), 2.38 (s, 3H), 2.07 (s, 3H), 2.05 (s, 3H), 2.00 (s, 3H), 1.98 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 170.42, 170.1, 169.3, 169.2, 140.4, 131.8, 130.3, 128.4, 126.53, 86.3, 75.7, 73.9, 70.1, 68.3, 62.2, 20.8, 20.6, 20.6, 20.5, 20.5; ESI MS (C₂₁H₂₆O₉S, *m*/*z* 454): 477 (M + Na⁺); white crystalline; mp 114–116°C; TLC: $R_{\rm f} = 0.33$ (ethyl acetate/hexane, 1/2).

4-Methoxy-phenyl-2,3,4,6-tetra-*O***-acetyl-1-thio**-β-D -glucopyranoside (1d). ¹H NMR (CDCl₃, 400 MHz): δ 7.49 (d, 2H, J = 10.8 Hz), 6.84 (d, 2H, J = 10.8 Hz), 5.17 (t, 1H, J = 9.2 Hz), 4.97 (t, 1H, J = 10.0 Hz), 4.87 (t, 1H, J = 9.6 Hz), 4.53 (d, 1H, J = 10.0 Hz), 4.19 (dd, 1H, J = 12.0; 4.4 Hz), 4.15 (dd, 1H, J = 12.3, 2.2 Hz), 3.80 (s, 3H), 3.66 (ddd, 1H, J = 7.2, 4.0, 3.2 Hz), 2.08 (s, 3H), 2.05 (s, 3H), 1.99 (s, 3H), 1.96 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 170.5, 170.1, 169.3, 169.2, 160.4, 136.5, 120.8, 114.4, 85.6, 75.7, 74.0, 69.9, 68.2, 62.0, 55.3, 20.7, 20.7, 20.5, 20.5; ESI MS (C₂₁H₂₆O₁₀S, *m*/*z* 470): 493(M + Na⁺); white crystalline; mp 92–93°C; TLC: $R_{\rm f} = 0.31$ (ethyl acetate/hexane, 1/2).¹⁴

4-Chloro-phenyl-2,3,4,6-tetra-*O***-acetyl-1-thio-β-Dglucopyranoside (1e).** ¹H NMR (CDCl₃, 400 MHz): δ 7.44 (d, 2H, J = 6.4 Hz), 7.27 (d, 2H, J = 6.4 Hz), 5.21 (t, 1H, J = 9.2 Hz), 5.01 (t, 1H, J = 9.6 Hz), 4.93 (t, 1H, J = 10 Hz), 4.64 (d, 1H, J = 10.0 Hz), 4.25–4.11 (m, 2H), 3.71 (ddd, 1H, J = 10.0, 4.8, 2.8 Hz), 2.07 (s, 3H), 2.06 (s, 3H), 2.00 (s, 3H), 1.97 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 170.4, 170.1, 169.3, 169.1, 134.9, 129.4, 85.2, 75.8, 73.8, 69.8, 68.1, 62.0, 20.7, 20.6; ESI MS (C₂₀H₂₃ClO₉S, *m*/*z* 474): 497 (M + Na⁺); white crystalline; mp 112–113°C; TLC: $R_{\rm f} = 0.36$ (ethyl acetate/hexane, 1/2).¹⁴

2-Naphthyl-2,3,4,6-tetra-*O***-acetyl-1-thio-β-D-glucop yranoside (1f).** ¹H NMR (CDCl₃, 400 MHz): δ 7.99 (s, 1H), 7.83–7.77 (m, 3H), 7.57–7.46 (m, 3H), 5.26 (t, 1H, J = 9.7 Hz), 5.11–5.04 (m, 2H), 4.78 (d, 1H, J = 10.0 Hz), 4.23 (dd, 1H, J = 12.3; 5.1 Hz), 4.18 (dd, 1H, J = 12.3, 2.4 Hz), 3.72 (ddd, 1H, J = 7.4, 4.9, 2.4 Hz), 2.11 (s, 3H), 2.02 (s, 3H), 2.00 (s, 3H), 1.98 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 170.5, 170.1, 169.3, 169.21, 133.4, 132.9, 132.9, 132.7, 130.2, 128.7, 128.4, 127.7, 126.7, 126.6, 85.8, 75.9, 73.9, 70.0, 68.2, 62.1, 20.7, 20.6, 20.5, 20.5; ESI MS (C₂₄H₂₆O₉S, *m*/*z* 490): 513 (M + Na⁺); white crystalline; mp 108–109°C; TLC: $R_{\rm f} = 0.36$ (ethyl acetate/ hexane, 1/2).¹⁴

Benzyl-2,3,4,6-tetra-*O*-acetyl-1-thio-β-D-glucopyran oside (1g). ¹H NMR (CDCl₃, 400 MHz): δ 7.33–7.27 (m, 5H), 5.15–5.03 (m, 3H), 4.28 (d, 1H, J = 9.7 Hz), 4.25 (dd, 1H, J = 12.4; 5.1 Hz), 4.13 (dd, 1H, J = 12.4, 2.3 Hz), 3.94 (d, 1H, J = 12.9 Hz), 3.83 (d, 1H, J = 12.9 Hz), 3.59 (ddd, 1H, J = 9.7, 5.0, 2.3 Hz), 2.11 (s, 3H), 2.06 (s, 6H), 1.99 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 170.6, 170.1, 169.4, 169.3, 136.8, 129.0, 128.6, 127.4, 81.9, 75.8, 73.8, 69.6, 62.2, 33.7, 20.7, 20.6, 20.5, 20.5; ESI MS (C₂₁H₂₆O₉S, *m*/*z* 454): 477 (M + Na⁺); white crystalline; mp 98–99°C; TLC: $R_{\rm f} = 0.38$ (ethyl acetate/hexane, 1/2).¹⁴

Ethyl-2,3,4,6-tetra-*O***-acetyl-1-thio-**β**-**D**-glucopyrano side (1h).** ¹H NMR (CDCl₃, 400 MHz): δ 5.22 (t, 1H, J = 9.2 Hz), 5.06 (t, 1H, J = 10.0 Hz), 5.01 (t, 1H, J = 10 Hz), 4.48 (d, 1H, J = 10.0 Hz), 4.24 (dd, 1H, J = 12.0, 3.2 Hz), 4.11 (dd, 1H, J = 12.4, 2.0 Hz), 3.69 (ddd, 1H, J = 10.0, 4.8, 2.4 Hz), 2.74–2.63 (m, 2H), 2.05 (s, 3H), 2.03 (s, 3H), 1.99 (s, 3H), 1.97 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 170.6, 170.1, 169.3, 169.3, 83.5, 75.8, 73.9, 69.8, 68.3, 62.1, 24.1, 20.7, 20.5, 20.5, 14.8; ESI MS (C₁₆H₂₄O₉S, *m*/*z* 392): 415 (M + Na⁺); white crystalline; mp 82–83°C TLC: $R_{\rm f} = 0.36$ (ethyl acetate/hexane, 1/2).¹⁴

Iso-propyl-2,3,4,6-tetra-*O*-acetyl-1-thio-β-D-glucopy ranoside (1i). ¹H NMR (CDCl₃, 400 MHz): δ 5.20 (t, 1H, J = 9.3 Hz), 5.04 (t, 1H, J = 9.8 Hz), 4.97 (t, 1H, J = 9.8 Hz), 4.56 (d, 1H, J = 10.1 Hz), 4.20 (dd, 1H, J = 12.3, 5.3 Hz), 4.10 (m, 1H), 3.68 (ddd, 1H, J = 9.9, 5.2, 2.2 Hz), 3.14 (septet, 1H), 2.04 (s, 3H), 2.02 (s, 3H), 2.01 (s, 3H), 1.99 (s, 3H), 1.98 (s, 3H), 1.27 (dd, 6H, J = 6.6, 4.1 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 170.5, 170.1, 169.3, 169.3, 83.3, 75.9, 73.8, 70.2, 68.4, 62.2, 35.6, 24.0, 23.7, 20.7, 20.6, 20.53, 20.5; ESI MS (C₁₇H₂₆O₉S, *m*/*z* 406): 429 (M + Na⁺); white solid; mp 108–111°C; TLC: $R_{\rm f} = 0.39$ (ethyl acetate/hexane, 1/2).¹⁴ **Cyclohexyl-2,3,4,6-tetra-***O***-acetyl-1-thio-β-D-glucop yranoside (1j).** ¹H NMR (CDCl₃, 400 MHz): δ 5.21 (t, 1H, J = 9.4 Hz), 5.06 (t, 1H, J = 9.9 Hz), 4.98 (t, 1H, J = 10.1 Hz), 4.59 (d, 1H, J = 10.1 Hz), 4.21 (dd, 1H, J = 12.3, 5.3 Hz), 4.12 (dd, 1H, J = 12.4, 2.5 Hz), 3.69 (ddd, 1H, J = 10.0, 5.4, 2.5 Hz), 2.89 (m, 2H), 2.06 (s, 3H), 2.03 (s, 3H), 2.02 (s, 3H), 1.99 (s, 3H), 1.98 (m, 2H), 1.75 (m, 2H), 1.43–1.21 (m, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ 170.6, 170.2, 169.4, 169.3, 83.2, 75.7, 74.0, 70.3, 68.5, 62.3, 43.9, 34.2, 33.9, 26.0, 25.9, 25.6, 20.7, 20.7, 20.58, 20.56; ESI MS (C₂₀H₃₀O₉S, *m*/*z* 446): 469 (M + Na⁺); white solid; mp 120–122°C; TLC: $R_{\rm f} = 0.40$ (ethyl acetate/hexane, 1/2).¹⁴

Tert-butyl-2,3,4,6-tetra-*O*-acetyl-1-thio-β-D-glucopy ranoside (1k). ¹H NMR (CDCl₃, 400 MHz): δ 5.25 (t, 1H, J = 9.3 Hz), 5.03 (t, 1H, J = 9.7 Hz), 4.94 (t, 1H, J = 9.8 Hz), 4.63 (d, 1H, J = 10.0 Hz), 4.19 (dd, 1H, J = 12.2, 6.0 Hz), 4.10 (dd, 1H, J = 12.2, 2.2 Hz), 3.71 (ddd, 1H, J = 6.4, 6.0, 2.3 Hz), 2.04 (s, 3H), 2.03 (s, 3H), 2.02 (s, 3H), 2.0 (s, 3H), 1.36 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ 170.6, 170.2, 169.4, 169.3, 82.3, 75.6, 74.0, 70.2, 68.6, 62.6, 44.3, 31.4, 20.7, 20.7, 20.58, 20.56; ESI MS (C₁₈H₂₈O₉S, *m*/*z* 420): 443 (M + Na⁺); white solid; mp 140–142°C; TLC: $R_{\rm f} = 0.23$ (ethyl acetate/hexane, 1/2).¹⁴

2,3,4,6-Tetra-*O***-acetyl-1-***S***-acetyl-1-***thio*-β**-***D***-glucop yranoside (11).** ¹H NMR (CDCl₃, 400 MHz): δ 5.24 (d, 1H, J = 10.0 Hz), 5.14–5.08 (m, 2H), 4.25 (dd, 1H, J = 12.5; 4.4 Hz), 4.08 (dd, 1H, J = 12.4; 1.6 Hz), 3.83 (dt, 1H, J = 10.0 Hz, J = 1.8 Hz), 2.38 (s, 3H), 2.07 (s, 3H), 2.03 (s, 3H), 2.02 (s, 3H), 1.99 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 192.0, 170.6, 169.9, 169.33, 169.28, 80.1, 76.3, 73.9, 68.9, 67.8, 61.6, 30.8, 20.66, 20.51, 20.3, 20.2; ESI MS (C₁₇H₂₅O₁₀S, *m/z* 421): 445 -(M + Na + H⁺); TLC: $R_{\rm f} = 0.33$ (ethyl acetate/hexane, 1/2).¹⁴

Phenyl-2,3,4,6-tetra-*O*-acetyl-1-thio-α-D-mannopyr anoside (2). ¹H NMR (CDCl₃, 400 MHz): δ 7.50–7.48 (m, 2H), 7.33–7.29 (m, 3H), 5.59 (brs, 1H), 5.36–5.29 (m, 2H), 4,55 (m, 1H), 4.30 (dd, 1H, J = 12.4; 6.0 Hz), 4.10 (dd, 1H, J = 12.4 Hz, J = 2.4 Hz), 2.15 (s, 3H), 2.08 (s, 3H), 2.05 (s, 3H), 2.02 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 170.5, 169.9, 169.8, 169.1, 132.6, 132.0, 129.2, 128.1, 85.7, 70.9, 69.5, 69.4, 66.4, 62.4, 20.9, 20.7, 20.7, 20.6; ESI MS (C₂₀H₂₄O₉S, *m*/*z* 440): 463 (M + Na⁺); TLC: $R_{\rm f} = 0.27$ (ethyl acetate/hexane, 1/3).¹⁴

Phenyl-2,3,4,6-tetra-*O*-acetyl-1-thio-β-D-galactopyr anoside (3). ¹H NMR (CDCl₃, 400 MHz): δ 7.47–7.45 (m, 2H), 7.26–7.24 (m, 3H, aromatic H), 5.36 (d, 1H, J = 3.2 Hz), 5.18 (t, 1H, J = 10.0 Hz), 5.01 (dd, 1H, J = 10.0; 3.2 Hz), 4.69 (d, 1H, J = 10.0 Hz), 4.13 (dd, 1H, J = 11.6 Hz, J = 7.2 Hz), 4.06 (dd, 1H, J = 11.6 Hz, J = 6 Hz), 3.91 (t, 1H, J = 6.8 Hz), 2.05 (s, 3H), 2.03 (s, 3H), 1.97 (s, 3H), 1.91 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 170.0, 169.8, 169.6, 169.1, 132.2, 128.6, 127.8, 86.1, 74.1, 71.7, 67.0, 61.4, 20.5, 20.3, 20.3, 20.2; ESIMS (C₂₀H₂₄O₉S, *m/z* 440): 463 (M + Na⁺); TLC: $R_{\rm f} = 0.33$ (ethyl acetate/hexane, 1/2).¹⁴

Phenyl-2,3,4-tri-O-acetyl-1-thio-β-D-xylopyranoside (4). ¹H NMR (CDCl₃, 400 MHz): δ 7.50–7.47 (m, 2H), 7.33–7.31 (m, 3H), 5.19 (t, 1H, J = 8.2 Hz), 4.90 (t, 1H, J = 8.2 Hz), 4.88 (m, 1H). 4.78 (dd, 1H, J = 8.3 Hz), 4.28 (dd, 1H, J = 11.8; 4.9 Hz), 3.42 (dd, 1H, J = 12.0, 8.8 Hz), 2.11 (s, 3H), 2.04 (S, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ 169.9, 169.7, 169.3, 132.7, 132.2, 129.0, 128.2, 86.2, 72.0, 69.8, 68.4, 65.2, 20.8, 20.7; ESIMS (C₁₇H₂₀O₇S, *m*/*z* 368): 391 (M + Na⁺); white crystalline; mp 76–77°C; TLC: $R_{\rm f} = 0.26$ (ethyl acetate/hexane, 1/3).¹⁴

Phenyl-2,3,4-tri-*O*-acetyl-1-thio-β-L-arabinopyranos ide (5). ¹H NMR (CDCl₃, 400 MHz): δ 7.49–7.46 (m, 2H), 7.28–7.27 (m, 3H), 5.26–5.20 (m, 1H), 5.23 (t, 1H, J = 8.2 Hz), 5.09 (dd, 1H, J = 8.44, 3.4 Hz), 4.80 (d, 1H, J = 7.8 Hz), 4.12 (dd, 1H, J = 12.7, 4.2 Hz), 3.65 (dd, 1H, J = 12.7, 2.0 Hz), 2.06 (S, 6H), 2.01 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 169.9, 169.7, 169.2, 133.1, 132.1, 128.8, 127.7, 86.5, 70.3, 68.3, 67.4, 65.1, 20.6, 30.6, 20.5; ESIMS (C₁₇H₂₀O₇S, *m/z* 368): 391 (M + Na⁺); TLC: $R_{\rm f} = 0.28$ (ethyl acetate/hexane, 1/3).¹⁴

Phenyl-2,3,5-tetra-*O*-acetyl-β-D-ribofuranoside (6). ¹H NMR (CDCl₃, 400 MHz): δ 7.53–7.51 (m, 2H), 7.34–7.32 (m, 3H), 5.31 (d, 1H, J = 4.8 Hz), 5.26–5.19 (m, 2H), 4.27 (m, 1H). 4.26 (dd, 1H, J = 12.8, 2.8 Hz), 4.09 (dd, 1H, J = 12.8, 5.2 Hz), 2.09 (s, 3H), 2.07 (s, 3H), 2.06 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 170.5, 169.6, 133.4, 131.7, 129.0, 128.4, 87.9, 80.1, 73.9, 71.4, 63.4, 20.8, 20.5; ESI MS (C₁₇H₂₀O₇S, *m/z* 368): 391 (M + Na⁺); TLC: $R_{\rm f} = 0.31$ (ethyl acetate/hexane, 1/3).¹⁴

p-Tolyl-2,3,4,6-tetra-*O*-benzoyl-1-thio- β -D-glucopyr anoside (7). ¹H NMR (CDCl₃, 500 MHz): δ 8.08 (d,

2H, J = 7.8 Hz), 8.00 (d, 2H, J = 7.8 Hz), 7.92 (d, 2H, J = 7.8 Hz), 7.82 (d, 2H, J = 7.8 Hz), 7.62 (t, 1H, J = 7.4 Hz), 7.57–7.40 (m, 9H), 7.36 (t, 2H, J = 7.7 Hz), 7.28 (t, 2H, J = 7.9 Hz), 6.96 (d, 2H, J = 7.9 Hz), 5.93 (t, 1H, J = 9.5 Hz), 5.62 (t, 1H, J = 9.8 Hz), 5.49 (t, 1H, J = 9.8 Hz), 5.01 (d, 1H, J = 9.9 Hz), 4.71 (dd, 1H, J = 12.2; 2.1 Hz), 4.50 (dd, 1H, J = 12.2; 5.7 Hz), 4.23–4.19 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 166.0, 165.8, 165.1, 165.0, 138.6, 133.87, 133.43, 133.27, 133.17, 133.1, 129.82, 129.80, 129.69, 129.60, 129.2, 128.74, 128.67, 128.4, 128.2, 127.5, 86.28, 76.2, 74.2, 70.4, 69.3, 63.1, 21.1; ESIMS (C₄₁H₃₄IO₉, *m/z* 703): 726 (M + Na⁺); TLC: $R_{\rm f} = 0.42$ (ethyl acetate/hexane, 1/1).¹⁴

Phenvl-2.3.6-tri-O-acetvl-4-O-(2'.3'.4'.6'-tetra-Oacetyl-B-D-galactopyranosyl)-1-thio-B-D-glucopyranoside **(8).** ¹H NMR (CDCl₃, 400 MHz): δ 7.49–7.46 (m, 2H), 7.33-7.27 (m, 3H), 5.34 (dd, 1H, J = 3.4; 1.0 Hz), 5.23 (t, 1H, J = 9.2 Hz), 5.09 (dd, 1H, J = 10.4; 7.8 Hz), 4.94 (dd, 1H, J = 10.4, 3.4 Hz), 4.88 (dd, 1H, J = 10.0, 9.2 Hz), 4.66 (d, 1H, J = 10.1Hz), 4.52 (dd, 1H, J = 12.0, 2.0 Hz), 4.46 (d, 1H, J = 8.0 Hz), 4.10 (m, 1H), 4.14–4.04 (m, 2H), 3.85 (bt, 1H, J = 7.2 Hz), 3.63–3.62 (m, 2H), 2.15 (s, 3H), 2.10 (s, 3H), 2.09, (s, 3H), 2.04 (s, 6H), 2.03 (s, 3H), 1.95 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 170.2, 170.2, 170.0, 169.9, 169.6, 169.5, 169.05, 133.0, 131.7, 128.8, 128.2, 100.9, 85.4, 76.15, 73.8, 70.9, 70.7, 70.3, 69.1, 66.6, 62.1, 60.8, 20.72, 20.67, 20.5, 20.4; ESI MS ($C_{32}H_{40}O_{17}S$, m/z 728): 752 (M + Na⁺); white crystalline; mp 170–171°C; TLC: $R_f = 0.13$ (ethyl acetate/hexane, 1/1).¹⁴

Phenyl-2,3,6-tri-*O*-acetyl-4-*O*-(2',3',4',6'-tetra-*O*acetyl-α-D-glucopyranosyl)-1-thio-β-D-glucopyranoside (9). ¹H NMR (CDCl₃, 400 MHz): δ 7.48–7.46 (m, 2H), 7.34–7.27 (m, 3H), 5.37 (d, 1H, *J* = 4 Hz), 5.33 (dd, 1H, *J* = 10.3, 9.7Hz,), 5.27 (t, 1H, *J* = 8.9Hz), 5.02 (dd, 1H, *J* = 10.0; 9.7 Hz), 4.89–4.79 (m, 2H), 4.52 (d, 1H, *J* = 10.0 Hz), 4.27–4.21 (m, 2H), 4.16 (dd, 1H, *J* = 12.4, 7.7 Hz), 4.03 (dd, 1H, *J* = 12.4, 2.1 Hz), 3.95–3.87 (m, 2H), 3.70 (ddd, 1H, *J* = 7.5, 4.8, 2.6 Hz), 2.11 (s, 3H), 2.09 (s, 3H), 2.05 (s, 3H), 2.02 (s, 3H), 2.01 (s, 3H), 1.98 (s, 3H), 1.97 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 170.49, 170.47, 170.3, 170.1, 169.9, 169.5, 169.4, 133.4, 131.3, 128.9, 128.4, 95.6, 85.1, 76.5, 76.1, 72.6, 70.7, 70.0, 69.3, 68.6, 68.1, 62.9, 61.6, 20.86, 20.83, 20.76, 20.67, 20.63; ESIMS Dehydrative Thioglycosylation of 1-Hydroxyl Sugars

 $(C_{32}H_{40}O_{17}S, m/z 728)$: 751 (M + Na⁺); TLC: $R_f = 0.12$ (ethyl acetate/hexane, 1/1).¹⁴

p-Tolyl-2-acetamido-3,4,6-tetra-*O*-acetyl-2-deoxy-1-thio-β-D-glucopyranoside (10). ¹H NMR (CDCl₃, 400 MHz): δ 7.39 (d, 2H, J = 8.0 Hz), 7.10 (d, 2H, J = 8.0 Hz), 5.61 (t, 1H, J = 8.7 Hz), 5.19 (t, 1H, J = 9.8 Hz), 5.02 (t, 1H, J = 9.7 Hz), 4.69 (d, 1H, J = 10.4 Hz), 4.19–4.16 (m, 2H), 3.97 (dd, 1H, J = 9.4 Hz, J = 3.2 Hz), 3.71–3.67 (m, 1H), 2.33 (s, 3H), 2.07 (s, 3H), 2.05 (s, 3H), 2.00 (s, 3H), 1.98 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 170.9, 170.6, 170.1, 169.3, 132.5, 132.3, 128.8, 127.9, 86.5, 75.6, 73.7, 68.5, 62.4, 53.2, 23.2, 20.7, 20.6, 20.5; ESIMS (C₂₁H₂₇NO₈S, *m*/*z* 453): 476 (M + Na⁺); TLC: $R_f =$ 0.39 (ethyl acetate/hexane, 1/1).¹⁴

p-Methylphenyl-3,4,6-tri-*O*-acetyl-2-deoxy-1-thio-2-(2,2,2-trichloroethyloxycarbonylamino)-β-D-

glucopyranoside (11). ¹H NMR (CDCl₃, 400 MHz): δ 7.41 (d, 2H, J = 8.0 Hz), 7.11 (d, 2H, J = 8.0 Hz), 5.25 (q, 2H, J = 10.0 Hz), 5.01 (t, 1H, J = 10.0 Hz), 4.79 (d, 2H, J = 10.4 Hz), 4.72 (d, 1H, J = 12.0 Hz), 4.22 (dd, 1H, J = 12.4, 5.2 Hz), 4.16 (dd, 1H, J = 12.4, 2.4 Hz), 3.07 (septet, 1H, J = 2.4 Hz), 2.35 (s, 3H), 2.08 (s, 3H), 2.005 (s, 3H), 2.002 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 170.59, 170.56, 169.4, 153.8, 138.7, 133.7, 129.7, 127.9, 86.7, 75.8, 74.5, 73.2, 68.5, 62.3, 55.0, 21.2, 20.7, 20.6, 20.56; ESIMS (C₂₂H₂₆Cl₃NO₉S, *m*/*z* 587): 610 (M + Na⁺); TLC: $R_{\rm f} =$ 0.32 (ethyl acetate/hexane, 1/2).⁴¹

p-Methylphenyl-2,3,4,6-tetra-O-benzyl-1-thio-β-Dgalactopyranoside (12). ¹H NMR (CDCl₃, 400 MHz): δ 7.46 (d, 1H, J = 1.6 Hz), 7.44 (t, 2H, J = 2.0 Hz), 7.41–7.23 (m, 21H), 7.05 (d, 2H, J = 7.6 Hz), 5.69 (d, 1H, J = 5.6 Hz), 5.01 (d, 1H, J = 11.2 Hz), 4.92 (d, 1H, J = 12.0 Hz), 4.82 (d, 1H, J = 11.6 Hz), 4.78 (d, 1H, J = 12.0 Hz), 4.74 (d, 1H, J = 11.6 Hz), 4.63 (d, 1H, J = 11.6 Hz), 4.54 (dd, 1H, J = 4.0 Hz), 4.43 (q, 2H, J = 6.8 Hz), 4.41–4.38 (m, 1H), 4.03 (q, 1H, J = 1.6 Hz), 3.87 (dd, 1H, J = 10.0, 2.8 Hz), 3.64–3.54 (m, 2H) , 2.32 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): 8 138.7, 138.6, 138.1, 138.0, 137.1, 123.3, 130.6, 129.6, 128.4, 128.3, 128.27, 128.17, 128.10, 127.9, 127.64, 127.62, 127.56, 127.50, 127.46, 127.41, 87.9, 79.4, 76.5, 75.2, 74.8, 73.4, 73.3, 72.5, 70.2, ESIMS 68.9, 29.7; $(C_{41}H_{42}O_5S,$ m|z647): 670 (M + Na⁺); TLC: $R_f = 0.36$ (ethyl acetate/hexane, 1/12).42

p-Methylphenyl-1-thio-β-D-glucopyranoside (13). ¹H NMR (CDCl₃, 400 MHz): δ 7.46 (d, 2H, J = 8.0 Hz), 7.13 (d, 2H, J = 8.0 Hz), 4.58 (bs, 1H, OH), 4.52 (d, 1H, J = 7.4 Hz), 3.86 (dd, 1H, J = 11.0, 1.4 Hz), 3.68 (t, 1H, J = 2.6 Hz), 3.67 (dd, 1H, J = 11.1, 4.9 Hz), 3.36–3.26 (m, 2H), 3.20 (t, 1H, J = 9.6 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 170.9, 170.6, 170.1, 169.3, 132.5, 132.3, 138.9, 133.6, 131.2, 130.7, 89.7, 82.1, 79.7, 73.8, 71.5, 63.0, 21.2; ESIMS (C₁₃H₁₈O₅S, *m*/*z* 286): 309 (M + Na⁺); TLC: $R_{\rm f} = 0.36$ (ethyl acetate, 100%).⁹

Procedure for synthesis of $\beta\mathchar`-(1 \rightarrow 6)\mathchar`-S\mathchar`-linked-thiodisacc haride 15$

To aluminum powder (20 um, spherical powder, 0.18 mmol, 5.4 mg) in anhydrous CH₂Cl₂ solution (2 mL) was added I₂ (0.27 mmol, 68 mg) at room temperature under nitrogen atmosphere. After being stirred for 1 h, the solution became brown purple and the aluminum powder completely disappeared. To a solution of 1-hydroxyl-2,3,4,6-pentaacetyl glucose (0.6 mmol, 209 mg) and 0.5 mmol 2,3,4-tri-O-benzyl-6-thio-α-Dglucose 14 (0.5 mmol, 240 mg) in 2 mL CH₂Cl₂, the above solution was added. The resulting dark brown mixture was stirred at ambient temperature for 2 h. The reaction was quenched by adding 3 mL saturated NaHCO₃(aq) solution. The organic layer was separated and dried over MgSO₄ and filtered. The crude product was concentrated under reduced pressure and loaded directly on top of an eluent-filled silica gel column and purified by flash column chromatography to provide 15 in 72% yield (292 mg).

Methyl-2,3,4,-tri-*O*-benzyl-6-*S*-(2',3',4',6'-tetra-*O*acetyl-β-D-glucopyranosyl)-6-thio-α-D-glucopyranoside (15).⁹ ¹H NMR (CDCl₃, 400 MHz) δ 7.37–7.27 (m, 15H), 5.19 (t, J = 9.6, 1H), 5.05 (t, J = 9.6, 1H), 4.95 (t, J = 7.2, 1H), 4.98 (d, J = 11.0, 1H), 4.92 (d, 1H, J = 11.0), 4.81–4.77 (m, 2H), 4.66 (d, J = 13.2, 1H), 4.64 (d, J = 13.2, 1H), 4.60 (d, J = 7.2, 1H), 4.57 (d, J = 3.6, 1H), 4.18 (dd, J = 12.4, 4.8, 1H), 4.05 (dd, J = 12.4, 2.0, 1H), 3.96 (t, J = 9.2, 1H), 3.83 (td, J = 8.0, 2.0, 1H), 3.59 (ddd, J = 10.0, 4.4, 2.0, 1H), 3.49 (dd, J = 9.6, 3.2, 1H), 3.40 (s, 3H), 3.31 (t, J = 9.2, 1H), 3.00 (dd, J = 13.6, 2.0, 1H), 2.69 (dd, J = 13.6, 8.8, 1H), 2.04 (s, 3H), 2.02 (s, 3H), 2.01 (s, 3H), 2.00 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 170.6, 170.2, 169.3, 169.1, 138.6, 138.2, 138.1, 128.47, 128.45, 128.37,

9

128.0, 127.94, 127.86, 127.83, 127.6, 97.8, 83.9, 81.9, 80.7, 79.9, 75.71, 75.70, 75.0, 73.9, 73.3, 71.0, 70.2, 68.3, 62.0, 55.1, 31.6, 20.61, 20.58, 20.55, 20.51; 810.9; ESI-MS ($C_{42}H_{50}O_{14}S$, *m/z* 810): 833 (M + Na⁺); TLC $R_{f} = 0.38$ (ethyl acetate/hexane, 1/2).^{43,44}

ACKNOWLEDGMENTS

This work was supported by the Ministry of Science and Technology ROC, Taiwan (MOST-103-2113-M-145-001), and the authors declare no competing financial interest. We thank the Center for Resources and Development (CRRD), Kaohsiung Medical University for services in NMR analysis.

REFERENCES

- 1. K. Pachamuthu, R. R. Schmidt, Chem. Rev. 2006, 106, 160.
- E. J. Grayson, S. J. Ward, A. L. Hall, P. M. Rendle, D. P. Gamblin, A. S. Batsanov, B. G. Davis, *J. Org. Chem.* 2005, 70, 9740.
- 3. P. J. Garegg, Adv. Carbohydr. Chem. Biochem. 1997, 52, 179.
- Z. Zhang, I. R. Ollmann, X.-S. Ye, R. Wischnat, T. Baasov, C.-H. Wong, J. Am. Chem. Soc. 1999, 121, 734.
- C. Malet, J. L. Viladot, A. Ochoa, B. Gallego, C. Brosa, A. Planas, *Carbohydr. Res.* 1995, 274, 285.
- C.-A. Tai, S. S. Kulkarni, S.-C. Hung, J. Org. Chem. 2003, 68, 871.
- 7. Y. Ding, Synth. Commun. 1999, 20, 3541.
- K. C. Nicolaou, N. Winssinger, J. Pastor, F. DeRoose, J. Am. Chem. Soc. 1997, 119, 449.
- 9. S.-S. Weng, Y.-D. Lin, C.-T. Chen, Org. Lett. 2006, 8, 5633.
- R. Geurtsen, D. S. Holmes, G.-J. Boons, J. Org. Chem. 1997, 62, 8145.
- 11. K. P. R. Kartha, R. A. Field, J. Carbohydr. Chem. 1998, 17, 693.
- 12. B. Rajanikanth, R. Seshadri, *Tetrahedron Lett.* **1987**, 28, 2995.
- V. Kumar, N. Taxak, R. Jangir, P. V. Bharatam, K. P. Ravindranathan Kartha, J. Org. Chem. 2014, 79, 3429.
- 14. S.-S. Weng, Tetrahedron Lett. 2009, 50, 6414.
- S.-S. Weng, C.-L. Li, C.-S. Liao, T.-A. Chen, C.-C. Huang, K.-T. Hung, J. Carbohydr. Chem. 2010, 29, 429.
- S. Valerio, A. Iadonisi, M. Adinolfi, A. Ravida, J. Org. Chem. 2007, 72, 6097.
- B. Mukhopadhyay, K. P. R. Kartha, D. A. Russell, R. A. Field, J. Org. Chem. 2004, 69, 7758.
- R. J. Ferrier, R. H. Furneaux, *Carbohydr. Res.* 1980, 52, 251.

- S. A. Abbas, J. J. Barlow, K. L. Matta, *Carbohydr. Res.* 1982, 100, C33.
- G. Agnihotri, P. Tiwari, A. K. Misra, J. Carbohydr. Chem. 2006, 25, 491.
- 21. B. D. Johnston, B. M. Pinto, J. Org. Chem. 2000, 65, 4607.
- 22. R. T. Dere, A. Kumar, V. Kumar, X. Zhu, R. R. Schmidt, J. Org. Chem. 2011, 76, 7539.
- Y.-C. Ko, C.-F. Tsai, C.-C. Wang, V. M. Dhurandhare, P.-L. Hu, T.-Y. Su, L.-S. Lico, M. M. Zulueta, S.-C. Hung, J. Am. Chem. Soc. 2014, 136, 14425.
- 24. D. Gueyrard, A. Tatibouet, Y. Gareau, P. Rollin, Org. Lett. 1999, 1, 521.
- B. A. Garcia, J. L. Poole, D. Y. Gin, J. Am. Chem. Soc. 1997, 119, 7597.
- M. W. Loranger, S. A. Beaton, K. L. Lines, D. L. Jakeman, *Carbohydr. Res.* 2013, 379, 43.
- 27. T. Ghosh, A. Santra, A. K. Misra, *Beilstein J. Org. Chem.* 2013, 9, 974.
- 28. B. D. Johnston, B. M. Pinto, J. Org. Chem. 2000, 65, 4607.
- 29. H. Tsutsumi, Y. Ishido, Carbohydr. Res. 1981, 88, 61.
- 30. B. A. Garcia, D. Y. Gin, J. Am. Chem. Soc. 2000, 122, 4269.
- I. Matsuo, M. Isomura, K. Ajisaka, *Tetrahedron Lett.* 1999, 40, 5047.
- 32. Y. Tatsuta, Tetrahedron Lett. 1996, 37, 2453.
- 33. J. Inanaga, Y. Yokoyama, T. Hanamoto, J. Chem. Soc., Chem. Commun. **1993**, 13, 1090.
- 34. M. Yanase, M. Funabashi, J. Carbohydr. Chem. 2000, 19, 53.
- 35. W. Biltz, G. F. Huettig, Z. Anorg. Allg. Chem. 1921, 119, 117.
- G. Bartoli, G. D. Antonio, R. Giovannini, S. Giuli, S. Lanari, M. Paoletti, E. Marcantoni, J. Org. Chem. 2008, 73, 1919.
- 37. W. C. Schumb, E. L. Gamble, M. B. Danus, J. Am. Chem. Soc. 1949, 71, 3225.
- 38. T. Ren, G. Zhang, D. Liu, *Tetrahedron Lett.* 2001, 42, 1007.
- S. N. Khan, A. Kim, R. H. Grubbs, Y.-U. Kwon, Org. Lett. 2012, 14, 2952.
- S. Dumbre, A. Derouaux, E. Lescrinier, A. Piette, B. Joris, M. Terrak, P. Herdewijn, J. Am. Chem. Soc. 2012, 134, 9343.
- 41. C.-C. Lin, T.-S. Hsu, K.-C. Lu, I.-T. Huang, J. Am. Chem. Soc. 2000, 47, 921.
- G.-J. Liu, X.-T. Zhang, G.-W. Xing, Chem. Commun. 2015, 51, 12803.
- D. E. Paterson, F. K. Griffin, M.-L. Alcaraz, R. J. K. Taylor, *Eur. J. Org. Chem.* 2002, *7*, 1323.
- V. Kumar, N. Taxak, R. Jangir, P. V. Bharatam, K. P. Ravindranathan Kartha, J. Org. Chem. 2014, 79, 3427.